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Abstract— We demonstrate that a convex optimization formu-
lation of physics-informed neural networks for solving partial
differential equations can address a variety of computationally
challenging tasks in nonlinear system analysis and control. This
includes computing Lyapunov functions, region-of-attraction es-
timates, and optimal controllers. Through numerical examples,
we illustrate that the formulation is effective in solving both
low- and high-dimensional analysis and control problems. We
compare it with alternative approaches, including semidefinite
programming and nonconvex neural network optimization, to
demonstrate its potential advantages.

Index Terms— Neural networks, Lyapunov function, nonlin-
ear systems, stability analysis, optimal control

I. INTRODUCTION

Several longstanding challenges in nonlinear systems and
control are tied to the computational difficulty of solv-
ing partial differential equations (PDEs). For example, the
celebrated Hamilton-Jacobi-Bellman (HJB) equation, which
characterizes the optimal value function for a controlled
system, is notoriously difficult to solve in high dimensions.
A closely related topic is the construction of Lyapunov func-
tions. Despite being a century-old idea, a general approach
to effectively computing Lyapunov functions remains elusive.
To address this challenge, computational methods have been
investigated, notably including sum-of-squares (SOS) [19]
and radial basis function (RBF) [7] approaches.

More recently, due to the increased popularity of neural
networks, a number of researchers have investigated the use
of neural networks for computing Lyapunov functions [1],
[4], [5], [8], [11], [16], [21] and solving HJB equations
[9]. Most relevant to the current work, in [15], [17], the
authors have demonstrated that physics-informed learning
[20] with Zubov’s equation [22] can outperform traditional
sums-of-squares techniques [19] for computing Lyapunov
functions in terms of verifiable region-of-attraction (ROA)
estimates. Intuitively, such improvements come from the
universal approximation properties of neural networks and
the characterization of the problem in terms of PDEs. Often,
training neural networks involves embracing non-convex
optimization. However, a convex optimization formulation
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can significantly speed up training and leave no optimality
gap because a global minimum can be easily achieved.

An extreme learning machine (ELM) [10] contrasts with
traditional neural networks by randomly assigning weights
and biases to hidden nodes and adjusting only the weights of
the output layer. This approach transforms the optimization
into a linear least squares problem that can be efficiently
solved, exhibiting fast learning speed and strong generaliza-
tion performance. In this paper, we explore the application
of ELM in obtaining physics-informed neural networks to
solve PDEs for computing Lyapunov functions, region-of-
attraction estimates, and optimal control.

The contributions of this paper are threefold. First, we the-
oretically analyze ELM for providing guarantees in practical
stability analysis and region-of-attraction estimates. Second,
we discuss using ELM to estimate the domain of attraction
for nonlinear systems via solving Zubov’s PDE. Lastly, to
the best of the authors’ knowledge, this is the first work
to thoroughly demonstrate the computational advantages of
ELM in solving neural Lyapunov certificates and optimal
control problems compared to existing approaches.

II. PRELIMINARIES AND PROBLEM FORMULATION

Consider an autonomous system of form

ẋ = f(x), (1)

and a control-affine system of the form

ẋ = f(x) + g(x)u, (2)

f : Rd → Rd and g : Rd → Rn×k. The state lies in
Rd and the control input u lies in Rk. For simplicity, we
assume f and g are both continuously differentiable. We
also assume f(0) = 0, the linearization of the system (1) is
asymptotically stable, i.e., A = Df(0) is Hurwitz, and the
linearization of the control system (2) is stabilizable, i.e.,
(A,B) is stabilizable, where B = g(0).

We are primarily concerned of the following computa-
tional tasks for systems (1) and (2) in this paper.

Computing Lyapunov functions: Given that x = 0 is
an asymptotically stable equilibrium point for (1), how can
we compute Lyapunov functions that not only characterize
asymptotic stability of the origin but also certify as large a
region of attraction estimate as possible?

Computing domain of attraction: Related to the point
above, how can we estimate the regions of attraction that can
be verified to be contained in the true domain of attraction

D :=
{
x0 ∈ Rd : lim

t→∞
∥ϕ(t, x0)∥ = 0

}
,

where ϕ(t, x0) is the solution to (1) starting from x(0) = x0?
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Computing optimal value and control: Define a cost

J(x0, u) =

∫ ∞

0

Q(ϕ(t, x0, u))+u
T (t)R(ϕ(t, x0, u))u(t)dt,

(3)
where ϕ(t, x0, u) is the solution to (2) under control signal u,
Q(x) and R(x) are assumed to be positive definite functions
of x. For simplicity, one can consider Q(x) = xTQx
and R ∈ Rk×k for some positive definite matrices Q and
R. Let U denote the set of admissible controls that can
asymptotically stabilize the system with a finite cost. The
objective is to find u∗ that achieves optimal value V ∗(x) =
J(x, u∗) = infu∈U J(x, u). The function V ∗ is the optimal
value function. In practice, we hope to compute accurate
approximations to u∗ and V ∗ and obtain a close-to-optimal
controller that is also stabilizing.

III. PHYSICS-INFORMED ELM LYAPUNOV FUNCTIONS
FOR STABILITY ANALYSIS AND CONTROL

A. Neural network architecture

We consider an extreme learning machine (ELM) that is
essentially a single-hidden-layer feedforward neural network:

V (x;β) = βTσ(Wx+ b), (4)

where W ∈ Rm×d, b ∈ Rm, β ∈ Rm, and σ is an
activation function applied elementwise. While any activation
function1 is theoretically viable, we shall exclusively use the
hyperbolic tangent function tanh(·) in all our examples.

For the purpose of solving partial differential equations
(PDEs) using ELM, we need to compute derivatives of V
with respect to x. It can be easily verified that the gradient
can be computed as

DV (x;β) = βT diag(σ′(Wx+ b))W, (5)

where diag(·) transforms the m-vector σ′(Wx + b) into an
m × m diagonal matrix, with σ′(·) denoting the derivative
of σ, applied elementwise to Wx+ b.

B. Physics-informed neural network and convex optimization

A physics-informed neural network (PINN) [13], [20] is
essentially a neural network for solving PDEs. It minimizes
errors deemed important for forcing the network to approx-
imate the true solution of the PDE.

Consider a generic first-order PDE of the form:

F (x, V,DV ) = 0, x ∈ Ω, (6)

with the boundary condition V = h on ∂Ω. PINNs seek a
neural network solution V (x;β) to (6) by minimizing a loss
function that encompasses the PDE and any supplementary
information pertinent to the problem. The loss function is

Loss(β) = Lresidual(β) + Lboundary(β) + Ldata(β), (7)

where Lresidual targets the PDE’s residual error, Lboundary
addresses the boundary condition error, and Ldata pertains
to the error in data or any auxiliary information.

1To achieve universal approximation guarantees, a non-polynomial activa-
tion is often required. However, for practical purposes, polynomial activation
functions can still be used, e.g., to obtain a polynomial network.

In this paper, we focus on utilizing the architecture (4)
to formulate a convex optimization problem for optimizing
V (x;β). This is feasible if the loss function Loss(β) is
convex with respect to β. Specifically, if the PDE given in
(6) is linear in V and DV , and we employ the mean square
error for Lresidual, along with Lboundary and Ldata, then we are
led to a linear least squares problem for optimizing β.

C. ELM neural Lyapunov functions via Lyapunov’s PDE
Let Ω ⊆ Rd be any open set containing the origin

and contained in the domain of attraction D. A Lyapunov
function for (1) can characterized by the following PDE:

V̇ (x) := DV (x) · f(x) = −ω(x), (8)

where ω is a positive definite function with respect to the
origin, i.e., ω(0) = 0 and ω(x) > 0 for all x ∈ Ω \ {0}.
We consider a single boundary condition V (0) = 0. We
refer interested readers to [15] for technical results on well-
posedness and solution properties for this PDE, both in the
viscosity and classical solution senses.

Clearly, the PDE given by (8) is linear in DV . Hence,
we can formulate a convex optimization problem to solve
it using an ELM neural network. For clarity, we explicitly
present a mean square loss function as follows:

Loss(β)

=
1

N

N∑
s=1

∥DV (xs;β) · f(xs) + ω(xs)∥2 + λ0∥βTσ(b)∥2,

(9)

where {xs}Ns=1 ⊆ Ω is a set of collocation points and λ0 > 0
is a weight parameter for the condition V (0) = 0. The loss
function loss(β) is clearly a quadratic function of β. Solving
this to determine β provides an approximate solution to (8)
in the form of (4). This is summarized in Algorithm 1. We

Algorithm 1: ELM Neural Lyapunov Function via
Lyapunov’s PDE

Require: f , Ω, N , m
1: Generate random W and b
2: Generate random collocation points {xs}Ns=1 ⊆ Ω
3: Finding β that minimizes (9) to form V from (4)

next state a technical result that says if we solve (8) well
in an approximate sense, then the function obtained as an
approximate solution to (8) is a Lyapunov function for (1)
in a practical sense, to be made precise below.

Proposition 1: Suppose that there exist two sequences
{εnR} ↓ 0, {εn0} ↓ 0 (approaching 0 from the above as
n → ∞), and a sequence of continuously differentiable
functions {Vn}, where each Vn : Rd → R such that

|DVn(x) · f(x) + ω(x)| ≤ εnR, |Vn(0)| ≤ εn0 ,

for all x ∈ Ω. Furthermore, suppose that the sequence Vn
is equicontinuous2 at x = 0. Then, there exists a sequence

2This holds, in particular, when all Vn share a uniform Lipschitz constant
or modulus of continuity around zero.



µn → 0 such that, for all n sufficiently large, Vn is a practical
Lyapunov function in the following sense:

DVn(x) · f(x) < 0, Vn(x) > 0, (10)

for all x ∈ Ω such that ∥x∥ ≥ µn.
Proof: According to [12, Theorem 4.18], Vn satisfying

the stated condition (10) leads to solutions being ultimately
bounded, with the ultimate bound arbitrarily small, as µn →
0. This can be interpreted as a practical notion of stability.

Since ω is positive definite, there exists a class K function
that ω(x) ≥ η(∥x∥) for all x ∈ Ω. Pick rn > 0 such that
η(rn) > εnR. Then

DVn(x) · f(x) ≤ εnR − ω(x) ≤ εnR − η(rn) < 0 (11)

for all x ∈ Ω such that ∥x∥ > rn. Note that we can choose
rn ↓ 0 as εnR ↓ 0. Let mrn = min∥x∥=rn Vn(x). By the
equicontinuity of the Vn’s at 0, the fact that rn ↓ 0 and
|Vn(0)| ≤ εn0 ↓ 0, we have mrn → 0.

Pick any µ0 > 0 such that the closed Euclidean ball
of radius µ0, B̄µ0

, has B̄µ0
⊆ Ω ⊆ D. Let Mf =

maxx∈R(B̄µ0
) ∥f(x)∥, where R(B̄µ0

) := ϕ([0,∞) × B̄µ0
)

stands for the forward reachable set of (1) from B̄µ0 , which
is known to be compact [14]. Pick µn ∈ (rn, µ0] such that

−µn − rn
Mf

(εnR − η(rn)) +mrn > 0. (12)

Clearly, for n sufficiently large, this is always possible, and
we can choose µn → 0. We claim that Vn(x) > 0 for all
x ∈ Ω such that ∥x∥ > µn. To prove this, first note that it
takes at least T ≥ µn−rn

Mf
units of time to reach from x to

the sphere ∥x∥ = rn. Let T be the first hit time of ϕ(t, x)
reaching the sphere

{
y ∈ Rd : ∥y∥ = rn

}
. Then, we have

∥ϕ(T, x)∥ = rn and T ≥ µn−rn
Mf

. By (11) and (12),

Vn(x) = Vn(ϕ(T, x))−
∫ T

0

DVn(ϕ(s, x)) · f(ϕ(s, x))

≥ mrn − T (εnR − η(rn))

≥ mrn − µn − rn
Mf

(εnR − η(rn)) > 0,

for all x ∈ Ω such that ∥x∥ > µn.
Remark 1: The proposition above describes: (i) a situ-

ation where a sequence of {Vn} can be found to solve
the Lyapunov PDE (8) with increasing accuracy, e.g., by
increasing the number of hidden units m and the number
of collocation points N ; (ii) what stability guarantees can be
obtained by one of these functions as a Lyapunov function.

D. ELM neural Lyapunov functions via Zubov’s PDE

The result in the previous section provided a systematic
way to construct a Lyapunov function on an a priori specified
set within the domain of attraction. In this section, we use
ELM to find Lyapunov functions that can provide region-of-
attraction estimate close to the true domain of attraction.

The domain of attraction the equilibrium point x = 0 of
(1) is captured by Zubov’s PDE of the form

DV · f = −ωψ(V )(1− V ), (13)

where ω is defined above and ψ is a function satisfying some
technical assumptions [22] (see also [3], [11], [15]). Two
special cases of ψ(s) are given by (i) ψ(s) = α or (ii) ψ(s) =
α(1+s) for some constant α > 0. In order to obtain a linear
PDE, we choose ψ(s) = α for some constant α > 0, which
gives a linear Zubov’s PDE:

DV (x) · f(x) = −αω(x)(1− V (x)). (14)

We refer interested readers to [15] for the well-posedness of
the PDE and properties of its solutions in both the viscosity
and classical senses. Let V be the solution to (14). By
Zubov’s theorem, the domain of attraction D is given by
the sub-level set D = {x ∈ Rd : V (x) < 1}. Hence,
obtaining an accurate neural solution of (14) implies an
accurate approximation of the domain of attraction [15], [17].

We next state an ELM algorithm for solving (14). For the
sake of completeness, we write down an explicit loss similar
to the loss (9), but for Zubov’s PDE (14), as follows:

Loss(β)

=
1

N

N∑
s=1

∥DV (xs;β) · f(xs)− αω(x)V (xs;β) + αω(xs)∥2

+ λb
1

Nb

Nb∑
s=1

∥V (ys;β)− 1∥2 + λ0∥βTσ(b)∥2, (15)

where both DV (·;β) and V (·;β), detailed expressions of
which can be found in (5) and (4), are linear in β. We added
a new term λb

1
Nb

∑Nb

s=1 ∥V (ys;β)− 1∥2, λb > 0, to describe
the boundary condition. In this formulation, we assume D ⊆
Ω, i.e., the domain of attraction is entirely contained within
Ω. Hence, at the boundary points {ys}Nb

s=1 ⊆ ∂Ω, we should
have V (ys;β) = 1. Thus, optimizing β remains a linear least
squares problem. We state the process of solving (14) with
an ELM neural network in Algorithm 2.

Algorithm 2: ELM Neural Lyapunov Function via
Zubov’s PDE

Require: f , Ω, N , Nb, m
1: Generate random W and b
2: Generate random collocation points {xs}Ns=1 ⊆ Ω

3: Generate random boundary points {ys}Nb

s=1 ⊆ ∂Ω
4: Finding β that minimizes (15) to form V from (4)

Remark 2: A data loss of the form λd

Nd

∑Nd

s=1 ∥V (zs;β)−
V̂ (zs)∥2 can potentially be added to the loss function, which
does not affect the linearity of the loss with respect to β. A
loss like this can be beneficial when the domain of attraction
is not entirely contained in Ω. In that case, specifying values
of V to be equal to 1 on the boundary of Ω does not conform
to the solution of Zubov’s PDE. We note that in [11],
a purely data-driven approach is taken to compute neural
network Lyapunov functions, without taking into account
any PDE loss or formal verification, whereas in [15], [16],
both data and PDE losses are combined to achieve better
approximation in certain numerical examples, as verified by



SMT solvers. In this paper, we show that the ELM encoding
without any data loss can already achieve good results, as
shall be demonstrated with numerical examples.

The next technical result states the theoretical guarantees
of solving Zubov’s PDE well using approximations.

Proposition 2: Let Ω be bounded. Suppose that D ⊆ Ω
and there exist sequences of numbers {εnR} ↓ 0, {εnb } ↓
0, {εn0} ↓ 0, and a sequence of continuously differentiable
functions Vn : Rd → R such that

|DVn(x) · f(x)− αω(x)Vn(x) + αω(x)| ≤ εnR,∀x ∈ Ω,

|Vn(0)| ≤ εn0 , |Vn(x)− 1| ≤ εnb ,∀x ∈ ∂Ω,

where α > 0 is a constant. Furthermore, suppose that {Vn}
is equicontinuous at x = 0. Then there exist sequences cn ↑
1 and µn → 0 such that, for all n sufficiently large, Vn
uniformly converges to the true solution V to (14) on Ω̄
and satisfies (10) for all x ∈ Ω such that Vn(x) ≤ cn and
∥x∥ ≥ µn.

Proof: The proof relies on the convergence result
established in [15, Proposition 4] for approximate solutions
of (14) in a more general setting. By the assumptions on
Vn, Proposition 4 in [15] guarantees that Vn converges
uniformly to the true solution V to (14) on Ω̄. We know
that V is a Lyapunov function for (1), with V (0) = 0
and 0 < V (x) ≤ 1 for x ∈ Ω. Furthermore, we have
D =

{
x ∈ Rd : V (x) < 1

}
.

We first apply analysis in the proof of Proposition 1 to the
set Ω′ =

{
x ∈ Rd : V (x) < 1

2

}
⊆ Ω. On this set, we have

Vn → V uniformly. Hence, for n sufficiently large, we have

DVn(x) ·f(x) ≤ −αω(x)(1−V (x))+εnR ≤ −α
4
ω(x)+εnR.

Similar to the proof of Proposition 1, there exists a sequence
µn → 0 such that, for all n sufficiently large,

DVn(x) · f(x) < 0, Vn(x) > 0, (16)

for all x ∈ Ω′ such that ∥x∥ ≥ µn. Furthermore, the choice
of µn can be guaranteed to satisfy η(µn) > enR, where η is
a class K function such that α

4ω(x) ≥ η(∥x∥) for all x ∈ Ω̄.
Now choose cn ∈ (0, 1) such that −αw(x)(1−cn)+enR <

0 for all x ∈ Ω̄\Ω′. This is always possibly for n sufficiently
large by setting cn < 1− enR

minx∈Ω̄\Ω′ αω(x) . Furthermore, we
can choose cn ↑ 1 as enR ↓ 0. It follows that, for all x ∈ Ω̄\Ω′

such that Vn(x) ≤ cn, we have

DVn(x) · f(x) ≤ −αω(x)(1− Vn(x)) + εnR

≤ −αω(x)(1− cn) + εnR < 0. (17)

Combining (16) and (17), the proof is complete.
Remark 3: A simple Lyapunov argument indicates the

existence of a sequence νn, such that Bµn
⊆ {x ∈ Ω :

Vn(x) < νn}. For large n, DVn(x) · f(x) < 0 whenever
νn ≤ Vn(x) ≤ µn. An SMT solver can confirm this, ensuring
that solutions starting within {x ∈ Ω : νn ≤ Vn(x) ≤ µn}
eventually enter {x ∈ Ω : Vn(x) < νn}, a subset of the
region of attraction for equation (1), further validated by local
Lyapunov analysis (see [17]). As cn → 1 and Vn uniformly
converges to V on Ω̄, the regions of attraction certified by
Vn approach the actual domain of attraction D.

E. ELM neural policy iteration for optimal control

In this section, we demonstrate that effectively solving
Lyapunov’s PDE with ELM, as detailed in Section III-C, can
be leveraged for controller design. We examine the control-
affine system (2) and the cost function (3).

Policy iteration (PI) imitates the challenge of directly
solving the HJB equation by iteratively solving a simpler,
linear PDE instead. The PI algorithm starts with an initial
controller u = κ0(x), which is assumed to be an asymptoti-
cally stabilizing controller. For each i ≥ 0, it repeats

1) (policy evaluation) Compute a value function Vi(x)
for the controller κi by solving the Lyapunov-type PDE

DVi(x) · (f(x) + g(x)κi(x))

= −Q(x)− κi(x)
TR(x)κi(x)

(18)

subject to Vi(0) = 0.
2) (policy improvement) Update the controller using

κi+1(x) = −1

2
R−1(x)gT (x)DV T

i (x). (19)

Clearly, the challenge lies in solving (18). Note that, by

fi(x) := f(x) + g(x)κi(x),

ωi(x) := Q(x) + κi(x)
TR(x)κi(x),

the PDE (18) involved in the PI algorithm reduces exactly
to (8) with f replaced by the closed-loop dynamics fi under
ki. We can use ELM to solve it by convex optimization at
each iteration step i. We summarize this in Algorithm 3.

Algorithm 3: Extreme Learning Machine Policy
Iteration (ELM-PI)

Require: f , g, Q, R, k0, Ω, N , m
1: repeat
2: Generate random W and b
3: Generate random {xs}Ns=1 ⊆ Ω
4: Finding β that minimizes (9) with f = fi to form Vi

from (4)
5: Update κi+1 according to (19)
6: i = i+ 1
7: until desired accuracy or max iterations reached

Remark 4: Physics-informed neural networks were pro-
posed for policy iteration in [18]. Here, we highlight the
efficient use of ELM for PI as a result of efficiently solving
Lyapunov’s PDE (8) (see comparison in Section IV-C).

IV. NUMERICAL EXPERIMENTS

In this section, we present a set of examples to illustrate
the potential advantages of utilizing the ELM approach
for computing neural Lyapunov functions and optimal con-
trol, including fast learning speed and strong generaliza-
tion performance. All examples are solved using the tool
LyZNet [17], a Python tool that facilitates physics-informed
learning of Lyapunov functions [15] and nonlinear optimal
control [18], incorporating formal verification through SMT
solvers [6]. Computations were mostly performed on a



2020 Macbook Pro with a 2 GHz Quad-Core Intel Core
i5 and, for GPU-required comparisons, on an NVIDIA
Hopper H100 SXM. Code, model equations, and param-
eters are available at https://git.uwaterloo.ca/
hybrid-systems-lab/lyznet/. The test error for nu-
merical examples is the maximum residual error over 2×N
random points, where N is the number of collocation points.

A. Local stability analysis

We use a low-dimensional system (inverted pendulum)
to study the impact of increasing the size of the training
domain and a high-dimensional system [8] to investigate the
impact of increasing the system’s dimension on the difficulty
of computing an ELM Lyapunov function. In all cases, we
compute neural Lyapunov functions by solving Lyapunov’s
PDE (8) using Algorithm 1 with ω(x) = ∥x∥2.

In Table I, it is evident that ELM can solve Lyapunov’s
PDE with significant accuracy. We note that the accuracy is
measured in terms of residual error for satisfying the char-
acterizing PDE (8), in contrast with existing neural network
Lyapunov functions in the literature [5], [6], [8], [21], which
use Lyapunov inequalities as loss. This crucial difference
is important when it comes to region-of-attraction estimates
and optimality. As the domain expands, maintaining the same
accuracy level becomes increasingly difficult. Despite this, it
consistently attains accuracy comparable to that of multi-
layer PINNs trained via gradient descent methods, typically
around 1E-3. Table II demonstrates ELM’s effectiveness
in solving high-dimensional problems, achieving accuracies
from 1E-3 to 1E-5 for dimensions between 10 and 30.

Domain Hidden
units (m)

Collocation
points (N )

Test
error

Training
time (s)

[−1, 1] 100 3,000 1.32E-5 0.02
[−1, 1] 200 3,000 8.62E-9 0.05
[−2, 2] 200 3,000 2.78E-4 0.05
[−2, 2] 400 3,000 2.81E-6 0.1
[−2, 2] 800 6,000 8.52E-8 0.5
[−4, 4] 800 6,000 5.03E-5 0.5
[−4, 4] 1,600 6,000 2.76E-6 1.7
[−8, 8] 3,200 6,000 6.49E-3 8.8
[−8, 8] 3,200 12,000 1.46E-3 12

TABLE I: Training results for the inverted pendulum.

B. Region-of-attraction estimates

We use the simple pendulum example to demonstrate the
efficiency and advantages of using ELM Lyapunov func-
tions for region-of-attraction estimates by solving Zubov’s
PDE (14) using Algorithm 2 in Section III-D. We verify
the regions of attraction certified by the ELM Lyapunov
function using dReal [6] and compare the result with the
state-of-the-art approach, sum-of-squares (SOS) semidefinite
programming.

We train ELM Lyapunov functions by solving Zubov’s
equation (14) with m = 100 and m = 200 hidden units,
which takes 20 to 50 milliseconds, respectively. We summa-
rize the verified regions of attraction in Table III, compared

Dim (d) Hidden
units (m)

Collocation
points (N )

Test
error

Training
time (s)

10 1,600 6,000 1.59E-4 2
10 3,200 6,000 3.59E-5 9.3
10 3,200 12,000 3.61E-5 13
10 6,400 12,000 1.13E-5 72
20 1,600 6,000 5.58E-3 2.3
20 3,200 6,000 3.17E-3 10.6
20 3,200 12,000 3.34E-3 16.4
20 6,400 12,000 1.20E-3 127
30 1,600 6,000 1.61E-2 2.8
30 3,200 6,000 1.38E-2 11.2
30 3,200 12,000 6.67E-3 22.5
30 6,400 12,000 4.99E-3 172

TABLE II: Training results for toy high-dimensional systems
[8]. We restrict the domain to [−0.1, 0.1]d.

with that obtained with a sixth degree SOS Lyapunov func-
tion and a Taylor approximation to the vector field. ELM
significantly outperforms SOS on this example.

ELM (m = 100) ELM (m = 200) SOS

49.06% 81.01% 25.62%

TABLE III: Volume percentage of the verified region of
attraction for a simple pendulum.

C. Optimal control

We demonstrate with benchmark nonlinear control prob-
lems—including inverted pendulum, cartpole, 2D quadrotor,
and 3D quadrotor—that ELM-PI effectively solves nonlinear
optimal control problems across low- to high-dimensional
systems. We solve all examples with ELM-PI as outlined in
Algorithm 3 of Section III-E with 10 iterations. The numbers
of hidden units and collocation points are detailed below.

We compare the ELM approach with the traditional suc-
cessive Galerkin approximation (SGA) method [2] and the
physics-informed neural network (PINN) [18] on the inverted
pendulum example over the domain [−1, 1]2. For PINN-
PI, we train networks with one or two hidden layers of m
units for 10,000 epochs to ensure an accurate solution to the
linear PDE (18). For ELM-PI and one-layer PINN-PI, we
set N = d × m, where d = 2 is the system’s dimension,
and N = (d+m)×m for two-layer PINN-PI. PINN-PI was
evaluated with and without GPUs. Table IV shows that ELM-
PI (on CPUs) provides a significant speedup, being at least
200 times faster than PINN-PI on advanced GPUs. It also
demonstrates greater data efficiency and improved general-
ization. Additionally, SGA seems to suffer from divergence
with higher-order bases.

Table V summarizes the performance of ELM-PI in
solving benchmark nonlinear control problems, where the
accuracy of the solution increases as m and/or N increase. It
is noted that the traditional SGA approach can only solve the
cartpole problem within a very small region [-0.05,0.05] and
requires considerably more time. Therefore, a comparison
is not provided. Readers are referred to [18] for additional



SGA ELM-PI PINN-PI PINN-PI with GPU PINN-PI (2-hidden) with GPU

Order Test error Time (s) m Test error Time (s) Test error Time (s) Test error Time (s) Test error Time (s)

2 0.15 4.80 50 0.03 0.02 0.10 79.17 0.10 113.02 0.04 143.80
4 3.4E-3 19.37 100 0.01 0.05 0.02 93.54 0.03 113.99 0.10 143.56
6 0.01 66.52 200 2.18E-5 0.16 0.04 150.98 0.04 113.2 0.13 205.47
8 2.79 212.42 400 2.3E-6 0.52 0.07 330.48 0.03 114.03 0.24 1582.15

TABLE IV: Comparison of training/computational time for ELM-PI, PINN-PI [18], and SGA [2] on the inverted pendulum
example: we run ELM-PI and PINN-PI with m = 50, 100, 200, 400 and SGA [2] with polynomial bases of order 2, 4, 6, 8.

System Domain Hidden
units (m)

Collocation
points (N )

Test
error

Training
time (s)

cartpole [−0.2, 0.2]4 400 3,000 3.95E-2 1.6
cartpole [−0.2, 0.2]4 800 3,000 3.98E-3 3.99
cartpole [−0.2, 0.2]4 1,600 3,000 1.63E-3 14.95
cartpole [−0.2, 0.2]4 3,200 6,000 6.43E-4 148.58
cartpole [−0.2, 0.2]4 6,400 9,000 1.51E-4 237.41
2D quad [−0.2, 0.2]6 800 6,000 4.00E-2 9.19
2D quad [−0.2, 0.2]6 1,600 9,000 1.57E-2 35.05
2D quad [−0.2, 0.2]6 3,200 9,000 1.17E-3 142.28
2D quad [−0.2, 0.2]6 6,400 9,000 3.59E-4 1010.33
3D quad [−0.2, 0.2]9 3,200 12,000 5.33E-2 189.06
3D quad [−0.2, 0.2]9 6,400 12,000 3.64E-2 1008.57

TABLE V: Training results for ELM-PI.

experiments on PINN-PI, which, as demonstrated by the
simple pendulum example, take significantly longer to train.

V. CONCLUSIONS

In this paper, we propose a physics-informed extreme
learning machine framework for computing neural network
Lyapunov functions in the stability analysis and control of
nonlinear systems by solving the characterizing PDEs. This
framework leads to a straightforward convex optimization
problem solvable as a linear least squares problem. We the-
oretically analyze the guarantees of approximation solutions
as practical Lyapunov functions that can provide arbitrarily
precise ultimate bounds and region-of-attraction estimates,
which are close to the true domain of attraction. We also
demonstrate the effectiveness and computational efficiency
of the proposed framework through a range of examples.

One potential limitation of the framework is the increase
in computational difficulty as the computation domain ex-
pands. Future work could investigate domain decomposition
techniques to alleviate this challenge. Additionally, exploring
advanced tools for solving large-scale linear least squares
problems could maximize the framework’s potential. Another
promising area for future research is developing verification
techniques specifically designed for one-hidden-layer neural
networks. Our studies indicate that existing SMT solvers [6]
are not optimized yet for this purpose.
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