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Abstract— In this paper, we focus on state estimation prob-
lem for nonlinear systems on joint matrix Lie group G and
Euclidean space Rn. We propose a general iterative Kalman
filter, aiming to integrate the prediction step into the iteration
scheme, which is not considered in the conventional iterative
extended Kalman filter framework. Such an extra iteration
scheme in the prediction step helps improving the accuracy of
probability density function propagation through nonlinearities,
which can further lead to more accurate estimations of the
system states. In addition, the proposed framework unifies the
Kalman filter based estimation schemes on studied manifold
by adopting the perspective from Gaussian Bayesian inference.
The improvement of the proposed framework is illustrated by
the ES-GIKF algorithm that is instantiated from the proposed
framework in a numerical simulation.

I. INTRODUCTION

State estimation studies the problem of obtaining an esti-
mate of the current system state given historical observations
from the beginning to the present time [1], which plays an
essential role in modern control systems. For applications
such as control of robotic systems [2], the system states in-
volve not only those lying on Euclidean spaces, but also those
lying on a manifold. In such scenarios, the orientation of the
robot, which belongs to matrix Lie groups, is indispensable
for planning and control.

Some research has been focused on the state estimation
problem on matrix Lie groups. Full smoother [3] and fix-
lag smoother [4] have been applied to matrix Lie groups, by
formulating and solving a large nonlinear optimization over
manifolds. However, they are hard to be applied in high real-
time scenarios due to computational complexity. To alleviate
the computational consuming, generalized Gaussian filter
on matrix Lie groups was proposed with concise form and
computational efficiency [1] such as the extended Kalman
filter (EKF) [5], [6]. This type of filter is also known as the
Kalman filter (KF) family, which comes from the Gaussian
Bayesian inference and comprises the prediction step and
the correction step. The EKF [7] and unscented Kalman
filter (UKF or SPKF) [8] were respectively implemented
on matrix Lie groups using linearization and sigma point
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transformation to propagate the probability density function
(PDF). But they were developed using distinct concepts, with
the error state and random variables on matrix Lie groups,
respectively. Error state and random variables on matrix
Lie groups respectively. In order to deduce the linearization
error in propagating PDF in EKF, the iterative extended
Kalman filter (IEKF) on general manifold has been proposed
in [9], which revalues the linearization point to improve
the accuracy of the linearization and has been successfully
applied in practice [10]. For a special class of group affine
system on Lie groups, the invariant extended Kalman filter
(InEKF) [11] was proposed with the help of error state and
outperformed the EKF [12], [6].

However, when addressing state estimation on matrix Lie
groups using KF families, two issues remain unaddressed.
One is that the existing IEKF framework only applies the
iterative strategy in the correction step, neglecting its appli-
cation in the prediction step. The iterative strategy aims to
propagate the PDF more precisely through nonlinearity to
yield more accurate estimates [13], [14]. However, the PDF
propagation between matrix Lie groups is more complicated,
which occurs in the prediction step. This is because two
independent Gaussian variables are no longer Gaussian after
compounding [15], but this holds for Euclidean space. More-
over, in the case where the InEKF degenerates to the “imper-
fect” InEKF due to the breaking of group affine properties
[12], the invariant property in the prediction step is corrupted
by the nonlinearity. Therefore, the PDF propagation in the
prediction step for matrix Lie groups is more difficult to keep
accurate, which should be paid the same attention as the
correction step. Another issue is the non-unified formulation
involving utilization of the error state rather than the state
itself [7], this indirect way contrasts with the Euclidean case.
Only a few papers focus on the state itself [8], [16]. This non-
unified formulation creates a gap for interpreting EKF on Lie
groups through Bayesian inference from the perspective of
random variables.

In this paper, we focus on the state estimation problem
on joint Lie groups and Euclidean space G × Rn and
aim to address aforementioned deficiencies by introducing
a general iterative Kalman filter (GIKF) framework. We
unify the KF families into a single state estimation problem
formulation and subsequently extend the iterative strategy
from the conventional IEKF to the prediction step in order
to address the proposed state estimation problem.

The main contributions are summarized as follows. First,
we present a novel formulation of state estimation problem
on G × Rn, which directly works with random variables on
G × Rn. This formulation unifies the KF family methods
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on G × Rn, and further offers a unified perspective on KF
family for state estimation problem over Euclidean space
and matrix Lie groups. Second, a general iterative Kalman
filter framework is developed, which integrates the prediction
step in an iterative framework while the conventional IEKF
framework does not. Such an additional iteration in the
prediction step provides a more accurate PDF propagation,
and is consistent with the conventional IEKF in the correction
step. Third, we instantiate the proposed framework and
synthesize an explicit ES-GIKF algorithm. Such an algorithm
performs an additional re-linearization in the prediction step
in an efficient way and leads to enhanced estimation accuracy
compared to conventional IEKF.

II. PRELIMINARIES AND PROBLEM FORMULATION

To establish a comprehensive formulation of the estimation
problem on G × Rn, it is necessary to first specify the
definition of Gaussian random variables on G × Rn. Let
ξ ∈ Rd be the zero-mean Gaussian variable, then the
corresponding Gaussian variable on manifold G, denoted by
X ∈ G can be expressed as [15]:

X = X̄Exp(ξ) ξ ∼ N (0,Σξ) (1)

where X̄ ∈ G is some noise-free element. Exp : Rd → g →
G is a vectorized version of the matrix exponential map [3]. It
can be shown that X̄ and Σξ are the mean and covariance 1 of
p(X), which represents the PDF of X [15]. Based on (1), we
can further consider the case where another random variable
x ∈ Rn is jointly Gaussian with ξ. This joint distribution
is referred to as the standard Gaussian for X and x, and is
denoted as:

z ∼ NL(z̄, P ) (2)

where z̄ = (X̄, x̄), x̄ is the mean of x, and P is the
covariance of [ξT , xT ]T . With this definition, we can fit the
random variables on G × Rn in Gaussian distribution and
easily calculate the expectation similar to Rn.

In this paper, we consider the following discrete-time
nonlinear system on G × Rn as the underlying dynamical
system

zk = fk−1(zk, wk)

yk = hk(zk, vk)
(3)

where zk ≜ (Xk, xk) ∈ G × Rn is the system state, yk ∈
Rm is the observation and they both are random variables.
The associated Lie algebra [18] g of G has dimension
d. The subscript k represents the time step which means
zk = z(k∆t), where ∆t is the sampling period. fk−1 is
the dynamics model which is a nonlinear function that maps
G × Rn to G × Rn. hk is the observation model which is
a nonlinear function that maps G × Rn to Rm. Both fk−1

and hk are assumed to be smooth. wk ∼ N (0,Σwk
) and

vk ∼ N (0,Σvk) are the independent Gaussian noise. This
type of system is common in practice.

With the definition of the standard Gaussian in (1), we
consider the estimation problem of this system using the
generalized Gaussian filter can be formulated as:

1See [17] for detailed definitions of mean and covariance on Lie groups

Problem 1.
• (Prediction) Given zk−1 ∼ NL(ẑk−1, P̂k−1), fit p(zk)

as NL(žk, P̌k) by dynamics model in (3).
• (Correction) Subsquently fit p(zk|yk) as NL(ẑk, P̂k) by

observation model in (3).
The conditional expectation of p(zk|yk) is ẑk, which gives

the estimate of zk. And the conditional PDF p(zk|yk) can
be used for the prediction step at the next time step.

Problem 1 is very challenging particularly due to the
fact that the standard Gaussian distribution will not preserve
through nonlinearity in general. The key issue lies in the
difficulty of accurately using only the mean and covariance
to characterize the non-Gaussian PDF. Various algorithms
belonging to KF families, including EKF, UKF, and IEKF,
all strive to solve this issue.
III. GENERAL ITERATIVE KALMAN FILTER FRAMEWORK

In this section, we propose a general iterative Kalman filter
(GIKF) framework to address the problem 1, with further
development of Gaussian Bayesian inference on the standard
Gaussian, which serves for the GIKF framework.
A. Framework

The proposed framework contains two re-processing steps,
namely the prediction step and the correction step. The
prediction step forward propagates the PDF of the system
state distribution from time step k−1 to time step k through
the system model fk−1(·). The correction step first utilizes
the observation model of yk in (3) to fit p(zk, yk|Y0:k−1) as
a standard Gaussian based on the prior PDF of zk. Then
the conditional PDF p(zk|yk, Y0:k−1) is approximated as
a standard Gaussian using p(zk, yk|Y0:k−1). The schematic
diagram of the overall framework is given in Fig. 1.

In the prediction step, we aim to approximate the resulting
PDF p(zk|Y0:k−1) for time step k as a standard Gaussian
distribution NL(žk, P̌k), where Y0:k−1 represents the obser-
vations from time step 0 to k−1. This step can be represented
as

NL(žk,P̌k) = Ψfk−1
(ẑk−1, P̂k−1, z̃k−1) (4)

where NL(ẑk−1, P̂k−1) is the PDF zk−1 at time step k− 1.
Ψfk−1

represents different mapping that passes PDF into the
standard Gaussian by fk−1 such as linearization in EKF,
and the sigma point transformation in UKF. z̃k−1 is the
operating point, which is desired to be close to the true
state. Commonly, they are chosen as the mean ẑk−1 in
conventional IEKF.

For the correction step, p(zk, yk|Y0:k−1) is always ob-
tained by Bayesian inference p(yk|zk, Y0:k−1)p(zk|Y0:k−1)
and this process can be represented as

NL((žk, y̌k), Σ̌A) = Υhk
(žk, P̌k, z̃k) (5)

where NL((žk, y̌k), Σ̌A) represents the standard Gaussian
of Xk with [xT

k , y
T
k ]

T , z̃k are some operating points
and Υhk

represents different methods of passing PDF
for (zk, yk) like (4). With the standard Gaussian in (5),
using Gaussian Bayesian inference, the conditional pos-
terior p(zk, |yk, Y0:k−1) can be easily approximated by
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Fig. 1. The general iterative Kalman filter framework.

NL(ẑk, P̂k). Note that the Gaussian Bayesian inference
gives a concise form on the Euclidean space and is the
core theoretical foundation for the Kalman filter, Bayesian
inference for the standard Gaussian distribution can also give
a simple form, which will be presented in Sec. III-B.

In the above process, (5) and (4) are iteratively recomputed
by setting the operating points as

z̃ik = E(zk|yk, z̃i−1
k ), (6)

and
z̃ik−1 = E(zk−1|zk = z̃ik, z̃

i−1
k−1), (7)

respectively. Note that the result of (6) is used in (7).
The superscript i is the iteration index. The initial con-

dition is set to be z̃0k−1 = ẑk−1, z̃0k = ž0k. The re-
evaluation process (6) involves utilizing the operating point
from the previous iteration to generate the posterior distribu-
tion p(zk|yk, Y0:k−1). The obtained posterior distribution is
then used to derive the estimator for zk, which subsequently
serves as the new operating point for the next iteration.

The re-evaluation process (7) is similar to the case in (6).
The main difference lies in the consideration of posterior
distribution p(zk−1|zk, Y0:k−1), which takes the estimate of
zk in (6) by incorporating the information of yk as the
“pseudo-observation” for zk. The process (7) is essentially a
simplification of calculating the PDF of p(zk−1|yk, Y0:k−1),
which stems from E(xk−1|yk, Y0:k−1) = E(xk−1|xk =
x̃k, Y0:k−1) for the Euclidean case in KF families. With
the re-evaluations (7) and (6), iteratively processing the
prediction step and the correction step leads to our GIKF
framework. In fact, (6) can be considered as just processing
the correction step, but (7) is the extra step separated from
either the prediction or correction step. We refer to this extra
step as back-correction step, as shown in Fig 1.

The proposed framework unifies the KF families on
G × Rn, all different methods such as EKF, UKF can be
interpreted as applying the different methods of passing PDF
through the nonlinearity. Despite most EKF-based methods
on G × Rn focus on the error state dynamics in an indirect
way [6], which is different from the standard EKF on Rn,
the error state dynamics can still be integrated into PDF
propagation in a direct way. This unifies can be seen in Sec
IV, where error state dynamics is utilized for propagating
PDF using the linearization method.

In particular, the iterative strategy is integrated into this
framework, which embraces conventional iterative algo-

rithms in KF families such as IEKF and iterative sigma
point Kalman filter (ISPKF) on G × Rn. The proposed
framework differs from conventional IEKF/ISPKF frame-
work primarily in the inclusion of a back-correction step.
The back-correction step extends the iterative strategy of
the update step in the conventional IEKF to the prediction
step, which can give an operating point closer to the true
state in the prediction step. This more accurate operating
point has been illustrated to lead to more accurate PDF
propagation [13]. Moreover, the back-correction step pro-
vides a more concise form of (7) instead of directly calcu-
lating E(zk−1|yk, Y0:k−1), this formulation improves com-
putational efficiency by using intermediate variables in other
steps such that the GIKF framework can be implemented
for real-time tasks that are compatible with the conventional
IEKF framework.

B. Bayesian Inference on Standard Gaussian

In the previous subsection, we assume that the Bayesian
inference for the standard Gaussian has a simple form similar
to the Euclidean case. In this subsection, we outline the main
idea for implementing this.

Following the observation that X = X̄Exp(ζ) is a function
of ζ, we consider the case that ζ is not a zero-mean
Gaussian variable, i.e., ζ ∼ N (ζ̄,Σζ). In this case, it can
be transformed into “zero-mean” form in (1) using (29a):

X = X̄Exp(ζ̄ + ε) ≈ X̄Exp(ζ̄)Exp(Jr(ζ̄)ε) (8)

where ε = ζ − ζ̄ and Jr(ζ̄)ε ∼ N (0, Jr(ζ̄)ΣζJr(ζ̄)
T ). Thus

we can fit X in (8) as a Gaussian distribution. Furthermore,
note that ζ and Jr(ζ̄)ε are affine. If l ∈ Rm is jointly
Gaussian with either of them, the relationship holds for
the other. This means we can apply the Gaussian Bayesian
inference on l and the Gaussian variable in the tangent space
that represents X and then use (8) to make this PDF into a
standard Gaussian. For example, consider the correction step,
when Xk in zk is written as Xk = X̃kExp(ζk), and ζk is
jointly Gaussian with xk. If the measurement yk can be ap-
proximated as jointly Gaussian with [ζTk , x

T
k ]

T , once we get
the posterior estimation ([ζTk , x

T
k ]

T |yk) ∼ N ([δTX , x̂T
k ]

T ,Σ′)
under the measurement yk by Gaussian Bayesian inference
on Euclidean space, we can immediately fit the posterior
distribution for p(zk|yk) as

NL((X̃kExp(δX), x̂k),ΦΣ
′ΦT ) (9)
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where Φ ≜ diag{Jr(δX), I}. There exists a little approx-
imation for applying Gaussian Bayesian inference on the
standard Gaussian variables.

IV. ALGORITHM FOR GIKF FRAMEWORK

The GIKF framework has been proposed in the last
section, in this section, we instantiate this framework by
choosing linearization to propagate the PDF through the
nonlinearity. The linearization on G is implemented with the
help of the error state like many works before, however, with
further consideration of the standard Gaussian fitting in the
GIKF framework. We call this instantiation as error state
general iterative Kalman filter (ES-GIKF) algorithm.

Some operators are defined for notation simplicity:

z⊟ z̃ ≜

[
Log(X̃−1X)

x− x̃

]
∈ Rd+n

z̃⊞

[
eX

ex

]
≜ (X̃Exp(eX), x̃+ ex)

(10)

where Log is the local inverse of Exp.

A. Prediction

This step aims to propagate the PDF from time step k−1
to k. With the prior PDF NL(ẑk−1, P̂k−1) for zk−1, let z̃k−1

be the operating point, i.e. linearization point, then we define
an auxiliary equation (also the “error states dynamics”)

α(zk−1) ≜ fk−1(zk−1, wk)⊟ fk−1(z̃k−1, 0)

≈ Fk−1ek−1 + w′
k

(11)

where ek−1 = zk−1 ⊟ z̃k−1 and Fk−1 and w′
k have the

formulation of

Fk−1 =
∂(fk−1(z̃k−1 ⊞ ϕ, 0)⊟ fk−1(z̃k−1, 0))

∂ϕ

∣∣∣∣
ϕ=0

(12)

and

w′
k = ∂fk−1(z̃k−1,w)⊟fk−1(z̃k−1,0)

∂w

∣∣∣
w=0

wk ∼ N (0, Qk)

(13)
According to the auxiliary equation (11), we have

zk = fk−1(zk−1, wk)

≈ fk−1(z̃k−1, 0)⊞ (Fk−1ek−1 + w′
k)

(14)

Further, ek−1 can be approximated as a Gaussian variable
ek−1 ∼ N (ẽk−1, P̃k−1) using the standard Gaussian of zk−1

according to (29b), where (Φ is defined in (9))

ẽk−1 = ẑk−1 ⊟ z̃k−1

P̃k−1 = Φ(ẽk−1)
−1P̂k−1Φ(ẽk−1)

−T
(15)

Therefore zk in (14) is a non-zero-mean form standard
Gaussian, which we can be fitted as a standard Gaussian
NL(žk, P̌k) following the idea in Sec. III-B, where

žk = fk−1(z̃k−1, 0)⊞ α̌

P̌k = Φ(α̌)(Fk−1P̃k−1F
T
k−1 +Qk)Φ(α̌)

T
(16)

where α̌ ≜ Fk−1ẽk−1.

B. Correction

This step aims to get the posterior standard Gaussian of
p(zk|yk) by the standard Gaussian p(zk, yk). Let z̃k be the
linearization point, yk can be approximated as

yk = hk(zk, vk) ≈ hk(z̃k, 0) +Hkek + v′k (17)

where ek = zk ⊟ z̃k. Hk and v′k are

Hk =
∂(hk(z̃k ⊞ ϕ, 0)− hk(z̃k, 0))

∂ϕ

∣∣∣∣
ϕ=0

(18)

v′k = ∂hk(z̃k,v)⊟hk(z̃k,0)
∂v

∣∣∣
v=0

vk ∼ N (0, Rk) (19)

Under the prior (16) and similar to (15), it can be get that
ek ∼ N

(
ẽk, P̃k

)
, where P̃k = Φ(ẽk)

−1P̌kΦ(ẽk)
−T and

ẽk = žk ⊟ z̃k. Therefore yk and ek are the jointly Gaussian
as[
ek
yk

]
∼N

([
ẽk

ỹk +Hkẽk

]
,

[
P̃k P̃kH

T
k

HkP̃k HkP̃kH
T
k +Rk

])
(20)

where ỹk = hk(z̃k, 0). By the Bayesian rule, we can get
(ek|yk) ∼ N (êk, Σ̂ek), where

êk = ẽk +Kk(yk − ỹk −Hkẽk)

Σ̂ek = (I −KkHk)P̃k

(21)

where Kk = P̃kH
T
k (HkP̃kH

T
k +Rk)

−1 is the Kalman gain.
Similar to (16), the standard Gaussian of p(zk|yk) is given
by NL(z̃k⊞ êk,Φ(êk)Σ̂ekΦ(êk)

T ). Therefore we can get the
estimator of zk, which is also the next operating point by (6):

z̃i+1
k = z̃ik ⊞ êik (22)

The algorithm terminates when êik is sufficiently small. If we
regard êik as zero when converging, then Φ(êik) = I , which
leads to Σ̂i

ek
is the covariance for p(zk|yk).

C. Back-correction

This step aims to get the posterior standard Gaussian of
p(zk−1|zk = z̃i+1

k ). Substitute zk = z̃k ⊞ ek into (14), then
ignore the second and higher terms of ek−1− ẽk−1+w′

k and
ek − ẽk, then we have

ek = Φ(ẽk)
−1Φ(α̌)︸ ︷︷ ︸
Π

(Fk−1(ek−1 − ẽk−1) + w′
k) + ẽk (23)

Therefore ek and ek−1 are jointly Gaussian. Note the con-
dition zk = z̃i+1

k means ek = êk by (22), thus we can apply
Bayesian inference to get

E(ek−1|êk) = ẽk−1 + P̃k−1F
T
k−1Π

T P̃−1
k (êk − ẽk) (24)

Therefore p(zk−1|zk = z̃i+1
k ) can be obtained, whose mean

which is also the next operating point for z̃k−1 according to
(7), is given by

z̃i+1
k−1 = z̃ik−1 ⊞ E(ek−1|ek = êk)

i (25)

Remark 1. In the back-correction step, we directly manip-
ulate p(zk−1|zk = z̃i+1

k ) to avoid deal with p(zk−1|yk),
resulting in a more concise formulation. In fact, they result
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in the same results, which can be verified by developing the
jointly Gaussian of yk and ek−1 using (23) and (17).

The ES-GIKF algorithm is summarized in Algorithm 1.
The significant improvement of this algorithm is integrating
the prediction step into the iterative loop by the back-
correction step, which allows more accurate linearization
points to Propagate PDF in the prediction step. Moreover,
if we get rid of the back-correction step and only have the
prediction for only once, then only the correction step in Al-
gorithm 1 needs iteration and this becomes the conventional
IEKF framework, which denotes C-IEKF.

Algorithm 1 ES-GIKF Algorithm

Input: ẑk−1, P̂k−1

Initialization: z̃0k−1 = ẑk−1, z̃0k = fk−1(ẑk−1, 0)
for i = 0 : N do ▷ N is the maximum ietration

Prediction:
Calculate Fk−1, Qk, P̃k−1 in (12), (13), (15).
Calculate žk and P̌k in (16).
Correction:
Calculate Hk, Rk, P̃k in (18), (19), (20).
Kk = P̃kH

T
k (HkP̃kH

T
k +Rk)

−1

ûk = Kk(y − hk(z̃
i
k, 0)−Hkẽ

i
k)

z̃i+1
k = z̃ik ⊞ (ẽik + ûk)

Back-correction:
Calculate Π as (23)
z̃i+1
k−1 = z̃ik−1 ⊞ (ẽik−1 + P̃k−1F

T
k−1Π

T P̃−1
k ûk)

if (ẽik + ûk) sufficient small then
break

end if
end for
ẑk = z̃ik and P̂k = (I −KkHk)P̃k

Output: ẑk, P̂k

V. NUMERICAL SIMULATION

Here we apply the ES-GIKF algorithm 1 to the nonlinear
system (26). We take the results from EKF as the bench-
mark. In order to compare the GIKF framework with the
conventional IKEF framework, we also applied the C-IEKF
algorithm to the problem and compared the results. Since
ES-GIKF and C-IEKF are derived from the perspective of
the conditional expectation based on the standard Gaussian,
we also apply the existing method in [19] as the reference
for the conventional IKEF framework, which is derived from
Maximum A Posterior perspective, denotes MAP-IEKF.

A. System model

The system is modified from a benchmark problem [20]:

Rk = Rk−1Exp
(
0.01[1, xk−1 − 7, x2

k−1 − 49]T )Exp(wR
k )

)
xk = 0.5xk−1 +

25xk−1

1 + x2
k−1

+ wx
k

yk =
x2
k

20
+ vk

(26)

where R ∈ SO(3) and x ∈ R are the states, y ∈ R is
the observation. wR

k , wx
k and vk are independent Gaussian

noises. The Jacobian matrix can be calculated as

Fk−1 =

[
Exp(−ω) 0.01Jr(ω)[0, 1, 2xk−1]

T

0 0.5 +
25(1−x2

k−1)

(1+x2
k−1)

2

]

w′
k =

[
wR

k

wx
k

]
Hk =

[
0 0 0 xk/10

] (27)

where ω = 0.01[1, xk−1 − 7, x2
k−1 − 49]T .

B. Numerical Results

In all the estimation algorithms, the initial conditions and
covariance are the same in different algorithms. We use mean
squared error (MSE) as the evaluation criterion:

MSE =
1

N

N∑
k=0

∥(R̂k, x̂k)⊟ (Rk,t, xk,t)∥2 (28)

where (̂·)k is the estimation and (·)k,t is the true state.
Fig. 2 depicts the relationship between the relative mean

squared error (MSE) and the initial error. The MSE is
calculated for fixed-length trajectories using different meth-
ods, with the relative MSE plotted in Fig. 2 based on the
EKF’s MSE. The improved performance of the ES-GIKF
algorithm in the prediction step is demonstrated in Fig. 3,
where the relative MSE of the final linearization point in the
prediction step after convergence is shown. This emphasizes
the capability of the proposed algorithm to attain a more
precise linearization point.

In general, the proposed method ES-GIKF exhibits re-
duced error. The two methods employed within the conven-
tional IEKF framework, namely C-IEKF, and MAP-IEKF,
yield similar results, which is reasonable given that they
solely utilize an iteration strategy during the correction
step. The fact that C-IEKF and MAP-IEKF demonstrate
lower MSE compared to the EKF indicates that the iterative
strategy can lead to a more accurate linearization point,
which serves as an estimate for the state. Moreover, ES-
GIKF outperforms C-IEKF and MAP-IEKF as the initial
error increases. This can be attributed to the fact that with
increasing initial error, the linearization point for propagating
the PDF becomes increasingly inaccurate in both the predic-
tion step and the correction step. ES-GIKF, on the other hand,
incorporates an additional iterative strategy in the prediction
step, resulting in a more accurate linearization point. This
improvement is evident in Fig. 3, where the MSE of the
linearization point in the prediction step, which is also the
estimate for zk−1 using yk, is depicted. The figure reveals
that the estimate of zk−1 exhibits closer proximity to the true
state subsequent to the iteration in the prediction step for
estimating zk. This significant improvement shows proposed
framework can propagate PDF through nonlinearity for the
prediction better than the conventional IEKF framework.
Based on the fact that zk−1 is also estimated at time step
k, the proposed framework can be regarded as a “local
smoother”, but embedded into the KF family framework.
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Fig. 2. The relative percentage of MSE for states of different methods
based on the MSE of EKF. Lower is better. The initial error means the
initial derivation between the mean of the PDF of the first state and the first
state’s true value, which is denoted by the ‘initial condition’.
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Fig. 3. The MSE of the linearization point for the prediction step. Lower is
better. ‘Initial linearization point’ and ‘Final linearization point’ respectively
represent the first and the convergent result of the back-correction step in
ES-GIKF.

The computational cost is intricately linked to the number
of iterations employed. Thus, we present the percentage of
calculation time consumed by the prediction step and the
correction step for each iteration, offering a comparative
measure of the computational overhead relative to the con-
ventional IEKF. The calculation time proportions of the pre-
diction step and the correction step are respectively 63.65%
and 36.35% overall. The higher computational burden in the
prediction step can be attributed to the recurrent covariance
propagation and the increased complexity of the prediction
model as defined by equation (27).

VI. CONCLUSION

In this paper, we formulate the estimation problem for
G × Rn to unify the KF families and propose a general
iterative Kalman filter framework to address the problem.
The GIKF integrates the iterative strategy into the prediction
step in order to improve the accuracy of the PDF propa-
gation. The numerical result illustrates more accurate PDF
propagation in the prediction step leads to more accurate
estimates than the conventional IEKF. This framework has
the potential to improve the accuracy of the estimate for
the system that has high nonlinearity in the motion model.
Moreover, the proposed framework can enhance observation
accuracy for systems that simplify observations to rely solely
on the current state, even though certain observations depend

on both the current and previous states [10]. This is achieved
by estimating not only the current state but also the state at
the previous time in the proposed framework.

APPENDIX

A. Useful Approximation

Exp(ϕ1 + ϕ2) ≈ Exp(ϕ1)Exp(Jr(ϕ1)ϕ2) (29a)

Log(Exp(ϕ1)Exp(ϕ2)) ≈ ϕ1 + J−1
r (ϕ1)ϕ2 (29b)

holds for small ϕ2. See [1, equation (7.75)] for details.
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