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Abstract— In this letter, we investigate sufficient conditions
for the exponential stability of LTI systems driven by controllers
derived from parametric optimization problems. Our primary
focus is on parametric projection controllers, namely paramet-
ric programs whose objective function is the squared distance to
a nominal controller. Leveraging the virtual system method of
analysis and a novel contractivity result for Lur’e systems, we
establish a sufficient LMI condition for the exponential stability
of an LTI system with a parametric projection-based controller.
Separately, we prove additional results for single-integrator sys-
tems. Finally, we apply our results to state-dependent saturated
control systems and control barrier function-based control and
provide numerical simulations.

I. INTRODUCTION

Controllers solving optimization problems are ubiquitous
in systems and control. One large class of optimization-
based controllers are based upon (i) solving an optimal
control problem offline, such as LQR, LQG, or Hamilton-
Jacobi PDE and (ii) closing the loop with the resulting
controller. Recent interest has focused on a different class
of optimization-based controllers, that solve optimization
problems at every time-step of the dynamic evolution of the
plant. Namely, such controllers are solutions to parametric
optimization problems, i.e., programs that are functions of
the state of the system. Examples of these controllers in-
clude model-predictive control [1], online feedback optimiza-
tion [2], and control barrier (or Lyapunov) function-based
control [3]. While stability and robustness properties of the
first class of optimization-based controllers are well under-
stood, fewer studies have focused on stability and robustness
properties of parametric optimization-based controllers.

Literature Review: Parametric optimization is a rich sub-
discipline of optimization which studies solutions of opti-
mization problems as a function of a parameter; see the
textbook [4]. Parametric optimization is ubiquitous in sys-
tems and control, especially in model predictive control [1]
and CBF-based control [3]. Closed-form solutions for cer-
tain classes of parametric programs were studied in [1,
Chapter 5]. However, closed-form solutions are not always
attainable. Regularity of solutions to parametric programs,
namely establishing smoothness properties of their solutions,
is a classical problem and has even pervaded systems and
control [5], [6]. Compared to regularity results, there are
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fewer results on the stability of control systems with para-
metric optimization-based controllers.

One class of systems for which there have been results
on stability and safety of systems driven by parametric
optimization-based controllers are those coming from CBFs
and control Lyapunov functions (CLFs) [3]. In these works,
CLF and CBF constraints are jointly enforced in a state-
dependent quadratic program (QP). To guarantee feasibility
of the QP when the CLF and CBF inequalities cannot
be jointly satisfied, the stability is commonly relaxed by
introducing a slack variable. This relaxation results in a lack
of stability guarantee even for arbitrarily large penalties on
the slack variable [7]. Recent work, [8], studied a variant
of the CLF-CBF QP controller and demonstrates how to
estimate the basin of attraction of the origin.

Contributions: We consider LTI systems equipped with
parametric projection-based controllers. As our main con-
tribution, assuming linearity of the nominal controller and
various well-posedness conditions, we obtain LMI-based
sufficient conditions for exponential stability and the exis-
tence of a global Lyapunov function. Our proposed sufficient
conditions generalize those presented in [9] which focus only
on special classes of parametric QPs, whereas our controllers
can incorporate more general convex constraints. Our results
can also be seen as using similar ideas to those in [10]
regarding sector bounds for projection operators.

Our analysis is based upon the virtual system methods
in contraction theory and contractivity of Lur’e systems.
For context, contraction theory is a computationally-friendly
notion of robust nonlinear stability [11] and the virtual
system method, first proposed in [12], is an analysis approach
to establish exponential convergence for systems satisfying
certain weak contractivity properties. As a tutorial contribu-
tion, we provide a novel review of the virtual system method
in Section II-B. Specifically, we show that LTI systems with
parametric projection-based controllers are in Lur’e form
with state-dependent nonlinearity and that an appropriate
virtual system can be designed in standard Lur’e form.

As our second main contribution, we establish in Theo-
rem 1 a novel necessary and sufficient condition for absolute
contractivity of Lur’e systems with cocoercive nonlinearities.
In contrast, in [13] and [14, Proposition 4], monotone and
Lipschitz nonlinearities are considered yet only sufficient
conditions are provided. By focusing on cocoercive non-
linearities, we propose a relaxed LMI condition that is
necessary and sufficient. See the related discussion in [15,
Theorem 4.2] for other sufficient conditions.

As our third main contribution, we study the special LTI
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case of single integrators. We establish that all trajectories
of the closed-loop system converge to the set of equilibria
and that all trajectories converging to the origin do so
exponentially fast with a known rate. While there are related
results in the CBF/CLF literature [16], [17], this convergence
result for the general class of parametric projection-based
controllers is novel, to the best of our knowledge.

Finally, we study two applications, namely state-dependent
saturated control systems and CBF-based control. For state-
dependent saturated control systems, the maximal control
effort depends on the state of the system and we demonstrate
that our sufficient condition can be readily applied to yield
a condition for global exponential stability. In CBF-based
control, we consider a single integrator avoiding an obstacle
and demonstrate that the results hold and provide evidence
that the estimated exponential rate of convergence is tight.
Specifically, we numerically observe that, in the case of
single integrator dynamics, one does not need to enforce any
CLF decrease condition to guarantee stability to the origin.1

II. PREREQUISITE MATERIAL

A. Contraction Theory

Given a symmetric positive-definite matrix P ∈ Rn×n, we
let ∥ ·∥P be P -weighted ℓ2 norm ∥x∥P :=

√
x⊤Px, x ∈ Rn

and write ∥ · ∥2 if P = In.
Let the vector field F : R≥0×Rn → Rn be continuous in

both of its arguments. Further let P ∈ Rn×n be symmetric
and positive definite, and let there exist a constant c > 0
referred as contraction rate. We say that F is strongly
infinitesimally contracting with respect to ∥ · ∥P with rate
c if for all x1, x2 ∈ Rn and t ≥ 0,

(F (t, x1)− F (t, x2))
⊤P (x1 − x2) ≤ −c∥x1 − x2∥2P . (1)

If x(·) and y(·) are two trajectories satisfying ẋ(t) =
F (t, x(t)), ẏ(t) = F (t, y(t)), then ∥x(t) − y(t)∥P ≤
e−c(t−t0)∥x(t0) − y(t0)∥P for all t ≥ t0 ≥ 0. Although
we present an integral definition of contractivity in (1),
we remark that an equivalent differential characterization is
available; see, e.g., [11] for a recent review of these tools.

B. Virtual System Method for Convergence Analysis

The virtual system analysis approach is a method to
study the asymptotic behavior of a dynamical system that
may not enjoy contracting properties. The virtual system
approach was first proposed in [12], but we follow the
systematic procedure advocated for in [11, Section 5.7]. For
completeness sake, we describe this procedure below.

The virtual system analysis approach is as follows. We are
given a dynamical system

ẋ = f(x), x(0) = x0 ∈ Rn (2)

and we let ϕx0(t) denote a solution from initial condition
x(0) = x0. The analysis proceeds in three steps:

1For more details on technical arguments, we refer to the extended
version: https://arxiv.org/abs/2403.08159.

(i) design a time-varying dynamical system, called the
virtual system, of the form

ẏ = fvirtual(y, ϕx0
(t)), y ∈ Rd (3)

satisfying a strong infinitesimal contractivity property
with respect to an appropriate norm, e.g., the existence
of a positive definite matrix P ∈ Rd×d and a scalar
c > 0 such that for all y1, y2 ∈ Rd, z ∈ Rn:

(fvirtual(y1, z)− fvirtual(y2, z))
⊤P (y1− y2) ≤ −c∥y1− y2∥2P ;

(The vector field is called virtual since it is different
from the nominal vector field, f , and does not corre-
spond to any physically meaningful variation of f .)

(ii) select two specific solutions of the virtual system and
state their incremental stability property:

∥y1(t)− y2(t)∥P ≤ e−ct∥y1(0)− y2(0)∥P ; (4)

(iii) infer properties of the trajectory, ϕx0
(t), of the nominal

system.
For example, if d = n and f(x) = fvirtual(x, x), then

one can see that ϕx0
(t) is a solution for both systems and is

often selected as one of the two specific solutions in step (ii).
Additionally, if fvirtual(0n, z) = 0n for all z ∈ Rn, then 0n
is an equilibrium point for the virtual system and can be
selected as one of the specific solutions. We refer to [12] for
example applications leveraging the virtual system method.

III. ABSOLUTE CONTRACTIVITY OF LUR’E SYSTEMS

Consider the Lur’e system

ẋ = Ax+Bφ(t,Kx), (5)

where φ : R≥0 × Rm → Rm is continuous in its first ar-
gument and cocoercive second argument. Specifically, φ
cocoercive in its second argument means there exists a
constant ρ > 0 such that for all y1, y2 ∈ Rm, t ≥ 0,

(φ(t, y1)− φ(t, y2))
⊤(y1 − y2) ≥ ρ∥φ(t, y1)− φ(t, y2)∥22.

(6)
Notably, cocoercivity, (6), implies that φ is monotone and
Lipschitz continuous with constant ρ−1 in its second ar-
gument. Many standard nonlinearities satisfy cocoercivity
including projections onto convex sets and nonlinearities of
the form φ(t, y) = (φ1(t, y1), . . . , φm(t, ym)) where each φi

is slope-restricted between 0 and ρ−1 in its second argument.
Akin to the classical problem of absolute stability, absolute

contractivity is the property that the system (5) is strongly
infinitesimally contracting for any nonlinearity φ obeying the
constraint (6).

Theorem 1 (Necessary and sufficient condition for abso-
lute contractivity): Consider the Lur’e system (5) and let
P ∈ Rn×n be positive definite. The system (5) is strongly
infinitesimally contracting with respect to ∥ · ∥P with rate
η > 0 for any φ satisfying (6) if and only if there exists
λ ≥ 0 such that[

A⊤P + PA+ 2ηP PB + λK⊤

B⊤P + λK −2λρIm

]
⪯ 0. (7)



Proof: Employing the shorthand ∆x = x1 − x2,∆y =
y1−y2 = K∆x,∆ut = φ(t, y1)−φ(t, y2), the contractivity
condition (1) for the system (5) is equivalently rewritten as

∆x⊤(PA+A⊤P + 2ηP )∆x+ 2∆x⊤PB∆ut ≤ 0. (8)

Moreover, the cocoercivity condition (6) is equivalent to

∆u⊤
t (ρ∆ut −K∆x) ≤ 0. (9)

Asking when the inequality (9) implies (8) is equivalent to
the inequality (7) in light of the necessity and sufficiency of
the S-procedure [18].

Note that the condition in [13, Theorem 2] corresponds to
the inequality (7) with λ = 1. Moreover the matrix in (7)
has A⊤P + PA + 2ηP in its (1, 1) block compared to
A⊤P + PA + ηIn in [13]. This modification ensures that
the inequality (1) holds rather than a related inequality with
−η

2∥x1 − x2∥22 on the right-hand side. Thus, by restricting
our focus to cocoercive nonlinearities, we are able to find
the sharpest condition for absolute contractivity.

IV. PARAMETRIC PROJECTION-BASED CONTROLLERS

We are interested in studying a continuous-time LTI sys-
tem being driven by an parametric optimization-based con-
troller. We say that the optimization problem is parametric
since it is a function of the state. Specifically, we look at
parametric projection-based controllers. More concretely, for
A ∈ Rn×n, B ∈ Rn×m, u⋆ : Rn → Rm, k : Rn → Rm, g :
Rn × Rm → Rp, the LTI system and controller are:

ẋ = Ax+Bu⋆(x),

u⋆(x) := argmin
u∈Rm

1

2
∥u− k(x)∥22

s.t. g(x, u) ≤ 0p.

(10)

In the context of the parametric optimization problem in (10),
k denotes a nominal feedback controller and g captures
constraints on the controller as a function of the state.
Such controllers commonly arise in CLF and CBF theory,
where the parametric optimization problem in (10) is used
to enforce that u⋆ either causes the closed-loop system to
decrease a specified Lyapunov function or keep a certain set
forward-invariant, respectively [3].

The question we aim to answer in this letter is the
following: What are conditions on the LTI system and the
parametric optimization problem to ensure exponential
stability of (10)? Our main method for establishing sufficient
conditions for exponential stability will be via the virtual
system method in Section II-B.

A. Well-Posedness and Regularity of Solutions

In order to study the dynamical system (10), we need to
ensure that it is well-posed. Several works in the literature
have studied sufficient conditions for regularity of u⋆, e.g.,
continuity, Lipschitzness, or differentiability [5], [6], [19].
In this work, we utilize the following proposition from [6]
which provides a sufficient condition for u⋆ to be continuous.

Proposition 2 ( [6, Proposition 4]): Consider the map
u⋆ : Rn → Rm defined via the solution to the parametric
optimization problem

u⋆(x) := argmin
u∈Rm

f(x, u)

s.t. g(x, u) ≤ 0p.
(11)

where f : Rn × Rm → R and g : Rn × Rm → Rp are
each twice continuously differentiable on Rn ×Rm. Further
assume that for some x0 ∈ Rn, f(x0, ·) is strongly convex2

and g(x0, ·) is convex and that there exists û ∈ Rm such that
g(x0, û) ≪ 0p

3. Then there exists a neighborhood of x0 such
that u⋆ is continuous at every point in the neighborhood.

By existence theorems, we know that for the system
ẋ = Ax + Bu⋆(x), for each initial condition x0 satisfying
the assumptions of Proposition 2, there exists a positive
constant τmax(x0) and a continuously differentiable curve
ϕx0 : [0, τmax(x0)) → Rn satisfying dϕx0

dt (t) = Aϕx0
(t) +

Bu⋆(ϕx0(t)) for all t ∈ [0, τmax(x0)). We say that the
solution ϕx0 is forward-complete if τmax(x0) = +∞. While
Proposition 2 ensures existence of solutions, we refer to [6]
for discussions on conditions for uniqueness of solutions.

B. Stability Analysis for LTI Systems

Consider the dynamical system and its corresponding
controller defined via a parametric optimization problem (10)
and define the following sets

Γ(x) := {u ∈ Rm | g(x, u) ≤ 0p} and (12)
K := {x ∈ Rn | ∃û s.t. g(x, û) ≪ 0p}, (13)

where Γ(x) represents the feasible control actions at the state
x and K denotes the points in state space where the feasible
set, Γ(x), has an interior.

We make the following assumptions on our problem:
(A1) (Regularity of g) The map g : Rn×Rm → Rp is twice

continuously differentiable on Rn ×Rm and g(x, ·) is
convex for all x ∈ Rn,

(A2) (Existence of equilibrium and feasibility of zero
control) 0n ∈ K and 0m ∈ Γ(x) for all x ∈ K,

(A3) (Linearity of nominal controller) the map k : Rn →
Rm is linear, i.e., k(x) = Kx for some K ∈ Rm×n,

(A4) (Dynamical feasibility) for every x0 ∈ K, ϕx0(t) ∈ K
for all t ∈ [0, τmax(x0)).

We make comments about some of these assumptions.
Assumption (A2) ensures that 0n is an equilibrium point and
that u = 0m is a feasible control action. Assumption (A4)
ensures that the controller u⋆ does not drive the system
outside the set of points where the feasible set of (10) has
an interior. Outside of this set, the controller may fail to
be continuous and solutions of (10) may fail to exist. One
simple way to verify Assumption (A4) is to ensure that
K = Rn. Note further that u⋆(x) can compactly be written
u⋆(x) = ProjΓ(x)(Kx), where given a nonempty, closed,
convex set Ω ⊆ Rm, ProjΩ(z) := argminv∈Ω ∥z − v∥2.

2A map f : Rn → R is strongly convex if there exists ν > 0 such that
∇2f(x) ⪰ νIn for all x, where ∇2f denotes the Hessian of f .

3For two vectors, v, w ∈ Rn, v ≪ w if vi < wi for all i ∈ {1, . . . , n}.



We are now ready to state our first main theorem estab-
lishing the exponential stability of the system (10).

Theorem 3 (Exponential stability for LTI systems with
parametric projection-based controllers): Consider the dy-
namics (10) satisfying Assumptions (A1)-(A4). Further sup-
pose that there exist P = P⊤ ≻ 0, η > 0, and λ ≥ 0
satisfying the inequality[

A⊤P + PA+ 2ηP PB + λK⊤

B⊤P + λK −2λIm

]
⪯ 0. (14)

Then from any x0 ∈ K,
(i) solutions to (10), ϕx0 , are forward-complete,

(ii) the origin is globally exponentially stable with bound

∥ϕx0
(t)∥P ≤ e−ηt∥x0∥P , (15)

(iii) the mapping V : K → R≥0 given by V (x) = x⊤Px is
a global Lyapunov function for the dynamics (10).

Proof: We apply the virtual system method. Let x0 ∈ K
be arbitrary and consider the virtual system

ẏ = Ay +B ProjΓ(ϕx0
(t))(Ky). (16)

Note that for all t ∈ [0, τmax(x0)), ProjΓ(ϕx0 (t))
obeys the

inequality (6) with ρ = 1 due to cocoercivity of projections,
see, e.g., [20, Eq. (2)]. Therefore the virtual system is a Lur’e
system of the form (5). Theorem 1 implies that this virtual
system is contracting with respect to ∥·∥P with rate η > 0. In
other words, any two trajectories y1(·), y2(·) for the virtual
system satisfy for all t ∈ [0, τmax(x0)),

∥y1(t)− y2(t)∥P ≤ e−ηt∥y1(0)− y2(0)∥P . (17)

First note that ϕx0 is a valid trajectory for the virtual
system so we set y1(t) = ϕx0

(t). Additionally note that
y2(t) = 0n is a valid trajectory for the virtual system since
0m ∈ Γ(x) for all x ∈ K. Substituting these two trajectories
implies (15) for t ∈ [0, τmax(x0)). We now establish that
τmax(x0) = +∞. To this end, note that the bound (15)
implies that the trajectory ϕx0

remains in the compact set
{x ∈ Rn | ∥x∥P ≤ ∥x0∥P } for t ∈ [0, τmax(x0)) for which
it is defined. Since this set is compact, the trajectory cannot
escape in a finite amount of time, meaning that the trajectory
is forward complete. This reasoning proves statements (i)
and (ii). Statement (iii) is a consequence of (ii).

The key insight in Theorem 3 is that LTI systems
with parametric projection controllers are a type of state-
dependent Lur’e system ẋ = Ax + B ProjΓ(x)(Kx) and
that the virtual system method transforms them into stan-
dard time-varying ones with cocoercive nonlinearities, where
Theorem 1 applies. Specifically, this analysis method allows
us to treat general convex constraints in a unifying manner.
We remark that one could also use classical results such as
the circle criterion to establish stability of (10) but we elect
to use the virtual system method to highlight its utility.

In the case that Assumptions (A1)-(A4) hold, K = 0, and
the inequality (14) holds, the dynamics simply become ẋ =
Ax since 0n ∈ Γ(x) for all x ∈ K. In other words, K = 0
always ensures global exponential stability under the stated

assumptions since (14) implies that A is Hurwitz. Theorem 3
provides a novel sufficient condition for the system (10) to
be exponential stable with K ̸= 0 which has been designed
to make A+BK stable, e.g., using LQR.

C. Stability Analysis for Single-Integrators

A special class of LTI systems for which we can ensure
different results is the single integrator ẋ = u⋆(x), namely
the system (10) with A = 0, B = In. For this system, (14)
will never hold with η > 0 since A is not Hurwitz.

Theorem 4 (Exponential stability for single integrators
with parametric projection-based controllers): Consider the
dynamics (10) with A = 0 and B = In and suppose
Assumptions (A1)-(A4) hold. Further suppose K = K⊤ ⪯
−ηIn, η > 0. Then from any x0 ∈ K,

(i) solutions to (10), ϕx0
, are forward-complete and

(ii) solutions asymptotically converge to the set of equilib-
ria, Xeq := {x ∈ Rn | ProjΓ(x)(Kx) = 0n}.

Moreover, under the additional assumption that 0n ∈
int(Γ(0n)), the following statement holds:
(iii) if ϕx0

(t) → 0n as t → ∞, then there exists M(x0) > 0
such that

∥ϕx0
(t)∥2 ≤ M(x0)e−ηt∥x0∥2. (18)

Proof: Consider as a Lyapunov function candidate
V (x) = − 1

2x
⊤Kx. The Lie derivative of V along trajec-

tories of the dynamical system (10) is

V̇ (x) = −x⊤K ProjΓ(x)(Kx)

= −(Kx− 0n)
⊤(ProjΓ(x)(Kx)− ProjΓ(x)(0))

≤ −∥ProjΓ(x)(Kx)− ProjΓ(x)(0n)∥22 ≤ 0,

where we have used that 0n ∈ Γ(x) for all x and cocoercivity
of ProjΓ(x), see, e.g., [20, Eq. (2)]. Since V̇ (x) ≤ 0, we pre-
clude finite escape time and thus conclude statement (i). To
establish asymptotic convergence to Xeq, we invoke LaSalle’s
invariance principle and see that trajectories converge to the
largest forward-invariant set in {x ∈ Rn | V̇ (x) = 0}.
However, since V̇ (x) ≤ −∥ProjΓ(x)(Kx)∥22, V̇ (x) = 0 if
and only if ProjΓ(x)(Kx) = 0n, i.e., x ∈ Xeq. This argument
establishes statement (ii). To establish statement (iii), note
that 0n ∈ int(Γ(0n)) implies, by continuity of g, that there
exist an open neighborhood, Ox containing the origin such
that g(x,Kx) ≪ 0p for all x ∈ Ox. In other words, inside
this neighborhood, u⋆(x) = Kx. Thus, the dynamics (10) are
locally exponentially stable inside this neighborhood. Since
the trajectory is asymptotically converging to the origin and
locally exponentially stable inside Ox, we conclude (18).

To prove Theorem 4, one could alternatively use the virtual
system method to establish that ∥ϕx0

(t)∥−K ≤ ∥x0∥−K and
then invoke LaSalle’s invariance principle. We opt to give a
more direct Lyapunov proof for simplicity.

V. APPLICATIONS

A. State-Dependent Saturation Control

For v ∈ Rn
>0, define the saturation function satv : Rn →

Rn by satv(x) := max{−v,min{v, x}}, where the max and
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min are applied entrywise. An alternative characterization
of the saturation function is via the minimization problem
satv(x) = argminu∈Rn{∥u− x∥22 | −v ≤ u ≤ v}. We con-
sider the state-dependent saturated control system

ẋ = Ax+Bsatv(x)(Kx), (19)

where v : Rn → Rn
>0 is a twice continuously differentiable

map dictating actuation constraints as a function of the state.
When v is constant, one can use results from saturated

control systems to assess the stability of (19). As v is state-
dependent, one cannot apply these techniques here. It is
straightforward to see that the system (19) is of the form (10)
with g(x, u) = (u−v(x),−u−v(x)). Moreover, it is routine
to establish that Assumptions (A1)-(A4) hold. Therefore,
Theorem 3 may be applied to provide a sufficient condition
for the global exponential stability of the system (19).

Example 1: We consider the system (19), where n =
3,m = 2, A = −I3 + N , B = [ 1 0 0

0 1 0 ]
⊤, and N ∈ R3×3

is a random matrix with entries drawn from the standard
normal distribution. We assume that K ∈ R2×3 is selected
so that u = Kx minimizes the objective

∫∞
0

(x(t)⊤x(t) +

u(t)⊤u(t))dt for ẋ = Ax+Bu. We let v(x) = e−∥x∥2
2/21m,

where 1m is the all-ones vector. We find η > 0, λ ≥ 0, P ∈
R3×3 satisfying (14) such that η is maximized and plot
values of ∥ϕx0

(t)∥P for 10 different samples of x0 from
the multivariate normal distribution N (03, 4I3) in Figure 1.

We see that all trajectories converge exponentially to
the origin and that the exponential convergence rate from
Theorem 3 is η = 0.0525. Empirically, we see that when
trajectories are far from 03, this rate is tight since v(x) ≈ 0m
for x far from 03 and that the rate is very loose when
trajectories are close to 03 since v(x) ≈ 1m for x ≈ 03.

Although we have focused on state-dependent saturation
control in this section, we would like to note that many
structured parametric optimization problems with convex
constraints may be handled. Specifically, our methods are
not simply restricted to saturations and can be applied to
richer classes of examples in a methodological manner.

B. Stability with Control Barrier Functions

Consider the nonlinear control-affine system

ẋ = F (x) +G(x)u, (20)

where F : Rn → Rn, G : Rn → Rn×m are locally Lipschitz.
Let C ⊆ Rn and h : Rn → R be a sufficiently smooth

function such that C = {x ∈ Rn | h(x) ≥ 0}. The set C is
referred to as the “safe set”.

Definition 5 (Control Barrier Function [3, Definition 3]):
The function h is a control barrier function (CBF) for C
if there exists a locally Lipschitz and strictly increasing
function α : R → R with α(0) = 0 such that for all x ∈ C,
there exists u ∈ Rm with

∇h(x)⊤F (x) +∇h(x)⊤G(x)u+ α(h(x)) ≥ 0. (21)

A continuous controller u : Rn → Rm which strictly
satisfies (21) for all x ∈ C renders C forward-invariant under
the dynamics (20) [21, Theorem 4].

A common way to synthesize controllers that render C
forward invariant is via a parametric QP [3]. To this end,
we consider a single-integrator being driven by the CBF
constraint (21) and actuator constraints:

ẋ = u⋆(x),

u⋆(x) := argmin
u∈Rm

1

2
∥u−Kx∥22

s.t. −∇h(x)⊤u ≤ α(h(x)),

−ū1n ≤ u ≤ ū1n,

(22)

where ū > 0. While safety of these systems was previously
studied in, e.g., [3], we aim to also study their stability
properties. To study convergence of (22), we can check for
conditions under which the hypotheses of Theorem 4 hold.

Corollary 6 (Exponential stability for single integrators
with CBF-based controllers): Consider the dynamics (22)
and suppose (i) h is a CBF for C, (ii) K = K⊤ ⪯ −ηIn,
(iii) 0n ∈ int(C), and (iv) h and α are thrice and twice
continuously differentiable, respectively. Then from any x0 ∈
int(C),

(i) solutions to (22), ϕx0
, are forward-complete,

(ii) solutions remain in C for all t ≥ 0,
(iii) solutions converge to the set of equilibria and
(iv) if ϕx0(t) → 0n as t → ∞, then there exists M(x0) > 0

such that

∥ϕx0
(t)∥2 ≤ M(x0)e−ηt∥x0∥2. (23)

Proof: It is straightforward to verify Assumptions (A1)-
(A4) and that 0n ∈ int(Γ(0n)).

In general, we cannot conclude uniqueness of equilibria.
As we will see in the following example, the dynamics may
have multiple equilibria, even in the case of simple CBFs.
These results agree with the theory presented in [16], [17].

Example 2: Consider a single integrator in R2 avoiding
a disk-shaped obstacle centered at (0, 4) with radius 2. The
corresponding CBF is h(x1, x2) = x2

1 + (x2 − 4)2 − 4 with
α(r) = r. We take K =

[ −2 −0.5
−0.5 −1

]
and ū = 1. We plot

numerical simulations of (22) with these parameters along
with the corresponding convergence rate and value of CBF
along trajectories in Figure 2.

We observe that trajectories converge to the set of equi-
libria and the majority of them converge to the origin with
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Fig. 2. The left figure shows plots of trajectories of (22). We can see that most trajectories, indicated by shades of blue, converge to the origin, while
one converges to a point on the boundary of the safe set, shown in orange. The center figure plots the convergence rate of trajectories that converge to
the origin. It also plots e−ηt and 1000e−ηt and demonstrates that the exponential convergence rate in (23) cannot be improved in this instance and that
1000 > M(x0)∥x0∥2 for these initial conditions. The right figure plots the evolution of the CBF, h, along trajectories.

exponential convergence rate predicted in (23). While the
equilibrium point on the boundary of the safe set is unavoid-
able in this example, we can numerically observe that there
are no equilibria inside int(C) other than the origin. This
result is in contrast with the CLF-CBF controllers studied
in [16], [17], where there may exist additional equilibria in
int(C). This numerical example provides evidence that, for
exponential stability of the origin, one does not need to rely
upon any CLF decrease condition, except on a measure zero
set.

VI. DISCUSSION AND FUTURE WORK

In this letter we study LTI systems with controllers solving
a special class of parametric programs, namely parametric
projections. Using the virtual system method and a novel
contractivity result for Lur’e systems, we provide sufficient
conditions for the exponential stability of these systems.
Separately, for single integrators, we prove convergence to
the set of equilibria and an exponential convergence rate
for trajectories converging to the origin. As applications, we
consider state-dependent saturated control systems and CBF-
based control.

We believe that there are many avenues for future re-
search. First, it would be useful to explore relaxing Assump-
tions (A1)-(A4) to allow for a larger class of LTI systems,
possibly using the tools in [22]. Second, it would be useful
to characterize the set of trajectories converging to the origin
in Theorem 4. Finally, it is important to study systems whose
controllers only approximately solve the parametric program.
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