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Abstract— In this study, we discuss distributed spatial filter-
ing (DSF) on networked systems to obtain signal values with
a desired spatial frequency characteristic from those assigned
to nodes by a distributed algorithm. We present a two-hop
consensus-type algorithm for DSF based on an existing one-hop
algorithm. We prove that the range of the filter characteristics
the presented algorithm can achieve is broader than that for
the existing algorithm by deriving a necessary and sufficient
condition for achieving DSF. Simulation results show that our
filtering algorithm and a new filter characteristic it provides are
effective in distributed anomaly detection by sensor networks.

I. INTRODUCTION

In the systems and control community, networked systems,
constructed by connecting subsystems (or nodes), have been
a major research topic. This is motivated by the fact that
modern engineering applications, e.g., swarm robots and
sensor networks, can be categorized into networked systems.

Herein, we focus on distributed spatial filtering (DSF)
on networked systems. DSF is to transform signal values
given for nodes into ones with a desired spatial frequency
characteristic in a distributed way. Fig. 1 shows an example
for high-pass filtering, where xi denotes the signal value
given for node i and it is assumed that nodes are closer to
each other as their indices are closer. The nodes transform
the given signal values for reducing the amplitudes of the
low-frequency components in a distributed way. The main
advantage of DSF is that the spatial properties of signals to be
processed can be used. For instance, the spatial frequency of
temperature is generally low because it takes similar values
at close locations. With this property, we can reduce the noise
in temperature measurements from a sensor network through
spatial low-pass filtering. Further, some anomalies (e.g., fires)
increase or decrease temperature at specific locations and
make the spatial frequency of the measurements high, and
thus spatial high-pass filtering allows to detect the anomalies.

Izumi et al. [1] proposed a DSF method by focusing
on the relation between a consensus algorithm and signal
processing on graphs [2]. Then, in [3], a more sophisticated
DSF method was proposed and verified through experiments
with a real sensor network. However, the DSF method in
[3] has the drawback that the achievable filter characteristics
are limited to ones described as polynomials with non-
zero real roots. This limitation is severe because the degree
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Fig. 1. Example of DSF with a high-pass characteristic.

of the describing polynomial corresponds to the degree of
freedom in choosing the filter characteristic, while high-
degree polynomials generally have complex roots.

We thus aim to develop a DSF method to overcome this
limitation. Our contributions are as follows. First, we present
an extended version of the DSF method in [3]. By focusing
on the fact that the filtering algorithm in [3] is a one-hop
consensus-type algorithm, we extend the existing algorithm
to the two-hop version where each node uses information on
its two-hop neighbors, i.e., the neighbors of its neighbors. We
then prove that DSF is achieved using our algorithm even for
the filter functions described as polynomials with complex
roots. This overcomes the above limitation and makes the
range of the achievable filter characteristics wider. Second,
we demonstrate the effectiveness of our DSF method through
its application to anomaly detection by sensor networks. We
choose a filter function that cannot be handled by the existing
algorithm [3]. We then show that our DSF method with this
filter function achieves higher detection performance than
that when using the existing algorithm.

Finally, we discuss related works. This study is related
to several topics: spatial frequencies for distributed systems
[4], signal processing over graphs [5] and its applications
[6], and distributed control with multi-hop communication
[7], [8]. In [4], Bode integrals based on spatial frequencies
were introduced for distributed systems. Mollaebrahim and
Beferull-Lozano [5] investigated the linear transformations
of signals over graphs, and Yi et al. [6] considered average
consensus with the filtering of signals over graphs. In [7],
[8], coverage and consensus with multi-hop communication
were discussed, respectively. However, the purposes of these
works are different from ours.

Notation : We describe the real number field and the set
of positive real numbers using R and R+, respectively. Let I
be the identity matrix. For the numbers x1, x2, . . . , xn ∈ R,
we use diag(x1, x2, . . . , xn) to represent the diagonal matrix
with x1, x2, . . . , xn on its diagonal. We define [xi]i∈I :=
[xi1 xi2 · · · xim ]⊤ ∈ Rm with I := {i1, i2, . . . , im} ⊆
{1, 2, . . . , n}. The cardinality of the set S is denoted by |S|.
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For an undirected graph, we represent its graph Laplacian
by L; i.e., L is defined as the difference between the degree
matrix and adjacency matrix of the graph.

II. EXISTING RESULTS ON DSF

We first review the existing results [3] on DSF.

A. Preliminary: Spatial Filtering of Graph Signals

Consider an undirected graph with n vertices, which is de-
scribed by G = (V,E) for the vertex set V := {1, 2, . . . , n}
and the edge set E. We suppose that a signal value is assigned
to each vertex of G, and describe the signal values for n
vertices using s ∈ Rn. Then, (G, s) is referred to as a graph
signal, where the edges of G specify the connections between
the signal values.

For the graph signal (G, s), its Fourier transform (i.e., the
graph Fourier transform) is given as follows. For the graph
Laplacian L of G, we define its i-th smallest eigenvalue in
the sense of the modulus by λi (i ∈ V). Then, the graph
Fourier transform f ∈ Rn is written as

f(λ1, λ2, . . . , λn) := V ⊤s (1)

for the orthogonal matrix V ∈ Rn×n such that V ⊤LV = Λ
with Λ := diag(λ1, λ2, . . . , λn). Because L is a symmetric
matrix by its definition, we can always find a V that
satisfies V ⊤LV = Λ for a given L. The graph Fourier
transform f provides an expression for (G, s) in spatial
frequency domain. Specifically, f expresses the magnitude
of the differences between signal values connected by the
edges of G. In (1), λi (i ∈ V) corresponds to the spatial
frequency, and the component of λi is denoted by the i-th
element of f , where it is noteworthy that λ1, λ2, . . . , λn are
nonnegative real numbers because L is the graph Laplacian
of the undirected graph G.

The graph Fourier transform (1) allows the spatial filtering
of graph signals described by

s̃ = V diag(h(λ1), h(λ2), . . . , h(λn))V
⊤s, (2)

where s̃ ∈ Rn represents the signal values of a filtered graph
signal and h : R+ ∪ {0} → R is a function to characterize
the filter. From (1) and the orthogonality of V , i.e., V ⊤ =
V −1, (2) implies that the spatial filtering is to filter a signal
transformed into one in the spatial frequency domain by (1)
using h and to perform the inverse transform of (1). In this
way, we can obtain an s̃ such that the graph signal (G, s̃)
has a spatial frequency characteristic specified by h.

B. Problem Formulation

Consider the networked system Σ having n nodes. Node
i (i ∈ V) is given as the discrete-time model

xi(t+ 1) = g([xj(t)]j∈Ni , t), (3)

where xi(t) ∈ R and [xj(t)]j∈Ni
∈ R|Ni| are the state and

the input, respectively, and Ni ⊆ V is the index set of nodes
of which node i has access to the information. The function
g : R|Ni| × {0, 1, . . .} → R specifies the behavior of the
node. Using g rather than gi means that the behavior of all

the nodes is determined by a common function, which allows
to make Σ scalable.

We represent the network topology of the system Σ using
the undirected graph G defined above, where the vertex set
V and the edge set E express the indices of n nodes and
the connections between them, respectively. In this case,
the set Ni is given by Ni := {i} ∪ {j ∈ V | (j, i) ∈ E}.
Moreover, let x(t) ∈ Rn denote the state of Σ, i.e., x(t) :=
[x1(t) x2(t) · · · xn(t)]

⊤. Then, (G, x(t)) can be regarded as
one of graph signals described in Section II-A by considering
G and x(t) as the graph and the signal values, respectively.

Based on this observation, our interest here is to construct
a system Σ that works as a desired spatial filter for graph
signals. To this end, we regard the initial state x(0) and the
final state x(∞) as the signal values of an original graph
signal and those of the filtered one, respectively, and address
the following problem.

Problem 1: For the networked system Σ, suppose that a
filter function h and an initial state x(0) are given. Find a
function g (i.e., a distributed algorithm executed by n nodes)
to produce an x(∞) such that the graph signal (G, x(∞))
has a spatial frequency characteristic specified by h.

C. Filtering Algorithm

The idea of [3] to solve Problem 1 is to design the function
g so that the relation between x(0) and x(∞) is equivalent
to the spatial filtering (2) of graph signals when regarding
x(0) and x(∞) as s and s̃, respectively. Based on this,

g([xj(t)]j∈Ni
, t) := ℓ0(t)xi(t) + ℓ1(t)

∑
j∈Ni

(xj(t)− xi(t))

(4)
was provided, where ℓ0(t) ∈ R \ {0} and ℓ1(t) ∈ R are
time-varying gains that satisfy ℓ0(t) = 1 and ℓ1(t) = 0
when t ≥ m for a positive integer m. The provided g and
(3) yield a consensus-type distributed algorithm. It should
be noted that this algorithm converges in m timesteps due
to ℓ0(t) = 1 and ℓ1(t) = 0 for t ≥ m.

We suppose that the system Σ operates according to a
distributed algorithm such as that given by (3) and (4). If for
a filter function h, the relation between x(0) and x(∞) is
equivalent to (2) as described above, we say that Σ achieves
DSF of the graph signal (G, x(0)) for h. Then, the following
result was obtained in [3].

Lemma 1: For the networked system Σ, suppose that a
filter function h is given and let g be given by (4). Then, Σ
achieves DSF of the graph signal (G, x(0)) for h if and only
if h is a polynomial of the form

h(λ) := amλm + am−1λ
m−1 + · · ·+ a1λ+ a0 (5)

with a frequency variable λ, where a0, a1, . . . , am ∈ R and
the roots of the polynomial must be non-zero real numbers.

Lemma 1 indicates that DSF is achieved using (3) and (4)
if and only if the filter function h is a real polynomial having
non-zero real roots.
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Fig. 2. Filter function h(λ) := 1/(1 + e−20(λ−0.2)) (the thick blue
line) and its polynomial approximations h10 (the thin red line) and hr

10
(the dashed black line).

D. Problem to be Considered

Although Lemma 1 gives a necessary and sufficient con-
dition on h for achieving DSF, it is difficult to achieve
some filter characteristics under this condition. An example
is shown in Fig. 2. The thick blue line and the thin red
line indicate h(λ) := 1/(1 + e−20(λ−0.2)) and its polyno-
mial approximation h10(λ) ≈ 0.000149λ10 − 0.00453λ9 +
0.0583λ8−0.413λ7+1.74λ6−4.41λ5+6.15λ4−3.21λ3−
2.18λ2 + 3.27λ+ 0.0100* via a least square fitting, respec-
tively (and the green circles are detailed in Section III-C).
As demonstrated later, h10 describes a filter characteristic
that is useful in an application to sensor networks. However,
we can numerically confirm that h10 has complex roots and
does not satisfy the condition in Lemma 1. Therefore, we
seek the polynomial approximation with non-zero real roots
by solving an optimization problem for fitting using the
function “fminsearch” in MATLAB, and obtain hr

10(λ) ≈
−(4.37×10−13)λ10+(2.60×10−11)λ9+(1.16×10−9)λ8−
(5.38 × 10−8)λ7 − (2.81 × 10−7)λ6 + (2.07 × 10−5)λ5 +
(3.64×10−5)λ4−0.00305λ3−0.00790λ2+0.160λ+0.706*.
However, the plot of hr

10 indicated by the dashed black line in
Fig. 2 is quite different from that of the original h, compared
with the case of h10.

III. DSF BY TWO-HOP CONSENSUS-TYPE ALGORITHM

In this section, we overcome the aforementioned difficulty
by extending the results in [3].

A. Proposed Algorithm

Consider the networked system Σ again. We suppose here
that the model of node i (i ∈ V) is given by{

xi(t+ 1) = g1([xj(t)]j∈Ni , [yj(t)]j∈Ni , t),

yi(t) = g2([xj(t)]j∈Ni , t),
(6)

where [yj(t)]j∈Ni
∈ R|Ni| is the input, yi(t) ∈ R is the

output, and g1 : R|Ni| × R|Ni| × {0, 1, . . .} → R and g2 :
R|Ni| × {0, 1, . . .} → R are functions to determine the node
behavior. Under this setting, we extend the results in [3] by
solving Problem 1 where the design parameter g is replaced
by g1 and g2.

Our approach to the modified problem is to extend the
existing filtering algorithm given by (3) and (4) to the two-
hop version, i.e., a consensus-type algorithm that uses the

*The coefficients of the polynomials are rounded off for brevity.

information on two-hop neighbors on the graph G in addition
to that on the (one-hop) neighbors. Based on this, we propose

g1([xj(t)]j∈Ni , [yj(t)]j∈Ni , t) := ℓ0(t)xi(t) + ℓ1(t)

×
∑
j∈Ni

(xj(t)− xi(t)) + ℓ2(t)
∑
j∈Ni

(yj(t)− yi(t)), (7)

g2([xj(t)]j∈Ni , t) :=
∑
j∈Ni

(xj(t)− xi(t)), (8)

where ℓ2(t) ∈ R is a time-varying gain satisfying ℓ2(t) = 0
for t ≥ m. In the proposed algorithm given by (6)–(8), the
output yi(t), transmitted to the neighbors of node i, contains
the state xj(t) (j ∈ Ni), and thus the nodes can obtain the
information on their two-hop neighbors.

B. Main Result

For the proposed algorithm given by (6)–(8), the following
main result is obtained.

Theorem 1: For the networked system Σ where the node
model (3) is replaced by (6), suppose that a filter function h is
given and let g1 and g2 be given by (7) and (8), respectively.
Then, Σ achieves DSF of the graph signal (G, x(0)) for h if
and only if h is a real polynomial of the frequency variable
λ with at most degree 2m and non-zero roots.

Proof: See Appendix I.
Theorem 1 shows that DSF is achieved using the proposed

algorithm given by (6)–(8) even if the filter function h is a
polynomial with complex roots. This makes the range of
the achievable filter characteristics wider. Here, the gains
ℓ0(t), ℓ1(t), and ℓ2(t) are chosen as, for instance, (12)–(14)
or (12)–(14) and (18) (see Appendix I). Further, Lemma 1
ensures that the existing one-hop algorithm given by (3) and
(4) cannot handle h other than polynomials with non-zero
real roots. In this sense, Theorem 1 implies that the extension
to the two-hop algorithm is a key to handling the case of the
complex roots.

From the above discussion, our method to solve Problem
1 with the design parameters g1 and g2 is as follows: (i)
approximate the given filter function h by a polynomial with
non-zero roots; (ii) give g1 and g2 using (7), (8), (12)–(14),
and (18).

An example to demonstrate our results is provided. Con-
sider the system Σ with n := 8 and a network topology
G (detailed later). The initial state x(0) is given as x(0) :=
[0.564 0.567 0.454 0.325 0.324 0.237 0.180 0.177]⊤. We
choose h10 in Section II-D as the filter function h, for which
m := 5. Let us recall that h10 is a polynomial with complex
roots and thus cannot be handled by the existing algorithm
given by (3) and (4). From h10, (6)–(8), and (12)–(14), the
algorithm for the nodes is obtained, where we use the fact
that the degree of h10 is even. The resulting final state x(5),
which is equal to x(∞) (see Appendix I), is depicted in Fig.
3, where the thick red lines represent the elements of x(5)
and the blue circles and lines represent the vertices and edges
of G, respectively. Moreover, the thin green lines indicate the
collective signal value s̃ given by (2) for s := x(0), where
s̃i is the i-th element of s̃. We see that x(5) and s̃ are the
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Fig. 3. Final state x(5) given by the proposed algorithm and the collective
signal value s̃ given by (2) for s := x(0).

same although the proposed algorithm is distributed but (2)
is not. This demonstrates our results.

Remark 1: The degree of the polynomial approximation
of the filter function h should be chosen according to the
guideline given in Remark 6 in [1]. Note here that we do not
need to consider the constraint that the resulting polynomial
has no complex roots, unlike the case of [1].

C. Application to Distributed Anomaly Detection by Sensor
Networks

Next, we apply the proposed DSF method to distributed
anomaly detection by sensor networks, i.e., finding sensor
nodes such that the measurements are quite different from
those from other nodes in a distributed way. As explained in
Section I, an example of anomaly is a fire, which causes the
differences between temperature measurements.

Our idea to achieve the anomaly detection is to remove
only the component of the zero frequency at which the signal
values for all the nodes are the same. By removing the zero
frequency component, we can extract the differences of the
signal values from a typical one in the group of the nodes,
which allows the anomaly detection. In the following, we
show that the proposed algorithm can handle even a spe-
cialized filter function to remove only the specific frequency
component, and demonstrate that the anomaly detection can
be achieved by the proposed algorithm and the filter function.

Consider the example in Section III-B again. We represent
the eigenvalues λ1, λ2, . . . , λ8 of the graph Laplacian L of
the graph G depicted in Fig. 3 by the green circles in Fig.
2. These eigenvalues correspond to the spatial frequencies
of which the associated graph signal has the components,
and thus Fig. 2 indicates that the filter function h10 has the
property of removing only the zero frequency component of
graph signals with G. As seen above, the proposed algorithm
given by (6)–(8) and (12)–(14) can handle h10. Hence, we
perform the distributed anomaly detection using the proposed
algorithm for h10.

For x(0) :=[9.39 10.6 10.2 14.8 9.25 9.80 9.94 8.96]⊤,
we show the resulting final state x(5) by the thick red lines

Fig. 4. Final states for the two filter functions h10 and hr
10.

TABLE I
SUCCESS RATES [%] OF THE ANOMALY DETECTION FOR 1000 TRIALS.

Proposed algorithm (for h10) [3] (for hr
10)

b := 10 100 51.2

b := 20 100 0

b := 30 100 0

in Fig. 4, where node 4 has to be detected. It turns out that
the elements other than x4(5) are close to zero. Thus, by
introducing a threshold, node 4 can be detected. The thin
green lines in Fig. 4 represent the corresponding result when
using the existing algorithm given by (3) and (4) for the
filter function hr

10 in Section II-D. We see that the elements
other than x4(5) are not sufficiently reduced compared with
the result for h10. This implies that the anomaly detection
with the existing algorithm for hr

10 is difficult because the
choice of the threshold heavily depends on the final states
of nodes other than those at which anomaly occurs.

We evaluate the detection performance of the proposed
algorithm for h10 in the following way. We suppose that
anomaly occurs at a node j and j is randomly chosen from
the set V with equal probability. The initial state xj(0) of
node j is set as xj(0) := b+ ϵ+w, where b, ϵ, w ∈ R are a
base value, measurement noise, and disturbances due to the
anomaly, respectively. The noise ϵ is Gaussian noise with
mean 0 and variance 0.5, and w takes ±10 randomly with
equal probability. For the other nodes, let xi(0) := b + ϵ
(i ∈ V \ {j}). Then, we say that the anomaly detection is
successful if only |xj(m)| is larger than the threshold d ∈
R+. Under this setting, the success rates for 1000 trials are
summarized in Table I, where by considering the differences
in the algorithms and the filter functions, we choose the
different thresholds d := 5 and d := 9 for the proposed
algorithm and the existing algorithm, respectively. Table I
indicates that the detection performance of the proposed
algorithm is higher than that of the existing algorithm for
all of b := 10, b := 20, and b := 30. The reason for
this is explained as follows. As seen in Fig. 4, the existing
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algorithm for hr
10 cannot sufficiently reduce the states of the

nodes other than that to be detected. As a result, the existing
algorithm cannot handle the case where |xj(0)| is smaller
than the other states. Therefore, the anomaly detection for
w = −10 fails, demonstrated as the success rate 51.2% for
b := 10. In addition, the existing algorithm cannot handle the
different values of b by the common threshold d because the
remaining states depend on b. This leads to the differences
in the success rates for b := 20 and b := 30.

Remark 2: From (6)–(8), (12)–(14), and (18), the pro-
posed algorithm does not depend on the graph G. However,
the resulting signal values depend on G because the eigen-
values of the graph Laplacian L, i.e., the distribution of the
frequency components of the associated graph signal, change
depending on G.

IV. CONCLUSION

In this study, we improved an existing DSF method for
networked systems to overcome the difficulty of the limited
achievable filter characteristics. In particular, we extended the
existing one-hop filtering algorithm to the two-hop version.
We then derived a necessary and sufficient condition on
the filter function for achieving DSF. The advantage of the
proposed algorithm is that the filter functions described as
polynomials with complex roots can be handled, unlike the
existing algorithm.
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APPENDIX I
PROOF OF THEOREM 1

We begin with the proof of the “only if” part. It is assumed
that for a filter function h, DSF of the graph signal (G, x(0))
is achieved by the system Σ. From (6)–(8), the behavior of
Σ is described as

x(t+ 1) = ℓ0(t)x(t)− ℓ1(t)Lx(t)− ℓ2(t)Ly(t)

= (ℓ0(t)I − ℓ1(t)L+ ℓ2(t)L
2)x(t) (9)

for y(t) := [y1(t) y2(t) · · · yn(t)]
⊤. Hence, the relation

between x(0) and x(m) is written as

x(m)=

(
m∏
t=1

(ℓ0(m−t)I − ℓ1(m−t)L+ ℓ2(m−t)L2)

)
x(0)

=

(
m∏
t=1

(ℓ0(m− t)V V ⊤ − ℓ1(m− t)V ΛV ⊤

+ ℓ2(m− t)V ΛV ⊤V ΛV ⊤)

)
x(0)

=V

(
m∏
t=1

(ℓ0(m− t)I − ℓ1(m− t)Λ

+ ℓ2(m− t)Λ2)

)
V ⊤x(0), (10)

where the second equality is derived from V ⊤ = V −1 and
V ⊤LV = Λ and the last one follows because ℓ0(t), ℓ1(t),
and ℓ2(t) are scalars and V ⊤V = I holds. Noting that the
matrix ℓ0(m − t)I − ℓ1(m − t)Λ + ℓ2(m − t)Λ2 in (10) is
diagonal for every t ∈ {1, 2, . . . ,m}, we obtain

x(m) = V diag

(
m∏
t=1

(ℓ0(m− t)− ℓ1(m− t)λ1

+ ℓ2(m− t)λ2
1),

m∏
t=1

(ℓ0(m− t)− ℓ1(m− t)λ2

+ ℓ2(m− t)λ2
2), . . . ,

m∏
t=1

(ℓ0(m− t)

− ℓ1(m− t)λn + ℓ2(m− t)λ2
n)

)
V ⊤x(0). (11)

Besides, x(m) = x(∞) holds due to (6)–(8) and ℓ0(t) = 1,
ℓ1(t) = 0, and ℓ2(t) = 0 for t ≥ m. By substituting this
for (11) and considering x(0) and x(∞) as s and s̃ in (2),
respectively, we can show h(λ) =

∏m
t=1(ℓ0(m−t)−ℓ1(m−

t)λ + ℓ2(m − t)λ2) from the assumption of achieving DSF
by Σ. Because of ℓ0(t) ∈ R \ {0} and ℓ1(t), ℓ2(t) ∈ R for
every t ∈ {1, 2, . . . ,m}, this h is a real polynomial of λ
with at most degree 2m and non-zero roots. Therefore, the
“only if” part is proven.

Next, we give the proof of the “if” part. It is assumed that
a real polynomial of λ with at most degree 2m and non-zero
roots is given as the filter function h. Because the complex
roots of real polynomials come in complex conjugate pairs
[9], we denote the complex roots of h by αj ± βj i (j =
1, 2, . . . ,mc), where i :=

√
−1 and mc ∈ R+ ∪ {0} is the

number of the pairs. Further, we let αj ∈ R\{0} (j = mc+
1,mc+2, . . . , µ) be the real roots of h, where µ := mc+mr

for the number mr of the real roots. In the following, we
assume that the degree of h is even. Then, mr is even from
the above property of the complex roots of real polynomials.

With the above notations and µ̄ := mc +mr/2, we set

ℓ0(t) :=

{
a0 if t = 0,

1 otherwise,
(12)

ℓ1(t) :=



2a0α1

α2
1 + β2

1

if t = 0,

2αt+1

α2
t+1 + β2

t+1

if t ∈ {1, 2, . . . ,mc − 1},

αt+1 + αt+mr/2+1

αt+1αt+mr/2+1

if t ∈ {mc,mc + 1, . . . , µ̄− 1},

0 otherwise,

(13)
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ℓ2(t) :=



a0
α2
1 + β2

1

if t = 0,

1

α2
t+1 + β2

t+1

if t ∈ {1, 2, . . . ,mc − 1},

1

αt+1αt+mr/2+1

if t ∈ {mc,mc + 1, . . . , µ̄− 1},

0 otherwise,

(14)

where a0 is the zero degree term of h, as shown in (5).
From m ≥ µ̄, these gains satisfy ℓ0(t) = 1, ℓ1(t) = 0, and
ℓ2(t) = 0 for t ≥ m, where the inequality on m is derived
from the facts that the degree of h is at most 2m and the
number of the roots of h is 2mc +mr. From (12)–(14), the
following equality holds for every i ∈ V:

m∏
t=1

(ℓ0(m− t)− ℓ1(m− t)λi + ℓ2(m− t)λ2
i )

= a0

mr/2−1∏
t=0

(
1− (αµ̄−t + αµ−t)λi − λ2

i

αµ̄−tαµ−t

)
×

(
mc−2∏
t=0

(
1− 2αmc−tλi − λ2

i

α2
mc−t + β2

mc−t

))(
1− 2α1λi − λ2

i

α2
1 + β2

1

)
.

(15)

By applying this equality and x(m) = x(∞) to (11) and by a
discussion similar to the above, we see that if the right-hand
side of (15) is equivalent to the given h for every i ∈ V, the
system Σ achieves DSF of the graph signal (G, x(0)) for h.

To show the equivalence of the right-hand side of (15)
and h, we factorize h as h(λ) = ama

∏ma−1
j=0 (λ − rma−j)

for ma := 2mc +mr. Noting that mr is even as explained
above, we obtain

ama

ma−1∏
j=0

(λ− rma−j)

= ama

(
mc−1∏
j=0

(λ− αmc−j − βmc−j i)(λ− αmc−j

+ βmc−j i)

)(
mr/2−1∏

j=0

(λ− αµ̄−j)(λ− αµ−j)

)

= ama

(
mc−1∏
j=0

(λ2 − 2αmc−jλ+ α2
mc−j + β2

mc−j)

)

×

(
mr/2−1∏

j=0

(λ2 − (αµ̄−j + αµ−j)λ+ αµ̄−jαµ−j)

)

= ama

(
mc−1∏
j=0

(
α2
mc−j + β2

mc−j

))

×

(
mc−1∏
j=0

(
λ2 − 2αmc−jλ

α2
mc−j + β2

mc−j

+1

))(
mr/2−1∏

j=0

αµ̄−jαµ−j

)

×

(
mr/2−1∏

j=0

(
λ2 − (αµ̄−j + αµ−j)λ

αµ̄−jαµ−j
+ 1

))
. (16)

In (16), we notice that ama
(
∏mc−1

j=0 (α2
mc−j +

β2
mc−j))(

∏mr/2−1
j=0 αµ̄−jαµ−j) = a0 holds because

the zero degree term of h is a0. Hence, it follows that

h(λ) = a0

(
mc−1∏
j=0

(
λ2 − 2αmc−jλ

α2
mc−j + β2

mc−j

+ 1

))

×

(
mr/2−1∏

j=0

(
λ2 − (αµ̄−j + αµ−j)λ

αµ̄−jαµ−j
+ 1

))
. (17)

Replacing λ in (17) by λi (i ∈ V) shows the equivalence
of the right-hand side of (15) and h for every i ∈ V, which
proves the “if” part by the above discussion. Also in the case
that the degree of h is odd, we can prove the statement in a
similar way, where ℓ1(t) in (13) for t ≥ mc is replaced by

ℓ1(t) :=



αt+1 + αt+(mr−1)/2+1

αt+1αt+(mr−1)/2+1

if t ∈ {mc,mc + 1, . . . ,mc + (mr−1)/2−1},
1

αµ
if t = mc + (mr−1)/2,

0 otherwise.
(18)

This completes the proof.
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