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Abstract— An algorithm is introduced for the computation
of an approximate optimal control policy for discrete-time
finite-horizon nonlinear singularly perturbed systems. This is
achieved through timescale separation and by utilizing ideas
from parametric optimization and dynamic programming. We
demonstrate that our proposed method produces a control
policy that is both theoretically robust and nearly optimal.

Index Terms— Optimization algorithms; Constrained con-
trol; Optimal control.

I. INTRODUCTION

Singularly perturbed systems play an important role in
engineering, chemistry, biology, physics, and so on. In a
singularly perturbed system, there may be two or more
underlying coupled dynamical systems that are operating at
different timescales.

In practice, the fast and the slow dynamics are typically
decoupled in a way in which dynamic programming based
solution is derived for the slow dynamics and a tracking
control is applied to control the fast dynamics. Thus, by
applying the singular perturbation theory, one can separately
solve the control policy of the two timescales, and get the
overall policy by combining them (this is made precise later
in the paper). This approach greatly reduces the computa-
tional burden of applying dynamic programming over the
entire dynamics with a higher dimensional state space. In
turn, some optimality loss is incurred due to this approximate
approach. Despite being extensively applied in practice, there
are limited theoretical results regarding the timescale sepa-
ration method for discrete time nonlinear systems with state-
action constraints. Accordingly, we aim to bridge this gap in
this paper: We derive an upper bound on the suboptimality
gap for discrete-time finite-horizon nonlinear singularly-
perturbed systems with state-action constraints.

A. Prior Work

Dynamic programming introduced by Bellman [1] has
been successfully utilized to solve various types of sequen-
tial decision making problems, both finite and infinite in
horizon [2] and with state-action constraints. Admittedly,
singularly perturbed system can be optimized using dynamic
programming. However, due to curse of dimensionality, the
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computational runtime is significantly high. Singular pertur-
bation theory exploits the timescale separation structure in
the problem to simplify the computation and arrive at a sub-
optimal policy.

The applications of singular perturbation theory are di-
verse, including aerospace [3], circuits and systems [4], [5],
robotics [6] and so on. Comprehensive overviews of singular
perturbation systems are presented in [7], [8], among several
others. Robust control for singularly perturbed systems was
studied in [9]–[13]. Much of the theoretical development has
been done in continuous time [14]; there is scant literature
on discrete time systems. Bidani et al. [15] and Kim et al.
[16] studied discrete-time LQR and LQG optimal control
problems. Thus, the study of optimization of discrete-time
singularly perturbed system with nonlinear state transition
function, cost function and state-action constraint is an
important open problem in the field. This paper is an attempt
in this direction.

The timescale separation in singularly perturbed system
involves a parameter ε that is generally assumed to be a
small positive constant. Thus, the optimization of singularly
perturbed system can be viewed within the framework of
parametric optimization. Continuity of the optimal solution
in the parameter has been studied in [17]–[22]. Dutta et
al. [23] investigated sufficient conditions under which the
solutions of parametric dynamic programs are continuous
in the parameters. More recently, [24] studied a warm start
approach for perturbed dynamic program. This paper exploits
the recent work to derive the suboptimality bound.

In this paper, we study the approximate algorithm for
computing a suboptimal solution to discrete-time nonlinear
singularly perturbed systems with state-action constraints.
The algorithm we propose is a slight variation of the algo-
rithms widely used in practice. In practice, the fast time scale
problem is solved using an LQR controller with carefully
tuned Q and R matrices. On the other hand, we use the value
function derived from solving the slow dynamics optimiza-
tion to derive a constrained quadratic program to solve the
fast dynamics optimization. Consequently, our algorithm has
certain desirable theoretical benefits in comparison to the
ones used in practice. We utilize the theory of parametric
dynamic programs and first-order perturbation methods for
constrained optimization to derive the suboptimality gap.
The suboptimality gap here refers to the difference between
the total cost obtained by following our proposed control
policy and the optimal cost achieved using the dynamic
programming algorithm. To the best of our knowledge,
this is the first paper to derive the suboptimality gap for
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constrained singularly perturbed systems using the control
policy obtained through the timescale separation approach.

B. Paper Outline

In Section II, we introduce the problem formulation of a
two-timescale singularly perturbed system. Then, we study
the decoupled algorithm to efficiently compute the approxi-
mately optimal policy. In Section III, we state the theoretical
suboptimality gap and robustness of our approximated policy.
Supplementary proofs are provided in Section IV. Finally, the
conclusion is drawn in Section V.

C. Preliminaries

Throughout the paper, we endow the finite dimensional
Euclidean space Rn with the usual `2 norm. Let X ⊂ Rn.
By Heine–Borel theorem [25, 3.30], X is compact if and
only if X is closed and bounded. The interior of X , denoted
by int(X ), is the largest open set that is contained in X .
Let f : Rn → Rm be a differentiable function. Then, the
gradient ∇xf(x) ∈ Rn×m is represented in a matrix form:

∇xf(x) =


∂
∂x1

f1(x) · · · ∂
∂x1

fm(x)
...

. . .
...

∂
∂xn

f1(x) · · · ∂
∂xn

fm(x)

 ∈ Rn×m.

Fact 1 (Chain Rule): Let f : Rn → Rm and g : Rm →
Rp be differentiable functions. Then,

∇xg ◦ f |x0
= ∇xf |x0

∇yg|f(x0).
Fact 2 (First-order Taylor Expansion): Let f : X → R

be a C2 function. Let x, x′ ∈ X . Then, we write f(x′) as:

f(x′) = f(x) +∇f(x)T (x′ − x) +O(‖x′ − x‖2).
We call C : X ⇒ Y a compact-valued correspondence (set-
valued mapping) when C(x) is a compact subset of Y for
each x ∈ X . A compact-valued correspondence C is upper-
hemicontinuous at x ∈ X if and only if for all sequences
(xn)n∈N ⊂ X , for all y ∈ Y , and all sequences (yn)n∈N
satisfying yn ∈ C(xn),

xn → x and yn → y =⇒ y ∈ C(x).

More information on correspondences can be found in [25].

II. PROBLEM FORMULATION

Consider a two-timescale singularly perturbed control sys-
tem with the following form:

xt+1 = xt + εf1(xt, yt, ut),

yt+1 = f2(xt, yt, ut),

where t = 1, . . . , T is the time index, xt ∈ X ⊂ Rn is the
slow state, yt ∈ Y ⊂ Rm is the fast state, ut ∈ U ⊂ Rk is
the control input. f1, f2 are functions that characterize how
the slow/fast states are updated, and ε > 0 is the perturbation
parameter of the system. The model is a nonlinear general-
ization of the discrete time model considered in [15], [16]
for linear systems. At time t, let gt : X × Y × U → Rr be

the state-action constraint function. In this paper, we assume
all the constraints are of the form:

gt,i(xt, yt, ut) ≤ 0, i ∈ {1, . . . r},

let ct : X × Y × U → R be the cost incurred at time t. Let
πt : X × Y → U be an admissible control policy such that
gt(x, y, πt(x, y)) ≤ 0 for all x ∈ X , y ∈ Y . The total cost is

J(π) :=

T∑
t=1

ct(xt, yt, πt(xt, yt)).

The goal of an optimal control policy π∗ is to minimize the
total cost subject to the state-action constraints. For fixed
ε > 0, we construct the following optimization problem:

P (ε) : min
π
J(π)

subject to gt(xt, yt, ut) ≤ 0,

xt+1 = xt + εf1(xt, yt, ut),

yt+1 = f2(xt, yt, ut), ut = πt(xt, yt).

We assume the cost function ct and the constraint function
gt do not depend on ε for all t = 1, . . . , T . Let π∗ε be the
solution to P (ε). The computation of π∗ε is done by solving
P (ε) recursively with dynamic programming. At the terminal
state T , we first initialize the value functions to be

VT (xT , yT ) = min
uT∈U

cT (xT , yT , uT )

subject to gT (xT , yT , uT ) ≤ 0

for each xT ∈ X , yT ∈ Y . Then, for t = (T − 1), · · · , 1, we
define the state-action value function as:

Qt(xt, yt, ut) =ct(xt, yt, ut)+

Vt+1(xt + εf1(xt, yt, ut), f2(xt, yt, ut)).

At stage t, we define the value function of the slow and fast
states (xt, yt) as:

Vt(xt, yt) = min
ut∈U

Qt(xt, yt, ut) s.t. gt(xt, yt, ut) ≤ 0. (1)

With the assumption that the admissible action set has
nonempty interior for each state, i.e. int({u ∈ U :
gt(x, y, u) ≤ 0}) 6= ∅ for all x ∈ X , y ∈ Y and t =
1, · · · , T , dynamic programming is guaranteed to give us
the optimal policy that minimizes the cost and satisfies the
state-action constraints. However, solving the above dynamic
programming P (ε) can be time and memory-consuming
when the dimension of the state space is as large as n+m –
this phenomenon is known as the “curse of dimensionality”.

Traditionally, to solve the problem without the state-
action constraints, the slow and fast dynamics problems are
decoupled, as described in [15], [16]. The two sub-problems
are solved sequentially, and one obtains an approximately
optimal policy with a small performance loss. In this paper,
we extend that technique to nonlinear systems with state-
action constraints formulated above. We are interested in
computing a decoupled optimal policy π̂∗ε,t of the form:

π̂∗ε,t(xt, yt) = γ∗ε,t(xt) + µ∗ε,t(xt, yt), t = 1, · · · , T
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where we call γ∗ε,t : X → U the optimal slow-state policy,
and µ∗ε,t : X × Y → U the optimal fast-state policy. In
this paper, we derive the decoupled approach to efficiently
compute the approximate optimal control policy π̂∗ε to the
singularly perturbed optimal control problem P (ε), so that
J(π̂∗ε ) ≈ J(π∗ε ). We analyze the performance loss for the
approximated policy π̂∗ε . Moreover, we show the robustness
of π̂∗ε to variations in the singular perturbation parameter ε.
We assume the system satisfies the following conditions.

Assumption 1: X ,Y,U are compact, and f1, f2, ct, gt, Vt
are C2 mappings for every t = 1, . . . , T .

A. Slow Dynamics Optimization

In the sequel, we ignore the time index of the state and
actions unless necessary. For the coupled slow and fast
dynamics, we assume that the fast dynamics has a steady
state that is related to the slow state x and the action u.

Assumption 2: There is a twice differentiable map h : X×
U → Y such that

1) f2(x, h(x, u), u) = h(x, u),
2) for every t = 1, . . . , T and x ∈ X , the set {u ∈ U :

gt(x, h(x, u), u) ≤ 0} has nonempty interior.
With h defined in Assumption 2, we define the state update
functions, cost function and the constraint function without
the fast state for the slow dynamics as:

fh1 (x, u) := f1(x, h(x, u), u), cht (x, u) := ct(x, h(x, u), u),

ght (x, u) := gt(x, h(x, u), u), (2)

assuming yt = h(xt, ut) for each t = 1, . . . , T . Then,
we construct a dynamic programming problem which has
a lower dimensional state space X instead of X × Y:

P1(ε) : min
γε

T∑
t=1

cht (xt, ut)

subject to ght (xt, ut) ≤ 0,

xt+1 = xt + εfh1 (xt, ut), ut = γε,t(xt).

Given that the perturbation parameter ε is fixed, we solve
P1(ε) using the dynamic programming algorithm. The op-
timal slow dynamics policy is derived by a sequence of
constrained optimization problems as shown in (1). We
denote the optimal slow policy of P1(ε) by γ∗ε = (γ∗ε,t)

T
t=1,

and let λ∗ε,t(xt) be the Lagrange multiplier of action γ∗ε,t(xt)
associated with the constraint ght (xt, γ

∗
ε,t(xt)) ≤ 0. With the

optimal slow dynamics policy γ∗ε , we define the steady state
of the fast dynamics: ȳε,t := h(xt, γ

∗
ε,t(xt)).

B. Fast Dynamics Optimization

In many cases, tracking control methods are used to deter-
mine the fast dynamics control policy after the computation
of the slow dynamics policy. However, in this paper, we
present a modified approach. Specifically, we leverage the
optimal slow dynamics policy and the associated Lagrange
multipliers to generate an approximate dynamic program,
which we then solve using perturbed optimization techniques
to efficiently obtain the optimal fast dynamics policy. With

computed optimal slow-dynamic policy γ∗ε , we define a new
fast dynamics state zε,t ∈ Y capturing the difference between
the actual fast state yt and the steady state ȳε,t: zε,t :=
yt − ȳε,t. At each backward induction stage t = T, . . . , 1,
we aim to solve the following optimization:

min
ut∈U

Qt(xt, yt, ut), subject to gt(xt, yt, ut) ≤ 0.

Let Qht (x, u) := Qt(x, h(x, u), u). Then, the state-action
value function Qt and the constraint gt is approximated by
their Taylor expansions:

Qt(x, y, u) = Qht (x, u) +∇yQt(x, h(x, u), u)T z +O(‖z‖2),

gt(x, y, u) = ght (x, u) +∇ygt(x, h(x, u), u)T z +O(‖z‖2),

where z = y − h(x, u). Note that the slow dynamics policy
γ∗ε is optimal when zε,t = 0 for t = 1, . . . T . At stage t,
we denote the fast-dynamics action as vε,t: vε,t := ut −
γ∗ε,t(x). We derive an approximated fast policy by solving
an approximated problem by linearizing the cost-to-go and
constraint functions. The approximated problem is defined
as P̂2(ε):

P̂2(ε) : min
v∈Vt(x)

Qht (x, u) +∇yQt(x, h(x, u), u)T z,

subject to ght (x, u) +∇ygt(x, h(x, u), u)T z ≤ 0,

u = γ∗ε,t(x) + v,

where Vt(x) is the set of feasible actions at state x:

Vt(x) := {v ∈ U : γ∗ε,t(x) + v ∈ U
and ght (x, γ∗ε,t(x) + v) ≤ 0}.

In addition, we define At(x, u) as the index set of active
constraints At(x, u) :=

{
i ∈ {1, . . . , r} : ght,i(x, u) = 0

}
,

where ght,i(x, u) denotes the i-th entry of vector ght (x, u).
We observe that the objective and constraint functions in
P̂2(ε) are perturbed by ∇yQt(x, h(x, u), u)T z + O(‖z‖2)
and ∇ygt(x, h(x, u), u)T z + O(‖z‖2), respectively. Hence,
we can leverage the ideas from Gupta et al. [24] for fast
computation of perturbed optimization problems. At stage t
and state x, we define the following:

Hε,t(x) :=∇uuQht (x, γ∗ε,t(x)),

Aε,t(x) :=[∇ught,i(x, γ∗ε,t(x))]i∈At(x,γ∗
ε,t(x))

,

ẽε,t(x) :=∇2
uyg

h
t (x, γ∗ε,t(x)),

b̃ε,t(x) :=− [∇ygt,i(x, h(x, γ∗ε,t(x)), γ∗ε,t(x))]i∈At(x,γ∗
ε,t(x))

,

Mε,t(x) :=[Aε,t(x)H−1ε,t (x)ATε,t(x)]−1,

wε,t(x) :=[ẽTε,t(x), b̃Tε,t(x)]T ,

Bε,t(x) :=H−1ε,t (x)[ATε,t(x)Mε,t(x)Aε,t(x)H−1ε,t (x)− I|
ATε,t(x)Mε,t(x)].

Assume the set of active constraints for the fast dynamics
stays the same as At(x, γ∗ε,t(x)), then we have a closed-form
approximated optimal fast-dynamics action:

µ̂∗ε,t(x, z) := Bε,t(x)wε,t(x)z.
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We show that µ̂∗ε,t approximates the true fast-state policy
with a bounded loss in performance. In the case when At
changes, we need to solve the original constrained optimiza-
tion problem P̂2(ε). The joint approximated policy π̂∗ε,t is

π̂∗ε,t(x, y) := γ∗ε,t(x) + µ̂∗ε,t(x, y − h(x, γ∗ε,t(x)). (3)

The algorithm for deriving π̂∗ε is shown in Algorithm 1. In
the sequel, we provide our main results on robustness and
performance characteristics of π̂∗ε .

Algorithm 1 Decoupled Algorithm.
Require: f1, f2, h and ct, gt for t = 1, . . . , T

Perform slow dynamics DP. For each t = 1, . . . , T ,
compute the optimal policy γ∗ε,t(xt) with the associated
Lagrange multiplier λ∗ε,t(xt) and the value functions Vt.
for t = T, . . . , 1 do

for each xt ∈ X , yt ∈ Y do
zt ← yt − h(xt, γ

∗
ε,t(xt)).

Compute Aε,t(xt), b̃ε,t(xt).
Compute Bε,t(xt), wε,t(xt).
if At not changing then

µ̂∗ε,t(zt)← Bε,t(xt)wε,t(xt)zε,t.
else

Compute µ̂∗ε,t by constrained optimization.
end if

end for
end for

III. MAIN RESULTS

This section has two main parts. In the first part, we show
that π̂∗ε we derived is robust to the singular perturbation
parameter ε. We study the differentiability of the optimal
policy as a function of the parameter ε. In the second part,
we derive the suboptimality gap.

A. Robustness Results
In this section, we present the sufficient conditions that

ensures continuity or differentiablity of mapping ε 7→ π̂∗ε .
We now present the first theorem that outlines the sufficient
conditions under which the slow dynamics optimal policy is
continuous over the slow state and the perturbation parame-
ter. The proof is provided in Section IV-A.

Theorem 1: Assume Assumption 1 holds. In addition,
assume that for each t = 1, . . . , T :

1) {u : ght,i(x, u) ≤ 0} ⊂ U is convex for every x ∈ X ,
2) x 7→ {u : ght (x, u) ≤ 0} is lower hemicontinuous,

then γ∗ε (·) is lower-hemicontinuous on X × E .
In the sequel, we present another robustness theorem that
provides sufficient conditions that imply the slow dynamics
policy to be continuous and differentiable over the perturba-
tion parameter ε. For each t = 1, . . . , T , the Lagrangian of
the constrained cost-to-go problem is defined as

Lε,t(x, u, λ) :=cht (x, u) + Vt+1(x+ εfh1 (x, u))+∑
i∈At(x,u)

λ∗t,i(x)ght,i(x, u)

We now state the following assumption to establish the conti-
nuity properties of the optimal policy. The implication of the
assumption is widely discussed in chapters about Lagrange
Multiplier theory for constrained optimization problems; see,
for example, [17, Chapter 4], and [26, Chapter 3].

Assumption 3: 1) ∇uLε,t(x, γ∗ε,t(x), λ∗ε,t(x)) = 0,
2) {∇ught,i(x, γ∗ε,t(x))}i∈At(x,γ∗

ε,t(x))
is a set of linearly

independent vectors,
3) λ∗ε,t,i(x) > 0 for each i ∈ At(x, γ∗ε,t(x)),
4) For any d such that ∇ught,i(x, γ∗ε,t(x))T d = 0, i ∈
At(x, γ∗ε,t(x)),

dT∇2
uuLε,t(x, γ

∗
ε,t(x), λ∗ε,t)d > 0.

The second theorem provides conditions that imply the
continuity and differentiability of the slow dynamics policy.
The proof is provided in [17, Theorem 4.4]

Theorem 2: If Assumptions 1 - 3 hold, then there exists
ε̄ such that γ∗ε,t(x) is differentiable over X × [0, ε̄) for all t.
Note that µ̂∗ε,t is continuous over ε when γ∗ε is continuous
over ε if Assumptions 1 - 3 hold. This is because when γ∗ε is
continuous over ε, the matrices Bε,t, wε,t and the fast state
zε,t are all continuous over ε. Hence, we show the robustness
of the joint policy:

Corollary 3: If Assumptions 1 - 3 hold, then the joint
approximated policy π̂∗ε is continuous over ε.

B. Approximation Results

We now present our last main theorem on the subopti-
mality gap for the approximated policy π̂∗ε . We first need
the following assumption that ensures the fast state ‖zε,t‖ =
O(‖zε,1‖). Specifically, if zε,1 is insignificant, it is necessary
that zε,2, zε,3, and so on up to zε,T to also be insignificant.
This ensures that for every backward induction step, the
terms involving zε,t is treated as a minor perturbation of
the constrained optimization problem we aim to solve. This
is made precise in Lemma 7. We now present the last
assumption before establishing the approximation results. We
assume that the distance between the steady state and the
actual fast state is non-expanding with time.

Assumption 4: For each t = 1, . . . , T − 1, there exists
0 < α < 1 such that for every x ∈ X , u ∈ U , the fast state
yt+1 = f2(x, yt, u) satisfies

‖yt+1 − h(x, u)‖ ≤ α‖yt − h(x, u)‖.

Moreover, we assume that ‖y1 − h(x1, u1)‖ << 1.
The following theorem shows the theoretical performance
guarantee for π̂∗ε . The proof is shown in Section IV-B.

Theorem 4: Assuming Assumptions 1 - 4 hold. Let π̂∗ε be
defined in (3), and π∗ε be the true optimal policy. Assuming
γ∗ε is continuous over the slow states x ∈ X , ct ≡ c and
gt ≡ g for t = 1, . . . , T . Then

J(π̂∗ε )−J(π∗ε ) =

T∑
t=1

∇yQt(xt, h(xt, γ
∗
ε,t(xt)), γ

∗
ε,t(xt))

T zε,t

−
T∑
t=1

ẽTε,t(xt)H
−1
ε,t (xt)ẽε,t(xt) +O(‖zε,1‖, ε).
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γ∗ε,2(x) = argmin
u∈{u:gh2 (x,u)≤0}

c(x, u) + V h3 (x′(u)),

γ∗ε,1(x) = argmin
u∈{u:gh1 (x,u)≤0}

c(x, u) + V h2 (x′(u))

= argmin
u∈{u:gh1 (x,u)≤0}

c(x, u) + min
v
c(x′(u), γ∗ε,2(x′(u) + v) + V h3 (x′(u) + εfh1 (x+ εfh1 (x′(u), γ∗ε,2(x′(u)) + v))

= argmin
u∈{u:gh1 (x,u)≤0}

c(x, u) + min
v
c(x, γ∗ε,2(x)) +∇uc(x, γ∗ε,2(x))T (ε∇γ∗ε,2(x)T fh1 (x, u) + v)

+ ε∇xc(x, γ∗ε,2(x))T fh1 (x, u) + V h3 [x′(u) + ε∇V h3 (x′(u))T fh1 (x′(u), γ∗ε,2(x′(u)) + v)] +O(ε, ‖v‖)
= argmin
u∈{u:gh1 (x,u)≤0}

c(x, u) + V h3 (x′(u)) +O(ε, ‖v‖),

Fig. 1. These equations are used in the proof of Lemma 7.

IV. PROOF OF MAIN RESULTS

A. Proof of Theorem 1

Lemma 5: Let F : Θ × U → Rr be a function. Let the
feasible action correspondence C : Θ ⇒ U be defined as
C(θ) := {u : F (θ, u) ≤ 0}. If Fi is continuous on Θ×U and
{u : Fi(θ, u) ≤ 0} is a convex subset of U for i = 1, . . . , r,
then C is upper-hemicontinuous.

Proof: Let θ ∈ Θ, u ∈ U and sequences (θn)n ⊂ Θ,
(un)n ⊂ U such that

θn → θ, un → u, and un ∈ C(θn) for all n ∈ N.

For every n ∈ N, un ∈ C(θn) implies (F (θn, un))n is a non-
positive sequence. As Fi is continuous, we get Fi(θ, u) =
limn→∞ Fi(θn, un) ≤ 0, which implies the mapping θ 7→
{u : Fi(θ, u) ≤ 0} is upper-hemicontinuous. As C(θ) = {u :
F (θ, u) ≤ 0} = ∩i{u : Fi(θ, u) ≤ 0}, and {u : Fi(θ, u) ≤
0} is convex for each i = 1, . . . , r, [27, Theorem B] implies
C is upper-hemicontinuous.

Proof of Theorem 1: First, as c, h, g are continuous on
compact sets, so they are uniformly continuous functions.
The constraint correspondence C as defined in Lemma
5 is continuous and compact-valued. Moreover, the state
update constraints are indeed continuous and compact-valued
as they are single-valued. As the objective function J =∑T
t=1 ct(xt, ut) is continuous over E , Berge’s maximum

theorem [25, 17.31] implies the result.

B. Proof of Theorem 4

We first show if Assumptions 1 - 4 hold, then zε,t is in order
of ‖zε,0‖ for every t = 1, . . . , T .

Lemma 6: Consider the following parametric optimiza-
tion problem:

min
u∈U

F (u) + εF̃ (u) subject to G(u) + εG̃(u) ≤ 0.

Let u∗ε be the solution to the above constrained optimization
problem, and λ∗ε be the corresponding Lagrange multiplier.
Let A(u) := {i : Gi(u) = 0} be the index set of active
constraints. Suppose the following hold:

1) ∇u
(
F (u∗ε) +

∑
i∈A(u∗

ε)
λ∗ε,iGi(u

∗
ε)
)

= 0,

2) {∇uGi(u∗ε)}i∈A(u∗
ε)

is a set of linearly independent
vectors,

3) λ∗ε,i > 0 for i ∈ A(u∗ε),
4) For any d satisfying ∇uGi(u∗ε)T d = 0, i ∈ A(u∗ε),

dT∇2
uu

F (u∗ε) +
∑

i∈A(u∗
ε)

λ∗ε,iGi(u
∗
ε)

 d > 0.

Then, there exists ε̄ > 0 such that ε 7→ u∗ε is differentiable
for all ε ∈ [0, ε̄).
Proof: The proof is completed by directly applying [17,
Theorem 4.4].

Lemma 7: Suppose Assumptions 1 - 4 hold and ct ≡ c
for all t = 1, . . . , T . Then, there exists ε̄ > 0 such that
‖zε,t‖ = O(‖zε,1‖) whenever ε ∈ [0, ε̄).
Proof: For time t = 2, we get

‖zε,2‖ =‖y2 − h(x2, γ
∗
ε,2(x2))‖

≤α‖y1 − h(x2, γ
∗
ε,2(x2))‖

≤α‖zε,1‖+ α‖h(x1, γ
∗
ε,1(x1))− h(x2, γ

∗
ε,2(x2))‖,

where we used Assumption 4. As X is compact and h is
continuous, we conclude that h is uniformly continuous.
Moreover, by Theorem 2 and its corollary, γ∗ε,t is also
continuous for all t. Consequently, it suffices to bound
‖γ∗ε,2(x)−γ∗ε,1(x)‖ pointwise. We can achieve so by invoking
uniform continuity of h, γ∗ε,1, and γ∗ε,2. Let x′(u) = fh1 (x, u)
denote the next state given the current state is x and the
action is u. From the derivation in Fig. 1 and Lemma 6, there
exists ε̄1 > 0 such that ‖γ∗ε,2(x) − γ∗ε,1(x)‖ is sufficiently
small whenever ε ∈ [0, ε̄1). Hence in this case, ‖zε,2‖ =
O(‖zε,1‖). Following the similar proof steps as above for
t = 2, 3, . . . , T − 1, we can determine ε̄2, . . . , ε̄T−1 > 0
such that ‖zε,t+1‖ = O(‖zε,t‖) = O(‖zε,1‖) whenever
ε ∈ [0, ε̄t). Lastly, we conclude our proof by letting ε̄ =
min(ε̄1, . . . , ε̄T−1).

Lemma 7 ensures that zt is a small perturbation parameter
for all t = 1, . . . , T . We now derive the suboptimality gap.
We begin our presentation of suboptimality bound with a
single timestep problem. The proof of the following lemma
comes from [24, Theorem 3].
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Lemma 8: Consider the constrained dynamic program-
ming problem at time t. The suboptimality gap is

∇yQt(x,h(x, γ∗ε,t(x)), γ∗ε,t(x))T zε,t

−ẽTε,t(x)H−1ε,t (x)ẽε,t(x) +O(‖zε,t‖).
Theorem 4 is proved by applying Lemma 8 recursively and

using Lemma 7 to bound the last term. A few remarks are in
order. In the algorithm proposed here, we need derivatives of
the value function to solve the constrained tracking problem
in the fast timescale optimization problem. One can conduct
numerical differentiation of the value function to construct
the tracking metric. This was the approach taken in [24]. Cur-
rently, the tracking metric is tuned through trial and error to
get the desired performance. Our approach obviates the trial
and error method at the expense of a higher computational
burden due to numerical differentiation.

Our derivation of the suboptimality bound does not hold
for infinite horizon problem, since the errors accumulated
over time would add up to infinity. In this case, one can
consider discounted cost problem, so that the errors over
time are also discounted. A rigorous derivation for this case
will be conducted in our future work. To ensure stability of
the resulting control policy in the infinite horizon setup, one
can exploit the Lyapunov stability theorem. In addition, if
the cost function and the constraint are also functions of the
parameter ε, one can use the approach of [24] to derive the
algorithm for computing a suboptimal policy. Due to space
constraints, we did not derive those expressions in this paper.

V. CONCLUSION

In this paper, we devised an approximate algorithm for
optimal control of singularly perturbed nonlinear systems
with state-action constraints. Under appropriate assumptions,
we demonstrate that the control policy is continuous in
the perturbation parameter ε. To derive the approximately
optimal control policy using timescale separation, we first
compute the optimal policy and the associated Lagrange mul-
tipliers for the slow dynamics optimization. Thereafter, we
use them to derive an approximately optimal policy for the
fast dynamics optimization using the WASP algorithm [24].
Under further assumptions, we derive the suboptimality gap
due to timescale separation of the optimization problem. The
benefit of the approach developed here is that the matrices
for tracking problem in the fast dynamics optimization is
automatically computed using the solution from the slow
dynamics optimization.

In the future, one can study the case when the cost function
and the constraints are also a function of the parameter ε and
extend our analysis to infinite horizon settings.
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