
Safe Returning FaSTrack with Robust Control Lyapunov-Value
Functions

Zheng Gong∗, Boyang Li∗ and Sylvia Herbert

Abstract— Real-time navigation in a priori unknown environ-
ment remains a challenging task, especially when an unexpected
(unmodeled) disturbance occurs. In this paper, we propose
the framework Safe Returning Fast and Safe Tracking (SR-
F) that merges concepts from 1) Robust Control Lyapunov-
Value Functions (R-CLVF) [1], and 2) the Fast and Safe
Tracking (FaSTrack) framework [2]. The SR-F computes an
R-CLVF offline between a model of the true system and a
simplified planning model. Online, a planning algorithm is
used to generate a trajectory in the simplified planning space,
and the R-CLVF is used to provide a tracking controller
that exponentially stabilizes to the planning model. When an
unexpected disturbance occurs, the proposed SR-F algorithm
provides a means for the true system to recover to the planning
model. We take advantage of this mechanism to induce an
artificial disturbance by “jumping” the planning model in
open environments, forcing faster navigation. Therefore, this
algorithm can both reject unexpected true disturbances and
accelerate navigation speed. We validate our framework using
a 10D quadrotor system and show that SR-F is empirically 20%
faster than the existing works while maintaining safety.

I. INTRODUCTION

Safe control for autonomous systems is a challenging task,
particularly for dynamic systems navigating through a priori
unknown environments. For computational efficiency, many
algorithms use a simplified (often kinematic) model of the
system to generate a path around obstacles to a goal. A more
complex model representing the true robot is then used to
track this path. Popular path planning algorithms include Di-
jkstra’s [3], A∗ [4], Rapidly Exploring Random Trees (RRT)
[5] and heuristic-based methods [6], [7]. The tracking con-
troller can be generated using, for example, model predictive
control (MPC) [8], [9], or control Lyapunov functions (CLFs)
[10], [11]. For safety, control barrier functions (CBFs) [12]
or Hamilton Jacobi (HJ) reachability analysis [13], [14] can
generate safety filters for the controller.

Since planning is typically done with a simplified model
of the system, the path might not be feasible and safe for
the actual robot to track. To address this issue, [15], [16]
directly adds a CBF and CLF as a constraint in the path
planning algorithm. [17] uses a reference governor control
design wherein a robot with a specific form of dynamics
can safely stabilize to a moving equilibrium point. Integrated
planning and control (IPC) uses the notion of a safe flight
corridor (SFC) as a safety constraint in nonlinear MPC to
guarantee safe navigation [18], [19], and shows empirical
robustness to sudden disturbances.

This research is supported by ONR YIP (#N00014-22-1-2292) and the
UCSD JSOE Early Career Faculty Award. *Both authors contributed equally
to this work. All authors are in Mechanical and Aerospace Engineering at
UC San Diego {zhgong,bol025, sherbert}@ucsd.edu.

Fig. 1: Comparison of the relative trajectory using the
original FaSTrack framework (left) and our proposed SR-F
(right). The red dotted line denotes an unexpected distur-
bance that causes the relative state to leave the minimum
tracking error bound (TEB). FaSTrack can only guarantee
the relative state stays in the larger error bound, while the
SR-F can stabilize the relative state back to the TEB.

Fast and Safe Tracking (FaSTrack) [2] is a modular frame-
work that separates the navigation task into independent
planning and tracking tasks (with corresponding planner
and tracker models of the autonomous system). Offline, HJ
reachability is used to precompute a tracking error bound
(TEB) on the maximum deviation that the true tracker model
may take from the planner model (Fig. 1). This is paired with
an optimal tracking controller that maintains this error bound
regardless of the planning algorithm used by the planner.
Online, the obstacles are augmented with TEB and the
planning algorithm provides a path in the low-dimensional
planning space around the augmented obstacles. The tracking
controller guarantees the distance between the tracker and the
path is contained in the TEB, preserving safety.

While several of the above approaches can handle prede-
fined disturbance bounds, they are not designed to maintain
safety when experiencing a sudden disturbance beyond the
expected bounds. In this paper, we modify the FaSTrack
framework and propose the novel Safe Returning FaSTrack
(SR-F) framework. The main contributions are as follows:

1) We introduce the SR-F, where a CLF-like function in
the relative space between the tracker and planner is
computed offline, and a new safe returning mechanism
is used to accommodate unexpected disturbances. We
prove (under mild assumptions) that the SR-F can
maintain safety under unexpected disturbances.

2) We take advantage of this robustness to sudden distur-
bances by methodically introducing an artificial sudden
disturbance by “jumping” the planner towards the goal,
forcing the autonomous system to speed up in open
environments while maintaining safety.

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Copyright ©2024 IEEE

3) We compare SR-F with existing work [19], [20] on 8D
and 10D quadrotor navigation tasks that are subjected
to sudden high wind gusts. We show the SR-F can
maintain safety when unexpected disturbance happens,
and outperforms existing methods on navigation speed.

II. BACKGROUND

We consider three models: (1) a tracker model that repre-
sents the true robot, (2) a planner model that is designed by
the user for path planning, and (3) a relative model used to
guarantee safety.

1) Tracker Model: The tracker model is given by the
following nonlinear ordinary differential equation:

dx

ds
= ẋ = f(x, u, d), x(t) = x0, s ∈ [t, 0], (1)

where s is the time, x ∈ X ⊆ Rn is the tracker state, u ∈
Us ⊆ Rm is the control input, and d ∈ D ⊆ Rd is the
disturbance. Assume the dynamics f : X × Us ×D 7→ X is
Lipschitz continuous in x for fixed u, d. Assume the control
and disturbance signal u(·), d(·) are measurable functions:

u(·) ∈ Us := {u : [t, 0] 7→ Us, u(·) is measurable},
d(·) ∈ D := {d : [t, 0] 7→ D, d(·) is measurable},

where Us and D are compact sets. Under these assumptions,
we can solve for a unique solution of (1), denoted as
ξf (s; t, x, u(·), d(·)). Denote G ⊂ X the goal set, and C ⊂ X
the constraint set, i.e., the set of states that we want to avoid.

2) Planner Model: The planner model is given by:

dp

ds
= ṗ = h(p, up), p(t) = p0,

where p ∈ P ⊆ Rp is the planner state, up ∈ Up is the
planner control. Further, assume that P is a subspace of X
and we make analogous assumptions on the planner model
dynamics as for (1) to guarantee a unique solution.

The goal and constraint sets in the planner space are
denoted as Gp ⊂ P , Cp ⊂ P respectively.

3) Relative Dynamics: Define the relative state

r = Φ(x, p)(x−Qp), (2)

where r ∈ R ∈ Rn, Q augments the planner state and Φ is
a linear map so that the dynamics can be written as

ṙ = g(r, u, up, d). (3)

The existence of Q and Φ are justified in [2]. From the
assumption of the tracker and planner model, the relative dy-
namics also admits unique solution ξ(s; t, r, u(·), up(·), d(·)).
Denote the error states between tracker and planner as e and
the rest as η, i.e., r = [e, η].

A. HJ Reachability and Fastrack

The FaSTrack framework contains two parts: offline com-
putation and online execution. The offline part uses the HJ
reachability to generate the TEB, which is a robust control
invariant set. Online, it senses the environment, augments
the obstacles with the TEB, and then plans and tracks a path
around the augmented obstacles.

1) HJ reachability (Offline): HJ reachability can be for-
mulated and solved as an optimal control problem. Specifi-
cally, the cost function ℓ : R 7→ R+ is designed to measure
distance (via the Euclidean norm) in the relative state space.
The tracker control u tries its best to track the planner and
minimize this cost, whereas the disturbance d and planner
control up try to escape the tracker as far as possible by
maximizing this cost. Because the environment and planning
algorithm are not necessarily known a priori, we assume the
worst-case scenario, i.e. that the up, d can act optimally to
u. We define their strategies as mappings λp : Us 7→ Up,
λd : Us 7→ D. We further restrict them to be non-anticipative
λp ∈ Λp, λd ∈ Λd [14]. The value function is given by

V (r, t) = max
λp∈Λp,λd∈Λd

min
u∈Us

{

max
s∈[t,0]

ℓ(ξ(s; t, r, u(·), λp(·), λd(·)))}.

This value function captures the worst-case tracking error
when the tracker is acting optimally and the disturbance and
planner are acting adversarially. We assume the following
limit exits on a compact set, i.e., it converges:

V ∞(r) = lim
t→−∞

V (r, t). (4)

The minimal value of (4) is denoted V ∞, whose level set
provides the TEB in the relative state space. For planning,
we can project this bound into the error state space:

Be := {e : ∃η s.t. V ∞(e, η) ≤ V ∞}.

If C is known in advance, we could compute the inevitable
backward reachable tube of the tracker to C, i.e., the set of
states such that the collision must happen [14].

2) Online Execution: The FaSTrack augments sensed
obstacles by Be and employs any planning algorithm to
output the next state of the planner model. The gradients
of the precomputed value function V ∞(r) inform a linear
program to compute optimal control for the tracker model to
pursue the planner model. This process is repeated until the
tracker model reaches the goal. Safety is guaranteed as long
as disturbances fall within the expected bounds [2].

Remark 1. The value function is computed with a pre-
specified disturbance bound D. A larger D corresponds to
a larger TEB, which causes the augmented environment to
be denser, impacting performance. However, this also makes
the system more robust to the disturbance. On the other hand,
a smaller D results in a smaller TEB, and therefore a sparser
augmented environment, and better average performance, but
is less robust to disturbances.

B. R-CLVF

Recently, [1] proposed the robust control Lyapunov value
function (R-CLVF), defined as:

Definition 1. R-CLVF V ∞
γ : Dγ 7→ R of (3) is

V ∞
γ (r) = lim

t→−∞
max

λp∈Λp,λd∈Λd

min
us∈Us

{max
s∈[t,0]

eγ(s−t)ℓ(ξ(s))}.

Here, Dγ ⊆ Rn is the domain, γ is a user-specified parameter
that represents the desired decay rate, and ℓ(x) = ||x||−V ∞.

When γ = 0, the R-CLVF is equivalent to the infinite-time
HJ value function (4). Prop. 3 in [1] shows that for all γ ≥ 0,
the R-CLVFs have the same zero-level set. In other words,
for all γ ≥ 0, the zero-level set of the R-CLVFs is the TEB.

The R-CLVF value of r captures the largest exponentially
amplified deviation of a trajectory starting from r to the TEB,
under worst-case disturbance. If this value is finite, it means
r can be exponentially stabilized to the TEB (Lem. 7 of [1]).

Theorem 1. The relative state can be exponentially stabilized
to the TEB from Dγ \ B, if the R-CLVF exists in Dγ .

min
a∈∂B

||ξ(s)− a|| ≤ ke−γ(s−t) min
a∈∂B

||r − a||, (5)

where k > 0 and t ≤ s ≤ 0.

The R-CLVF can be computed by solving the following
R-CLVF-VI until convergence

0 =max{ℓ(r)− V ∞
γ (r),

min
u∈Us

max
up∈Up,d∈D

dV ∞
γ

dr
· g(r, u, up, d) + γV ∞

γ }.

The R-CLVF optimal controller is

u∗ = argmin
u∈Us

max
up∈Up,d∈D

dV ∞
γ

dr
· g(r, u, up, d). (6)

III. SAFE RETURNING WITH UNEXPECTED
DISTURBANCE

FaSTrack is robust to bounded pre-specified disturbances.
However, unexpected and infrequent short-duration distur-
bances can happen because of communication delays, sudden
external forces (e.g. a strong wind), or model mismatch.
After a sudden unexpected disturbance event that causes
the tracker to leave the TEB, the FaSTrack framework only
guarantees that the tracker will not exit the current level set
of the relative value function. This is visualized in Fig. 1, left.
The corresponding error bound that must be used to augment
obstacles is shown in blue, resulting in conservative plans.

We propose using the R-CLVF to guarantee that the
relative states stabilize back to the TEB at the desired rate γ.
Alternatively, one can try to find a CBF that represents the
TEB, and design a controller to stabilize the relative states
to this TEB, which is hard for high-dimensional systems
with disturbances and input constraints. We present the SR-
F framework and highlight two important implications

1) After an unexpected disturbance event, the relative state
will converge back to the TEB at an exponential rate γ.

2) We can take advantage of this convergence property by
introducing an artificial disturbance that “jumps” the
planner forward towards the goal when safe to do so,
speeding up navigation process.

Fig. 2: Online flowchart for SR-F. The online algorithm
contains three main blocks: the sensing block, the planning
block, and the tracking block. The sensing block senses
the environment, determines the sTEB and augments the
obstacle, and checks if unexpected disturbances happen. The
planning block checks if the sensed environment is free of
obstacles, and use the safe returning function to determine
the next plan state pnext (and raw path). The tracking block
takes in pnext, determines the optimal controller, and updates
the tracker state.

A. SR-F Algorithm

The overall algorithm is shown in Alg. 1, with a flowchart
shown in Fig. 2. We begin by explaining this algorithm at a
high level. First the “sensing block” senses the environment
and any unexpected disturbances, then augments obstacles
by the maximum safe resetting region (sTEB).

Next the “planning block” by default employs a planning
algorithm to generate a path through the sensed environment
that obeys the dynamics of the planner model. This planning
block has modifications for two scenarios: 1) if a sudden
disturbance has occurred, the planner may be moved in a
way to ensure that the tracker will not hit an obstacle as it
converges back to the TEB, 2) if there is an opportunity to
do so safely, the planner will “jump” ahead towards the goal,
forcing the tracker to converge back towards it at the rate γ.

Finally, there is a “tracking block,” which updates the
current relative state between the tracker and planner, and
applies the pre-computed optimal controller to the tracker
that minimizes the distance between itself and the planner.

B. Sensing Block

Initialization. Every iteration starts with checking if the
tracker has experienced an unexpected disturbance, which
we assume does not cause failure immediately.

Environment Sensing. The robot senses the environment,
updates the constraint Csensed (also in the planner space
Cp,sensed), and finds the distance from the tracker to the nearest
obstacle within sensing range. This distance is given by

dst(x; Csensed) =

{
R no obstacle
mina∈∂Csensed ||x− a|| otherwise

. (7)

If a new obstacle is sensed, we assign 1 to ReplanFlag (RF).
Computation of the Max Safe Resetting Region, sTEB.

Since the planner model is a virtual model with no physical
realization, the framework can reset the planner state arbitrar-
ily if needed to ensure that the tracker does not collide with

Algorithm 1: SR-FaSTrack

Require: V ∞
γ , B, sense range R, initial states x0, p0.

1: Initialization:
2: x← x0, xold ← x, p← p0, t← 0, sTEB ← B, JF ← 0,

RF ← 1
3: while Goal not reached do
4: Sensing Block
5: If unexpected disturbance happens (x ̸= xold), update

relative state: r ← Φ(x, p)(x−Qp)
6: Sense environment, update Cp, sense, and update dis-

tance from the tracker to the obstacle using (7)
7: RF ← 1 if new obstacle sensed
8: Find safe resetting region S using (8), augment

obstacle with Se and update Cp, aug
9: Planning Block

10: if V ∞
γ (r) > 0 then JF ← 1

11: else if V ∞
γ (r) ≤ 0 then

12: if Cp, sense is obstacle free then JF ← 1
13: else if Not obstacle free then JF ← 0
14: end if
15: end if
16: JF, RF, pnext, praw ← SafeReturn(x,Up, JF, RF, praw,
Cp, aug)

17: Tracking Block
18: p← pnext, r ← Φ(x, p)(x−Qp), u← u∗ using (6)
19: Update tracker state: x← nextTrack(x, u)
20: r, rold ← Φ(x, p)(x−Qp), s← s+∆s
21: end while

obstacles as it converges back to the planner. We provide a
method to find the sTEB, which is denoted as S. Consider
a hyperball in the relative state space with radius dst(x)/2
and centered at the origin: B(0, dst(x)/2). If the TEB B is
contained in this ball B(0, dst(x)/2), the sTEB is the largest
sub-level set of the R-CLVF contained in B(0, dst(x)/2).
Otherwise, the sTEB is the TEB:

S =

{
B B ⊈ B(0, dst/2)

largest sub-level set B ⊆ B(0, dst/2)
. (8)

The sTEB in the planner space is given by

Se := {e : ∃η s.t. [e, η] ∈ S}. (9)

Augmentation of Obstacles. Se is used to augment the
obstacles and update the augmented constraint set Cp,aug. The
outputs of the sensing block are the sensed and augmented
obstacle map Cp,sense, Cp,aug, sTEB, and the RF.
Remark 2. To guarantee safety, the consideration of the
hyperball B(0, dst(x)/2) is necessary, and its radius must
be at least dst(x)/2. The reason is that though exponential
convergence to the TEB is guaranteed using R-CLVF, it is
not necessary that for the next immediate time step, the norm
of relative state decreases. This is because of the constant
amplifier k in (5). We illustrate this issue in Fig. 1, right.
With the hyperball B(0, dst(x)/2), we guarantee that the

Algorithm 2: Safe Returning Function

Require: x, Up, JF, RF, praw, Cp,aug
1: Output: Next plan state pnext, praw, JF, RF
2: if JF = 1 then
3: pnext, praw ← the closest point to the target s.t.

Φ(x, pnext)(x−Qp) ∈ sTEB and p /∈ Cp,aug
4: RF ← 1
5: else if JF = 0 then
6: if RF = 1 then
7: praw ← PathPlanningAlgo(p, Cp,aug)
8: end if
9: pnext ← nextPlan(praw, Up)

10: remove pnext from praw if pnext ∈ praw, otherwise
praw ← praw

11: RF ← 0
12: end if
13: JF ← 0
14: Return pnext, praw, JF, RF

distance between the planner and tracker is always smaller
than the distance between the planner and the obstacle.

C. Planning Block and the Safe Returning Function

Jump Evaluation. The planning block begins by eval-
uating whether the planner should “jump” from its current
state. This occurs under two conditions. The first condition
occurs when the relative state indicates that it is outside of
the TEB (i.e. V ∞

γ (r) > 0). In this case the planner must jump
to ensure that the tracker does not collide with an obstacle
as it converges back to the TEB. The second condition
is when there are no obstacles within the sensing radius.
In this case, the planner creates an artificial disturbance
by intentionally “jumping” to a further point on its path,
increasing the relative state r and forcing it to leave the
TEB. This accelerates the navigation as the tracker works
to converge back at an exponential rate while obeying its
control bounds. If either of these conditions for jumping
occurs, the JumpFlag (JF) is set to 1.

Safe Returning Function. If the JF = 1, the safe returning
function sets pnext as the state that is closest to the target, free
of the augmented obstacles, and guarantee the relative state
is in the sTEB (i.e., Φ(x, pnext)(x−Qpnext) ∈ S). We assign
1 to the RF, indicating that the planning algorithm should
plan a new path from pnext. The JF is reset to 0.

Replan. If the ReplanFlag has been activated, either from a
jump or a new obstacle detected, the path planning algorithm
is used to generate a new path for the planner. This path is
processed by the function nextPlan, which converts the path
into a trajectory that obeys the dynamics and control bounds
of the planner. We then reset the RF to 0.

D. Tracking Block

We update the planner state using pnext, and update the
relative state r using (2). The tracking controller u is
determined by (6), which is then sent to the tracker model

and updates the tracker state. Note that we keep track of
rold, which is used to check if disturbance happens in the
next iteration (lines 18-20 of Algorithm 1).

Theorem 2. Safety is guaranteed using SR-F if the distur-
bance does not push the tracker in its inevitable backward
reachable tube of C (as defined in [14]).

Proof. Assume the JF=0 for some time step, the SR-F works
just like the FaSTrack, and safety is guaranteed [2].

Assume JF̸=0 at some time step. After resetting the
planner state and before tracking, denote planner, tracker, and
relative states as pnext, x1 and r1. From line 3 of Algorithm 2,
pnext is chosen such that pnext /∈ Cp,aug, which means the sTEB
centered at x1 is obstacle free. After applying controller (6),
denote the new tracker and relative states as x2 and r2. r2
must be contained in a strict subset of the sTEB (by Theorem
1), which is also obstacle-free. This suggests that x2 is free of
obstacles, and safety is guaranteed for the next time step. The
overall navigation process is a combination of JF = 1 and JF
= 0, and for both cases, immediate safety is guaranteed. We
conclude that the whole navigation process is safe concerning
modeled and unexpected disturbances.

Remark 3. We provide two benefits compared with the
FaSTrack. 1) SR-F is robust to unexpected disturbances, 2) in
the obstacle-free region, we mimic a “beneficial disturbance”
to make the planner jump, accelerating the navigation.

IV. EXPERIMENTS

We demonstrate that SR-F can provide safety guarantees
given unexpected disturbances, and accelerate the navigation
process. We consider two examples: 1) an 8D quadrotor
model tracking a 2D integrator planner model with the
A* planner and 2) a 10D near-hover quadrotor tracking
a 3D integrator planner model with the RRT planner. We
compare our method with FaSTrack, Meta-FaSTrack (M-
F) [20], and IPC [19]. All simulations are conducted in
MATLAB. Code can be found at https://github.com/UCSD-
SASLab/Safe-Returning-FT.

A. Offline computation
1)10D − 3D : The system dynamics of the 10D quadrotor

(tracker) and the 3D integrator (planner) are from Example
B in [2]. The tracker states (x, y, z) denote the position,
(vx, vy, vz) denote the velocity, (θx, θy) denote the pitch
and roll, (ωx, ωy) denote the pitch and roll rates. The
tracker has controls (ux, uy, uz), representing the desired
pitch and roll angle and the vertical thrust. The planner
has controls (v̂x, v̂y, v̂z), representing the velocity in each
positional dimension. The system parameters are set to be
d0 = 10, d1 = 8, n0 = 10, kT = 0.91, g = 9.81, |ux|, |uy| ≤
π/9, uz ∈ [0, 1.5g], |v̂x|, |v̂y|, |v̂z| ≤ 0.5, dx = dy = dz = 0.

The relative dynamics can be obtained as

ẋr = vx − v̂x + dx, v̇x = g tan θx, θ̇x = −d1θx + ωx,

ω̇x = −d0θx + n0ux, ẏr = vy − v̂y + dy, v̇y = g tan θy,

θ̇y = −d1θy + ωy, ω̇y = −d0θy + n0uy,

żr = vz − v̂z + dz, v̇z = kTuz − g. (10)

Fig. 3: 10D-3D simulation using SR-F. The tracker tracks a
RRT path when not obstacle-free (blue), and jumps ahead on
the path (cyan) when obstacle-free. The planner’s position
is the green star in the translucent blue box (representing
sTEB). Both systems start on the left and navigate to a goal
on the right. The three light grey rectangles are obstacles,
and once sensed by the quadrotor they turn red. When the
quadrotor is passing near an obstacle, it experiences an
unexpected disturbance to its position (black dashed line),
mimicking a sudden wind gust. The green dashed line shows
the change of the planner’s position after replanning.

This is decomposed into three independent subsystems
(xr, vx, θx, ωx), (yr, vy, θy, ωy), (zr, vz) [21], allowing us
to solve for the R-CLVF more tractably.

2)8D − 2D : The relative dynamics of the 8D tracker and
the 2D planner are the x, y subsystems above.

B. Online Planning and Navigation

1)10D − 3D : we compare SR-F with FaSTrack and M-
F. The result is shown in Fig. 3 and Table I. We design
three experiments with different disturbance settings: a) no
disturbance, b) unexpected disturbance to the position states
pushing the tracker to the obstacle (like a sudden wind), and
c) unexpected disturbance to the position and velocity states
that act in the worst-case. When no disturbance exists, safety
is guaranteed for all three frameworks. When unexpected
disturbances exist, both the FaSTrack and M-F collide for
more than 80% of runs. Since the positional disturbances
push the tracker to the obstacle, M-F and FaSTrack are prone
to crash. However, the SR-F can survive these disturbances,
showcasing the safe-returning property. When unexpected
disturbances are generated by uniformly distributed noise,
M-F and FaSTrack collide in less than 10% of experiments.

We highlight that SR-F guarantees safety under unex-
pected disturbances, though it takes more time to reach the
goal. This is because FaSTrack and M-F do not consider
the unexpected disturbance, and do not spend time to replan.

TABLE I: Comparison of FaSTrack, M-F, and SR-F for the
10D-3D system. Each row is averaged across 40 runs.

Types of Disturbance No Dist Pos Dist Pos + Vel Dist

Metrics FaSTrack M-F SR-F FaSTrack M-F SR-F FaSTrack M-F SR-F

Reach Goal (%) 100 100 100 15 12 100 11 10 100

Obstacle Collision (%) 0 0 0 85 88 0 89 90 0

Navigation Time (s) 96 77 81 102 70 115 101 73 121

Fig. 4: Online simulations for an 8D quadrotor tracking a
2D planning model paired with an A* planner. Results using
SR-F (ours) and IPC are shown. Left: the entire trajectory
using SR-F. The quadrotor starts at (4, 4) and navigates to the
goal at (16, 16) (red star). The obstacle (red) is augmented
by the TEB. The system’s trajectory is shown in cyan (when
jumping) and blue (when tracking). A position disturbance
(labeled “Real Dstb”) is applied to the quadrotor, pushing it
(blue dashed line) close to the obstacle. Right: the trajectory
(blue) using IPC, with the same start and goal as SR-F. The
SFC is shown as the light green region, and the path given
by A* is shown in green.

However, it is preferable to sacrifice the navigation speed for
the safety guarantee in most real-world applications. Also,
note that the navigation speed is affected by the planning
algorithm used and the environment.

2)8D − 2D : we compare SR-F with IPC. We construct
two scenarios: a) a relatively larger disturbance to the
position states pushing the tracker to the obstacle (see Fig. 4
and column 1 of Table II), and b) uniformly distributed
smaller position disturbances (∆x,∆y ∈ [−0.2, 0.2]) that are
randomly added (Table II). The simulation time is 40s with
a 0.1s time step. In all simulations, SR-F safely navigates
the quadrotor to the goal. When the large disturbance is
applied, IPC collides in 45% of runs. When 3 and 5 smaller
random disturbances are applied, IPC fails to reach the goal
within the simulation time for 20% and 75% of runs, though
no collisions occur. When only one disturbance happens,
the IPC is faster than SR-F, but as the occurrence of the
disturbances increases, the navigation speed of IPC decreases
significantly, and the SR-F outperforms it. The reason is that
the IPC’s controller does not consider disturbance and the
safety is guaranteed using the safe flight corridor (which
works for the case where disturbance does not push the
system out of it.). The presence of disturbances greatly
impacts the performance of the MPC controller.

TABLE II: Comparison of SR-F and IPC frameworks for
8D-2D system. Each row is averaged across 40 runs.

Occurance of Disturbance 1 3 5

Metrics SR-F IPC SR-F IPC SR-F IPC

Reach Goal (%) 100 55 100 80 100 25

Obstacle Collision (%) 0 45 0 0 0 0

Navigation Time (s) 35 23 31 35 31 38

V. CONCLUSION

In this paper, we introduced the SR-FaSTrack framework,
which can be used to reject unexpected disturbances during
navigation in a priori unknown environments. It also accel-
erates navigation by intentionally making the planner “jump”
as a virtual disturbance in open environments.

Future work includes extending to multi-agent systems and
dealing with moving obstacles, modifying the R-CLVF to
get differently shaped TEBs, combining with deep neural
networks to better accommodate different environments, and
implementing hardware demonstrations.

REFERENCES

[1] Z. Gong and S. Herbert, “Robust control lyapunov-value functions for
nonlinear disturbed systems,” https://arxiv.org/abs/2403.03455, 2024.

[2] M. Chen*, S. Herbert*, H. Hu, Y. Pu, J. Fisac, S. Bansal, S. Han, and
C. Tomlin, “Fastrack: a modular framework for real-time motion plan-
ning and guaranteed safe tracking,” in Trans. on Automatic Control.
IEEE, 2020.

[3] E. W. Dijkstra, “A note on two problems in connection with graphs,”
in Edsger Wybe Dijkstra: His Life, Work, and Legacy, 2022.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Trans. on Systems
Science and Cybernetics, 1968.

[5] J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in International Conference on Intelligent Robots
and Systems. IEEE, 2002.

[6] A. Stentz et al., “The focused Dˆ* algorithm for real-time replanning,”
in International Joint Conferences on Artificial Intelligence, 1995.

[7] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm,” in Interna-
tional Conference on Automated Planning and Scheduling, 2005.

[8] P. Bouffard, “On-board model predictive control of a quadrotor he-
licopter: Design, implementation, and experiments,” Master’s thesis,
EECS Department, University of California, Berkeley, Dec 2012.

[9] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[10] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis:
Theory, Methods & Applications, 1983.

[11] E. D. Sontag, “A ‘universal’ construction of Artstein’s theorem on
nonlinear stabilization,” Systems & control letters, 1989.

[12] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in European Control Conf. IEEE, 2019.

[13] L. C. Evans and P. E. Souganidis, “Differential games and repre-
sentation formulas for solutions of Hamilton-Jacobi-Isaacs equations,”
Indiana University Mathematics Journal, 1984.

[14] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi
reachability: A brief overview and recent advances,” in Conference on
Decision and Control. IEEE, 2017.

[15] F. S. Barbosa, L. Lindemann, D. V. Dimarogonas, and J. Tumova,
“Provably safe control of lagrangian systems in obstacle-scattered
environments,” in Conference on Decision and Control. IEEE, 2020.

[16] A. Manjunath and Q. Nguyen, “Safe and robust motion planning
for dynamic robotics via control barrier functions,” in Conference on
Decision and Control. IEEE, 2021.

[17] Z. Li and N. Atanasov, “Governor-parameterized barrier function for
safe output tracking with locally sensed constraints,” Automatica,
2023.

[18] Y. Wu, Z. Ding, C. Xu, and F. Gao, “External forces resilient
safe motion planning for quadrotor,” IEEE Robotics and Automation
Letters, vol. 6, no. 4, pp. 8506–8513, 2021.

[19] W. Liu, Y. Ren, and F. Zhang, “Integrated planning and control for
quadrotor navigation in presence of suddenly appearing objects and
disturbances,” IEEE Robotics and Automation Letters, 2023.

[20] D. Fridovich-Keil, S. L. Herbert, J. F. Fisac, S. Deglurkar, and C. J.
Tomlin, “Planning, fast and slow: A framework for adaptive real-time
safe trajectory planning,” in International Conference on Robotics and
Automation. IEEE, 2018.

[21] C. He, Z. Gong, M. Chen, and S. Herbert, “Efficient and guaranteed
hamilton–jacobi reachability via self-contained subsystem decomposi-
tion and admissible control sets,” Control Systems Letters, 2023.

