
Neural ODEs for Data-driven Automatic Self-Design of Finite-time
Output Feedback Control for Unknown Nonlinear Dynamics

Simon Bachhuber, Ive Weygers, and Thomas Seel

Abstract—Many application fields, e.g., robotic surgery, au-
tonomous piloting, and wearable robotics greatly benefit from
advances in robotics and automation. A common task is to control
an unknown nonlinear system such that its output tracks a desired
reference signal for a finite duration of time. A learning control
method that automatically and efficiently designs output feedback
controllers for this task would greatly boost practicality over time-
consuming and labour-intensive manual system identification
and controller design methods. In this contribution we propose
Automatic Neural Ordinary Differential Equation Control (AN-
ODEC), a data-efficient automatic design of output feedback
controllers for finite-time reference tracking in systems with
unknown nonlinear dynamics. In a two-step approach, ANODEC
first identifies a neural ODE model of the system dynamics from
input-output data of the system dynamics and then exploits this
data-driven model to learn a neural ODE feedback controller,
while requiring no knowledge of the actual system state or its
dimensionality. In-silico validation shows that ANODEC is able to
—automatically— design competitive controllers that outperform
two controller baselines, and achieves an on average ≈ 30% /
17% lower median RMSE. This is demonstrated in four different
nonlinear systems using multiple, qualitatively different and even
out-of-training-distribution reference signals.

I. INTRODUCTION

Advances in robotics and automation continue to have a
significant impact on a large range of application fields: Cars
that autonomously perform certain maneuvers, assembly lines
with robotic manipulators that perform repetitive tasks, and
patients that regain the ability to perform functional motions
through combinations of functional electrical stimulation and
wearable robotics.

A common task in all of these application fields is to
control the output of a system with initially unknown nonlinear
dynamics such that it follows a desired reference signal for a fi-
nite duration of time. Finding a feedback controller that solves
this task is typically time-consuming and labour-intensive,
since it requires modeling and/or system identification as well
as controller design and adaptation. This greatly contrasts
practical needs for methods and algorithms that exploit small
amounts of input-output data from unknown nonlinear dynam-
ics and autonomously design feedback controllers that enable
accurate tracking of agile finite-time references (cf. Fig. 1).

In the present contribution we provide an approach that
solves this task and neither assumes knowledge of the sys-
tem dynamics nor of the system state or its dimensionality.
It automatically designs an output feedback controller that
tracks real-time reference signals and does not require these
references to be repetitive or known ahead of time (AOT).

S.B., I.W., and T.S. are part of the Department Artificial Intelligence in
Biomedical Engineering, FAU Erlangen-Nürnberg, 91052 Erlangen, Germany.
Corresponding author: S.B. (simon.bachhuber@fau.de)

Fig. 1. Core concept of automatic self-design in learning control systems.
Conventional controller design requires manual effort by human experts, which
is expensive, time-consuming and does not scale. In contrast, the proposed
ANODEC approach automatically designs competitive controllers from input-
output data of unknown nonlinear system dynamics.

Similar problems have been addressed by several previous
approaches, most notably in the field of reinforcement learn-
ing (RL) [1], [2]. These methods, however, typically require
full state knowledge, which severly limits applicability [3].
Within the field of RL, this limitation can be overcome using
Partially Observable Markov Decision Processes (POMDP).
RL methods tailored for POMDPs have been developed [4]
and include, e.g., a recurrent policy function [5], stacking
multiple observations, or, as a patch, a recurrent filter prior
to a MDP-RL algorithm[6]. Unfortunately, the applicability
of these methods is limited by large data requirements [1],
[7]. Moreover, while some RL methods have been used to
effectively learn feedback control, they always assumed a
single-objective trial-invariant state-dependent reward function
which encodes information about a reference signal or target
state that is usually known AOT [8].

More system-and-control-rooted approaches to similar tasks
include optimal control (OC) and iterative learning control
(ILC) methods and almost always require a known system
model. OC approaches, including model-predictive control,
typically optimize a state-dependent quadratic loss and thus
assume full state knowledge [9]. Even recent data-driven
methods still require knowledge of a nominal model of the
dynamics and only learn the model mismatch from data [10].
ILC approaches, see e.g. [11], [12], may not assume full
state knowledge, but their design requires a system model or
experimental tuning, and they assume a reference signal that
is known AOT and typically trial-invariant.

In the present work we propose a solution based on neural
ordinary differential equations (ODEs), in which the right-
hand-side of an ODE is parameterized by a neural network.

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 8569



This concept is enabled by numerical integrators being differ-
entiable operations in the context of automatic differentiation
and has recently gained traction [13]. Neural ODEs are not
only used for modeling [13], [14] but also for representing
controllers [15], [16]. In contrast to previous work on the latter,
we assume to have no prior knowledge about the state or the
dynamics of the system to be controlled.

Precisely, we propose Automatic Neural ODE Control (AN-
ODEC) (cf. Fig. 1), a data-efficient automatic design of neural
ODE feedback controllers for finite-time reference tracking in
systems with unknown nonlinear dynamics. ANODEC con-
sistently outperforms two common control approaches, and
achieves an on average ≈ 30% / 17% lower median RMSE.
This is demonstrated using multiple, qualitatively different and
out-of-training-distribution reference signals in several double-
pendulum dynamics and vehicle steering dynamics.

II. PROBLEM FORMULATION

Assume there exists some unknown system dynamics Ψ that
maps a time-varying, finite-time input signal u(t) ∈ Rp to a
possibly noisy output vector y(t) ∈ Rq , that is

y(t) = Ψ [u(t′ < t)] ∀t ∈ [0, T ], (1)

where T ∈ R is the finite trial duration. Here, Ψ can be
thought of as any causal, time-invariant, potentially nonlinear,
deterministic dynamical system, which includes, e.g. linear
state-space models, nonlinear higher-order differential equa-
tions, and lifted-system dynamics. However, at least in the
present work, the systems should be well-behaved in the sense
that they exhibit none of the following very challenging phe-
nomena: Finite escape times [17], ill-conditioned linearizations
[18], or non-minimum phase characteristics [19].

We want to design a feedback controller that manipu-
lates u(t) to let y(t) follow a given time-varying reference
signal r(t) ∈ Rq . Thus, we seek to find a controller dynamics
Φ that maps r(t) and y(t) to the input vector u(t), i.e.

u(t) = Φ [r(t′ < t), y(t′ < t), t] ∀t ∈ [0, T ], (2)

such that it minimizes the tracking error between the output
and the reference signal, i.e.

Φ∗ = argmin
Φ

∫ T

0

∥r(t)− y(t)∥2 dt, (3)

over the finite trial duration. Here, Φ can be used to express
any causal, potentially nonlinear and time-variant, determinis-
tic dynamical system, which includes e.g. transfer functions,
dynamic nonlinearities, and recurrent neural networks.

Synthesizing a feedback controller that only measures the
output of the system dynamics Ψ, and not the state, is a par-
ticularly challenging problem, especially when the reference
signal is only provided in real time and not ahead of time.
Note that this problem formulation assumes no knowledge of
the inner or physical state of the system dynamics Ψ or of
its dimensionality. We do, however, assume that the system
captured by Ψ is repeatedly reset to some trial-invariant initial
state before every trial.

A. Model Learning B. Controller Learning

RK4

Evaluation

RK4

RK4

RK4

RSD

Fig. 2. Internal two-step approach underlying Automatic Neural ODE
Control (ANODEC): (A) First, a neural ODE that models the unknown
nonlinear dynamics of system Ψ is learned from input-output data (green
arrow left side). (B) Then, a performant neural ODE controller is learned
from thousands of forward simulations of the closed-loop system of the frozen
model (blue highlighting) and the neural ODE controller. The optimization
objective of the neural ODE controller is accurate reference tracking in
the closed loop system (green arrow right side) subject to randomly drawn
reference signals r(t) from the Reference Signal Distribution (RSD).

III. AUTOMATIC NEURAL ODE CONTROL (ANODEC)

Here, we present the mathematical formulation of the
proposed method ANODEC. Generally speaking, ANODEC
designs controllers in a two-step approach of model learning
and controller learning (cf. Fig. 2). However, the two steps are
internal to the algorithm and don’t require any intermediate
human attention, which contrasts the typical manual approach
of system identification and controller design. The content
of this section is split up according to these two steps in
Sections III-A and III-B, respectively.

A. Model Learning

The requirement of learning a feedback controller using
the model, necessarily forces us to model causally. One-shot
models that map a sequence to a sequence are not possible.
While ordinary differential equations (ODEs) have a long
history for modeling of physical (causal) phenomena, neural
networks are a first choice for function approximation from
data. We thus choose the combination of both, i.e. neural
ODEs, for automatic data-driven model learning. Additionally,
neural ODEs are differentiable, which will facilitate fast con-
troller optimization in Section III-B.

We approximate Ψ in (1) by a neural ODE that is learned
from experimental input-output data (ui, yi) (more on data re-
quirements in Section IV-A). The state of the dynamical system
Ψ is not observed. The neural ODE that approximates Ψ is
given by

dξ(m)(t)

dt
= f

(m)
θ

(
ξ(m)(t), u(t)

)
, (4)

ŷ(t) = g
(m)
θ

(
ξ(m)(t)

)
,

where f
(m)
θ and g

(m)
θ are feedforward neural

networks, u(t) ∈ Rp the network input, ŷ(t) ∈ Rq the
network output, and ξ(m) is the latent state vector of arbitrary
dimension in which the neural ODE evolves. We denote
the vector of all parameters of f (m), g(m) by θ(m) and use
supervised learning and training data of input-output pairs
(ui, yi) to estimate and then optimize for these parameters

θ(m)∗ = argmin
θ(m)

E
(u,y)

[∫ T

0

∥y(t)− ŷ(t)∥2 dt

]
. (5)

8570



B. Controller Learning

As a second step, we design a controller using the trained
model (cf. Section III-A) with frozen parameters θ(m)∗ . In
contrast to previous approaches [15], [16], we assume to have
no measurements of the state of the dynamical system, i.e. we
consider output feedback control. A performant controller, in
the sense of Section II, is learned from a very large number
of forward simulations of the trained model with different
reference signals.

We represent the controller Φ as a neural ODE, given by

dξ(c)(t)

dt
= f

(c)
θ

(
ξ(c)(t), r(t), y(t), t

)
, (6)

u(t) = g
(c)
θ

(
ξ(c)(t)

)
,

where f
(c)
θ and g

(c)
θ are feedforward neural networks and

ξ(c) is the latent state vector of arbitrary dimension in which
the neural ODE evolves. We then close the loop between
the neural ODEs that approximate the system dynamics Ψ
and the controller Φ. The resulting closed-loop ODE takes
the reference r(t) as an input and outputs ŷ(t). Ideally, this
mapping should be identity, and thus we optimize the controller
parameters θ(c) via

θ(c)
∗
= argmin

θ(c)

(
λ(c)

∥∥∥θ(c)∥∥∥
2
+

E
r(t)∼R

[∫ T

0

∥r(t)− ŷ(t)∥2 dt

])
(7)

where λ(c) is a small regularization weight, and R is the
reference signal distribution (RSD) (cf. Section IV-D). Note
that ANODEC can easily be trained for a certain noise type
and level by disturbing the model output i.e. ŷ → ŷ + ϵ in
(7) where ϵ can be drawn from any distribution. Finally,
note that deliberate choices in the neural network architecture
of the model (cf. Section IV-B) allow to omit additional cost
terms in (7) that are typically used to prevent model inversion.
Such terms are not required here, as a similar effect is
achieved by limiting the rate of change of the model output
(cf. Section IV-B).

IV. ALGORITHM

In this section we layout the required details to implement
ANODEC. This includes the specific choices of feedforward
neural networks fθ, gθ that parameterize (4) and (6) and how
integration, expectation, and minimization operators of (5)
and 7 are resolved.

A. Data Requirements

To apply ANODEC, a (training) dataset D that comprises N
pairs of input-output data (each corresponding to one trial)
must first be gathered from the system dynamics Ψ. The model
learning (cf. Section III-A) then uses the dataset

D = {(ui(t), yi(t))|i ∈ 1 . . . N}. (8)

Input trajectories u(t) for gathering the data thus probing the
system are drawn from a cosine frequency generator and a
smooth Gaussian process with an overall dataset that is split

with a ratio of 3 : 1. These functions are provided as pseudo-
code in Algorithm 1. Between each trial the system resets to
a trial-invariant initial state. Without loss of generality, we
here make the choice of trials that last T = 10 s and are
recorded at a sampling rate of 100Hz. This leads to e.g. an
array representation of ui ∈ R1000×p ∀i.

Finally, for the remainder of this document we assume
that in addition to the training dataset there exists a separate
validation dataset that comprises three trials.

Algorithm 1 Functions for drawing u(t) to probe the system
Precondition: ts is array of timesteps, seed is integer, scale is float

function DRAWGP(ts, seed, scale= 0.25)
kernel ← 0.15 squaredExpKernel(length= 0.75)
us ← gaussianProcess(kernel, ts, seed)
us ←

(
us−mean(us)

std(us)

)
× scale

return us
function DRAWCOS(ts, seed)

ω ← 2π× seed
us ← cos(ω × ts)

√
ω
2

return us

B. Neural Network Architecture

To parameterize the right-hand-side in (4), we use a fully-
connected neural network f

(m)
θ : RN(m)×p → RN(m)

(
ξ(m)(t)⊺, u(t)⊺

)⊺
→Linear → Relu

→Linear → Tanh (9)

→dξ(m)(t)

dt
∀t ∈ [0, T ],

with a width of N (m), a latent state vector ξ(m) ∈ RN(m)

and
a layer size of N (m). Note the usage of Tanh in (9) to limit the
rate of change of the latent state. Bounding the absolute rate of
change from above in combination with a finite trial duration
ensures that the model state and output will also stay within
bounds. Similarly, in (4) g(m)

θ : RN(m) → Rq is parameterized
as a single Linear layer, i.e. as a linear affine transformation.
Note that the Tanh is used for system dynamics f

(m)
θ and not

for system output g(m)
θ , and since the latent state ξ(m) can be

arbitrarily scaled by g
(m)
θ , limiting the rate of change of ξ(m)

does not impose restrictions on the model output range.
To parameterize the controller, i.e. the right-hand-side in

(6), we let f
(c)
θ : RN(c)×q×q → RN(c)

be a Linear layer
and g

(c)
θ : RN(c) → Rp with ξ(c)(t) → Linear →

Tanh → u(t) ∀t ∈ [0, T ]. Together the two latent state
dimensionalities of model N (m) and controller N (c) are the
hyperparameters of ANODEC.

C. Time Integration

We use Runge-Kutta of fourth order (RK4) to obtain a
numerical solution of the integration in (5) and (7) together
with the initial condition ξ(m)(t = 0) = 0 and ξ(m)(t = 0) =
ξ(c)(t = 0) = 0, respectively.

8571



D. Expectation and Minimization Operators

For model training the training dataset D is split into four
minibatches. In (5) the expectation operator E

(u,y)
is estimated

using a single minibatch. Gradients are then computed and
an optimizer step is performed. After an epoch is finished
(equaling four optimizer steps) the dataset is shuffled. For
model training the minimization operation argminθ(m) is per-
formed using the Adam optimizer, a cosine-decaying learning
rate schedule and norm-based and absolute value gradient
clipping. The model is trained for (at most) 700 epochs and
the validation dataset is used for early stopping.

The expectation operator E
r(t)∼R

in (7) is estimated using a

minibatch of six references where at every epoch thirty refer-
ence signals (containing five minibatches) are drawn randomly
from the training RSD R = steps(0, 3) defined by
steps(a, b) ={

r(t) = sr0 ∀t ∈ [0, T ]
∣∣∣ r0 ∈ U([a, b])

s ∈ U({−1, 1})
}

(10)

where a, b ∈ R and U(·) denotes a uniform distribution over
a set. For controller training the minimization operation
argminθ(c) is performed using the same optimization strategy
as it is used for model training with the addition of a small
regularization weight λ(c) = 0.1 in (7). The controller is
trained for 1200 epochs.

E. Software Implementation

A software implementation of ANODEC and of the entire
research project, including the routines to simulate the example
systems used for validation (cf. Section V-A, V-B), is available

https://github.com/SimiPixel/chain control.

The Python-based software uses JAX [20] and MuJoCo [21].
The ANODEC pipeline requires less than two minutes of com-
pute time on a i7-1165G7. The trained neural ODE controller
can be applied in real time at well above 100Hz.

V. IN-SILICO VALIDATION

In this section we validate ANODEC (cf. Section III, IV)
on four simulated complex nonlinear dynamical systems:
(A) three different spring-damper double pendulum systems
(DPs) (cf. Section V-A) and (B) a vehicle with Ackermann
steering (AST) (cf. Section V-B). To showcase generalization
capabilities of ANODEC in Section V-E, we propose several
unseen reference signal distributions that, in Section V-F, will
be used to validate ANODEC’s performance compared to a
system-specific optimal baseline (cf. Section V-D).

A. Double Pendulum (DP) System

A first dynamical system Ψ (cf. Section II) that is used for
validation is a DP attached to a cart that moves horizontally on
a slider using a single motor input. A connected DP with two
consecutive hinge joint segment pairs is attached to the cart.
Both hinge joints are damped with a factor γ ∈ R, and are
being pulled into a straight position by springs with stiffness
k ∈ R. Gravity would lead to less challenging dynamics, so
it is disabled. The single input of the system is the cart’s
motor input moving the cart left-to-right on the slider. The

single output is the left-to-right Cartesian coordinate of the
end effector of the double pendulum, i.e. the end position of
the second segment.

We investigate three parametrizations of this system corre-
sponding to DP1/DP2/DP3, γ = 6.0×10−2/3.0×10−2/1.5×
10−2, and k = 6.0/3.0/1.5, respectively. This results in
notably different pendulum swinging characteristics. All three
systems are simulated using MuJoCo [21], the training dataset
(8) contains N = 12 trials, and the neural network widths of
model and controller are chosen as N (m) = 50 and N (c) = 15.

B. Ackermann Steering (AST) System

To showcase applicability across different application sys-
tems, we also validate ANODEC for the system dynamics
of a vehicle with Ackermann Steering. The vehicle with
width wr = 1.5m and length lr = 4.0m drives forward
with a constant velocity of vr = 3ms−1. The single input
of the system is the steering wheel angle ϕr in radians,
clipped to a range [−30.0◦, 30.0◦]. The single output of the
system is the Cartesian y-position of the vehicle yr ∈ R.
The dynamics are given by dθr(t)

dt = vr
lr

tan(ϕr(t)+ϵ)
−wr

2

, and

d
dt

[
xr(t)
yr(t)

]
= vr

[
cos(θr(t))
sin(θr(t))

]
, where θr ∈ R is the angle

between the cart’s forward / length axis and the global x-axis,
and xr ∈ R is the Cartesian x-position of the vehicle. Initially,
xr(t = 0) = yr(t = 0) = θr(t = 0) = 0, i.e. the vehicle is
aligned with the global x-axis.

For this system the training dataset (8) contains N = 24
trials, and the neural network widths of model and controller
are chosen as N (m) = 25 and N (c) = 25.

C. Noisy System Output

In all simulations we consider noisy output measurements
by adding Gaussian white noise with a standard deviation of
0.02m to the system output y(t) in (1). Note that in Fig. 4
we merely plot the noise free system output, yet the controller
still observes the noisy system output.

D. Baseline Controllers

We compare the performance of ANODEC to two baseline
controllers: One controller that assumes the ability to perfectly
tune a PI or PD controller, one controller that assumes that
perfect model knowledge is available at least locally in the
form of a linearization of the plant around its initial state.

1) Optimal-Tuning Baseline Controller: As a first baseline
controller we determine, for each of the four systems, an
optimal PI or PD controller (whichever performs better) by
performing two exhaustive grid searches for both gains on the
true system dynamics. At every grid point we evaluate the
PI (or PD) controller’s performance for 15 reference signals
drawn from the training RSD (cf. Section IV-D) that are fixed
across grid points. Note that this yields the best possible
PI/PD controller for the given task and that performing such
an exhaustive parameter optimization would require enormous
amounts of interaction time in real-world systems.

8572



D
P

1

D
P

2

D
P

3

A
S
T

0.00

0.25

0.50

0.75

1.00

R
el

at
iv

e
R

M
S

E

← range of reference signals →

← range of dynamical systems →

0
.8

0
0
.7

6

0
.7

9

0
.6

5

0
.7

2

0
.8

3

0
.6

6
0
.8

0

validation (in training distribution)

D
P

1

D
P

2

D
P

3

A
S
T

D
P

1

D
P

2

D
P

3

A
S
T

D
P

1

D
P

2

D
P

3

A
S
T

D
P

1

D
P

2

D
P

3

A
S
T

0
.8

7
0
.8

3

0
.9

3

0
.7

4

0
.8

3

0
.6

9

0
.7

2
0
.6

9

0
.8

7
0
.8

1

0
.7

6

0
.5

6

0
.8

3

0
.7

8

0
.7

2
0
.7

6

0
.4

5
0
.5

4

0
.8

5

0
.5

7

0
.5

3

0
.5

6

0
.2

6
0
.2

6

0
.4

7
0
.4

6

0
.7

3

0
.4

6

0
.5

3

0
.4

9

0
.2

6
0
.3

5

test / generalization (beyond training distribution)

sm
a
ll

st
e
p
s

sm
a
ll

st
e
p
s

sm
a
ll

st
e
p
s

sm
a
ll

st
e
p
s

b
ig

st
e
p
s

b
ig

st
e
p
s

b
ig

st
e
p
s

b
ig

st
e
p
s

d
o
u
b
le

st
e
p
s

d
o
u
b
le

st
e
p
s

d
o
u
b
le

st
e
p
s

d
o
u
b
le

st
e
p
s

sm
o
o
th

sm
o
o
th

sm
o
o
th

sm
o
o
th

sm
o
o
th

c
o
n
st

a
n
t

sm
o
o
th

c
o
n
st

a
n
t

sm
o
o
th

c
o
n
st

a
n
t

sm
o
o
th

c
o
n
st

a
n
t

Optimal-Tuning Baseline Controller

Model-Knowledge Baseline Controller

Neural ODE Controller

Fig. 3. Trained neural ODE controller’s performance relative to the optimal-tuning controller baseline and model-knowledge controller baseline on all
combinations of four systems and five reference signal distributions (RSDs). For each combination of system and RSD, the 25%/50%/75%−percentiles are
obtained from 100 randomly drawn references from the RSD. The neural ODE controller achieves an on average ≈ 30% / 17% / 7% / 40% lower median
RMSE across all validation and test combinations compared to the optimal-tuning controller baseline / model-knowledge controller baseline / the best out of
the two baselines / the worst out of the two baselines.

2) Model-Knowledge Baseline Controller: As a second
baseline controller we determine, for each of the four systems,
a 5th-order transfer function controller by linearization of the
nonlinear system around the initial state and pole placement of
the closed loop. We find a suitable set of poles by grid search.

Note that these controllers constitute well-performing base-
lines. Of course better performing controllers could be obtained
at the cost of increased tuning efforts or more restrictive
assumptions such as perfect nonlinear model knowledge, but
this is beyond the scope of this contribution.

E. Generalization to Tracking of Unseen Reference Signals

A common criticism of data-driven/machine-learning-based
solutions is that they might only perform well in cases
that are covered by the training+validation dataset. To verify
that ANODEC generalizes beyond reference signals from the
training+validation RSD, we test the performance on various
additional, qualitatively different RSDs. We denote the training
RSD steps(0, 3) (cf. Section IV-D) by ‘small steps’, and we
additionally define:

• ‘big steps’: steps(4, 8), (cf. Equation (10))
• ‘double steps’: like ‘small steps’, but re-draws step am-

plitude mid trial at t = 5 s,
• ‘smooth’:{

r(t) = Ψ [drawGP(seed)] ∀t ∈ [0, T ] |seed ∈ U(N)
}
,

• ‘smooth constant’: like ‘smooth’, but the reference be-
comes a constant mid trial at t = 5 s.

Note that only references from ‘smooth’ RSD are feasible.

F. ANODEC Reference Tracking Performance

We validate the proposed method (cf. Section III, IV)
against the optimal-tuning and model-knowledge baseline con-
trollers (cf. Section V-D) for each of the four systems (cf.
Section V-A, V-B) and five choices of RSD (cf. Section V-E).

To this end we draw, for every combination of system and
RSD, 100 signals from the corresponding RSD. After forward
simulation of the 100 trials, the tracking RMSE (mean across
time) of the neural ODE controller is divided by the tracking
RMSE of the controller with the worst performance out of the
three. Finally, the 25%/50%/75%−percentiles of this relative
RMSE are determined across the 100 trials. We choose to
visualize the relative RMSE since the absolute RMSE varies
orders of magnitude across systems and RSDs.

Results are shown in Fig. 3 and we observe: Even on
previously unseen reference signals, ANODEC outperforms
both baseline controllers in 12 out of the 16 cases and achieves
an on average ≈ 30% / 17% / 7% / 40% lower median
RMSE across all validation and test combinations compared
to the optimal-tuning controller baseline / model-knowledge
controller baseline / (for each combination of system and RSD)
best out of the two baselines / worst out of the two baselines.

Fig. 4 showcases the performance of the trained neural ODE
controller compared to the optimal-tuning baseline controller
(the better out of the two baselines for this system and
RSD combination) for the example of the DP2 system with
two beyond-training-distribution reference signals (drawn from
two RSDs). The neural ODE controller not only significantly
outperforms the optimal-tuning baseline controller in a sense
of error norm. It also successfully dampens occurring oscilla-
tions, unlike the optimal-tuning baseline controller, and follows
reference steps not only faster but in a more controlled way.

VI. CONCLUSION

In this contribution we have proposed Automatic Neu-
ral ODE Control (ANODEC), a fully automatic design of
feedback control for finite-time output tracking in systems
with unknown nonlinear dynamics. ANODEC is able to —
automatically— design controllers that outperform two base-
lines, and achieve an on average ≈ 30% / 17% lower median

8573



0 2 4 6 8 10
time [s]

−9

−6

−3

0

3

6

9
H

or
iz

on
ta

lP
os

iti
on

En
de

ffe
ct

or
[m

]

RMSE: 2.9

Optimal-Tuning Baseline Controller

0 2 4 6 8 10
time [s]

−9

−6

−3

0

3

6

9

RMSE: 2.3

Neural ODE Controller

0 5 10

−50
0

50
Pendulum Angle [deg]

0 5 10

−50
0

50
Pendulum Angle [deg]

Reference System Output

1
Fig. 4. Tracking performance of the optimal-tuning baseline controller (left) compared to the trained neural ODE controller (right) on two exemplary test
reference signals that go beyond training distribution (drawn from ‘big steps’) in the double pendulum system (DP2). The system when controlled by the neural
ODE controller reaches the reference point faster and with less oscillations. Video (https://youtu.be/tttkFFD81Qw) showcasing ANODEC on both reference
signals in consecutive order (blue then green).

RMSE compared to two common approaches that either obtain
a baseline controller by optimal tuning or by assuming perfect
linear model knowledge around the initial state. This has been
demonstrated in four different nonlinear systems using multi-
ple, qualitatively different and even out-of-training-distribution
reference signals. ANODEC achieves this whilst requiring only
two (or four) minutes of interaction data. ANODEC marks an
important step towards data-efficient yet performant learning
control solutions that generalize across different application
systems and are easy-to-use.

Future work should aim to overcome the assumption of a
trial-invariant initial state and include broad experimental eval-
uation of the method, also on high-dimensional multiple-input
multiple-output systems with potentially strong nonlinearities.
Furthermore, we aim to apply ANODEC in an iterative fashion
allowing for automation of a minimal (yet sufficient) data
retrieval, and provide more comparison of ANODEC to state-
of-the-art data-driven methods. Finally, future work should
involve a theoretical analysis of ANODEC to assess stability,
guarantee safety, and quantify control performance trade-offs.

REFERENCES

[1] M. Deisenroth and C. Rasmussen, “PILCO: A Model-Based
and Data-Efficient Approach to Policy Search.,” in ICML 2011,
2011.

[2] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal policy optimization algorithms,” CoRR,
2017. DOI: 10.48550/arXiv.1707.06347.

[3] I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari,
Learning Dynamical Systems from Partial Observations, 2019.
DOI: 10.48550/arXiv.1902.11136.

[4] M. Hausknecht and P. Stone, “Deep recurrent q-learning for
partially observable mdps,” CoRR, 2015. DOI: 10.48550/arXiv.
1507.06527.

[5] D. Wierstra, A. Forster, J. Peters, and J. Schmidhuber, “Recur-
rent policy gradients,” Logic Journal of IGPL, vol. 18, no. 5,
2010. DOI: 10.1093/jigpal/jzp049.

[6] A. M. Schäfer, “Reinforcement Learning with Recurrent Neu-
ral Networks,” Ph.D. dissertation, 2008.

[7] E. Schuitema, “Reinforcement learning on autonomous hu-
manoid robots,” Ph.D. dissertation, 2012. DOI: 10.4233/UUID:
986EA1C5-9E30-4AAC-AB66-4F3B6B6CA002.

[8] E. Friedman and F. Fontaine, Generalizing Across Multi-
Objective Reward Functions in Deep Reinforcement Learning,
2018. DOI: 10.48550/arXiv.1809.06364.

[9] P. Bevanda, M. Beier, S. Heshmati-Alamdari, S. Sosnowski,
and S. Hirche, “Towards Data-driven LQR with Koopmanizing
Flows,” IFAC-PapersOnLine, 6th IFAC Conference, vol. 55,
no. 15, 2022. DOI: 10.1016/j.ifacol.2022.07.601.

[10] G. Torrente, E. Kaufmann, P. Foehn, and D. Scaramuzza,
“Data-Driven MPC for Quadrotors,” CoRR, 2021. DOI: 10 .
48550/arXiv.2102.05773.

[11] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative
learning control,” IEEE Control Systems Magazine, vol. 26,
no. 3, 2006. DOI: 10.1109/MCS.2006.1636313.

[12] M. Meindl, D. Lehmann, and T. Seel, “Bridging reinforcement
learning and iterative learning control,” Frontiers in Robotics
and AI, vol. 9, 2022. DOI: 10.3389/frobt.2022.793512.

[13] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duve-
naud, “Neural Ordinary Differential Equations,” in NeurIPS,
vol. 31, 2018. DOI: 10.48550/arXiv.1806.07366.

[14] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural Con-
trolled Differential Equations for Irregular Time Series,” in
NeurIPS, vol. 33, 2020. DOI: 10.48550/arXiv.2005.08926.

[15] T. Asikis, L. Böttcher, and N. Antulov-Fantulin, “Neural
ordinary differential equation control of dynamics on graphs,”
Physical Review Research, vol. 4, no. 1, 2022. DOI: 10.1103/
PhysRevResearch.4.013221.

[16] I. O. Sandoval, P. Petsagkourakis, and E. A. del Rio-Chanona,
“Neural ODEs as Feedback Policies for Nonlinear Optimal
Control,” 2022. DOI: 10.48550/arXiv.2210.11245.

[17] K.-K. Kim, “Stability analysis of riccati differential equations
related to affine diffusion processes,” Journal of Mathematical
Analysis and Applications, vol. 364, 2010. DOI: 10 .1016 / j .
jmaa.2009.11.020.

[18] S. Skogestad, M. Morari, and J. Doyle, “Robust control of
ill-conditioned plants: High-purity distillation,” IEEE Trans-
actions on Automatic Control, vol. 33, no. 12, 1988. DOI:
10.1109/9.14431.

[19] D. Ho and J. Karl Hedrick, “Control of nonlinear non-
minimum phase systems with input-output linearization,” in
2015 ACC, 2015. DOI: 10.1109/ACC.2015.7171957.

[20] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable
transformations of Python+NumPy programs, 2018.

[21] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine
for model-based control,” in 2012 IROS, IEEE, 2012. DOI:
10.1109/IROS.2012.6386109.

8574


