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Abstract— We study the controller implementability problem,
which seeks to determine if a controller can make the closed-
loop behavior of a given plant match that of a desired reference
behavior. We establish necessary and sufficient conditions for
controller implementability which only rely on raw data. Sub-
sequently, we consider the problem of constructing controllers
directly from data. By leveraging the concept of canonical
controller, we provide a formula to directly construct controllers
that implement plant-compatible reference behaviors using
measurements of both reference and plant behaviors.

I. INTRODUCTION

The problem of control design can be split into three parts:
(i) to describe the set of admissible controllers; (ii) to describe
the properties that the controlled system should have; and
(iii) to find an admissible controller such that the resulting
controlled behavior has desired properties [1]. Generally, in
order to solve a control design problem, one needs access to
a model of the system to be controlled and a model of the
reference behavior. However, in many situations of practical
interest obtaining such models is expensive, time-consuming,
or simply impossible, and the control designer only has access
to measured data [2]. This has motivated the development of
a wide range of new direct data-driven control methods that
bypass system identification and aim to compute controllers
directly from data, see, e.g.,the recent survey [2].

The paper studies the controller implementability prob-
lem [3]. The problem is to find, if possible, a controller
which makes the closed-loop behavior of a plant equal to
that of a desired reference behavior. While the problem does
admit a model-based solution, our objective is to provide
an alternative solution that is compatible with modern data-
driven approaches. Using the language of behavioral systems
theory [4], we regard finite-horizon behaviors of finite-
dimensional, linear, time-invariant (LTI) systems as subspaces
represented by raw data matrices [2]. We establish necessary
and sufficient conditions for controller implementability which
can be tested directly from raw data. Furthermore, we also
consider the problem of constructing controllers directly from
data. We provide a formula to directly construct controllers
that implement plant-compatible reference behaviors using
only measurements of the reference and plant behaviors.

Contributions: The contributions of the paper are twofold.
We establish new necessary and sufficient conditions for
solving the controller implementability problem, thus char-
acterizing all implementable controlled behaviors in both
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model-based and data-driven scenarios. We provide a formula
for a canonical controller that implements any given reference
behavior, whenever this is possible; the controller depends
solely on the reference and plant behaviors and can be directly
obtained from data.

Related work: The controller implementability problem
has been originally studied in [3], where necessary and suffi-
cient conditions for implementability are given for continuous-
time behaviors. The concept of a canonical controller has been
implicitly defined in the seminal paper [3] and, subsequently,
formalized for general systems, e.g., in [5] and [6]. Our results
extend existing results presented in [3 , 5 , 6] to discrete-time,
finite-horizon behaviors, eliminating the need for parametric
models and enabling the direct use of raw data. Over the
past two decades, the data-driven approaches have received
increasing attention, primarily due to the surge in availability
of data, see, e.g. the recent survey [2]. A simple, yet
paradigmatic instance of the controller implementability
problem is the exact model matching problem [7 , 8], whereby
one seeks a state feedback law for a given finite-dimensional
LTI system to make the closed-loop transfer function equal
to a given transfer function. The problem has been widely
studied in a model-based context [7 – 9] and it is well-
known that the problem can be reduced to solving a set
of linear algebraic equations [8 , 9]. The recent paper [10]
presents analogous findings in a data-driven context. Our
results generalize the findings of [10] in a representation-free
setting, without requiring plant and reference to have the
same order, the controller to be static, or state measurements
to be available.

Paper organization: Section II provides preliminary results
from behavioral systems theory. Section III formalizes the
data-driven controller implementability problem. Section IV
contains the main results of the paper, including necessary
and sufficient implementability conditions which rely only on
raw data and a formula for the direct data-driven construction
of controllers that implement any plant-compatible reference
behavior. Section V provides a summary of our main results
and an outlook to future research directions. The proofs of
our main results are deferred to the appendix.

Notation: The set of positive integers is denoted by N.
The set of real numbers is denoted by R. For T ∈ N, the
set of integers {1, 2, . . . , T} is denoted by T. The image,
kernel, and Moore-Penrose inverse of the matrix M ∈ Rp×m

are denoted by imM , kerM , and M†, respectively. A map
f from X to Y is denoted by f : X → Y ; (Y )X denotes
the collection of all such maps. The inverse image of the set
Y under f is denoted by f−1(Y ).
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II. PRELIMINARY RESULTS

This section recalls key notions and results from behavioral
systems theory [4], with a focus on discrete-time LTI systems.

A. Time series and Hankel matrices

We use the terms time series and trajectory interchangeably.
The set of time series w = (w(1), . . . , w(T )) of length
T ∈ N, with w(t) ∈ Rq for t ∈ T, is defined as (Rq)

T. The
set of infinite-length time series w = (w(1), w(2), . . .), with
w(t) ∈ Rq for t ∈ N, is defined as (Rq)

N.
1) The cut operator. Restricting time series over subinter-

vals gives rise to the cut operator. Formally, given w ∈ (Rq)
T

and L ∈ T, the cut operator is defined as

w|L = (w(1), . . . , w(L)) ∈ (Rq)
L
.

For infinite-length time series, the definition holds verbatim
with w ∈ (Rq)

N and L ∈ N. Applied to a set of time series
W ⊆ (Rq)

T or W ⊆ (Rq)
N, the cut operator acts on all time

series, defining the restricted set W|L = {w|L : w ∈ W}.
By a convenient abuse of notation, we identify the trajectory
w|L with the corresponding vector (w(1), . . . , w(L)) ∈ RqL.

2) The shift operator. Shifting elements of time series
gives rise to the shift operator. Formally, given w ∈ RqT and
τ ∈ T, the shift operator is defined as

στ−1w = (w(τ), . . . , w(T )) ∈ Rq(T−τ+1).

For infinite-length time series, the shift operator is defined as
w 7→ στ−1w, with στ−1w(t) = w(t+ τ − 1), for any τ ∈ N.
Applied to a set of time series W ⊆ RqT or W ⊆ (Rq)

N, the
shift operator acts on all time series in the set giving rise to
the shifted set στW = {στw : w ∈ W}.

3) Hankel matrices. The Hankel matrix of depth L ∈ T
associated with the time series w ∈ RqT is defined as

HL(w)=


w(1) w(2) · · · w(T − L+ 1)
w(2) w(3) · · · w(T − L+ 2)
...

...
. . .

...
w(L) w(L+ 1) · · · w(T )

.
B. Discrete-time LTI dynamical systems

A dynamical system (or, briefly, system) is a triple Σ =
(T ,W,B), where T is the time set, W is the signal space,
and B ⊆ (W)T is the behavior of the system. We exclusively
focus on discrete-time systems, with T = N and W = Rq .

1) Finite-dimensional LTI systems. A system B is linear
if B is a linear subspace, time-invariant if B is shift-invariant,
i.e., στ−1(B) ⊆ B for all τ ∈ N, and complete if B is closed
in the topology of pointwise convergence [4, Proposition 4].
The model class of all complete LTI systems is denoted by
Lq . By a convenient abuse of notation, we write B ∈ Lq .

2) Kernel representations. Every finite-dimensional LTI
system B ∈ Lq admits a kernel representation of the form

B = kerR(σ),

where the operator R(σ) is defined by the polynomial matrix
R(z) = R0+R1z+. . .+Rℓz

ℓ, with Ri ∈ Rp×q for i ∈ ℓ, and
the set kerR(σ) is defined as {w : R(σ)w = 0}. Without

loss of generality, we assume that kerR(σ) is a minimal
kernel representation of B, i.e., p is as small as possible over
all kernel representations of B.

3) Integer invariants of an LTI system. The structure of
an LTI system B ∈ Lq is characterized by a set of integer
invariants [4, Section 7], defined as

• the number of inputs m(B) = q − row dimR,
• the number of outputs p(B) = row dimR,
• the lag ℓ(B) = maxi∈p{deg rowiR}, and
• the order n(B) =

∑
i∈p deg rowiR,

where kerR(σ) is a minimal kernel representation of B, while
row dimR and deg rowiR are the number of rows and the
degree of the i-th row of R(z), respectively. The integer
invariants are intrinsic properties of a system, as they do not
depend on its representation [11, Proposition X.3].

4) Partitions. Given a permutation matrix Π ∈ Rq×q and
an integer 0 < m < q, the map

(u, y) = Π−1w (1)

defines a partition of w ∈ Rq into the variables u ∈ Rm

and y ∈ Rq−m. We write w ∼ (u, y) if (1) holds for some
permutation matrix Π ∈ Rq×q and integer 0 < m < q. Any
partition (1) induces the natural projections πu : w 7→ u and
πy : w 7→ y. We call (u, y) a partition of B ∈ Lq if (1) holds
for all w ∈ B.

5) State-space representations. Every finite-dimensional
LTI system B ∈ Lq can be described by the equations

σx = Ax+Bu, y = Cx+Du, (2)

and admits a (minimal) input/state/output representation

B=
{
(u, y) ∈ (Rq)N : ∃x ∈ (Rn)N s.t. (2) holds

}
, (3)

where
[
A B
C D

]
∈ R(n+p)×(n+m) and m, n, and p are the

number of inputs, the order, and the number of outputs of B,
respectively.

C. Data-driven representations of LTI systems

The restricted behavior of a finite-dimensional, discrete-
time, LTI system can be represented as the image of a raw
data matrix. We summarize a version of this principle known
as the fundamental lemma [12].

Lemma 1. [13, Corollary 19] Let B ∈ Lq and w ∈ B|T .
Assume ℓ(B) < L ≤ T . Then B|L = imHL(w) if and only
if

rankHL(w) = m(B)L+ n(B). (4)

The rank condition (4) is referred to as the generalized persis-
tency of excitation condition [13]. Thus, we call a trajectory
w ∈ B|T of a system B ∈ Lq generalized persistently exciting
(GPE) of order L if (4) holds. Different variations of this
principle can be formulated under a range of assumptions,
see, e.g., the recent survey [2] for an overview.
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III. PROBLEM FORMULATION

Consider a plant behavior P ∈ Lq+k, a reference behavior
R ∈ Lq , and a controller behavior C ∈ Lk, as shown in Fig. 1.

R P C
r w c

?≡

Reference Plant Controller

Fig. 1: Control in a behavioral setting.

Following [3], we fix a partition of the variables of the plant
behavior P , which induces the natural projections

πw : (w, c) 7→ w, πc : (w, c) 7→ c, (5)

where w are the to-be-controlled variables and c are the
control variables, respectively. The controller behavior C is
interconnected to the plant behavior P via variable sharing.
Formally, the interconnection of P and C via the shared
variable c is defined as

P∥cC =
{
(w, c) ∈ (Rq+k)N : c ∈ C, (w, c) ∈ P

}
. (6)

Similarly, we define the hidden behavior N of the plant
behavior P as

N =
{
w ∈ (Rq+k)N : (w, 0) ∈ P

}
. (7)

We refer to πw(P∥cC) and πw(P) as the controlled plant
behavior and uncontrolled plant behavior, respectively. Fig. 2
offers a pictorial illustration of the aforementioned behaviors.

w

c

P
πw(P)

R

C
Fig. 2: Pictorial illustration of behaviors P , R, C, and πw(P).

A controller C ∈ Lk is said to implement R ∈ Lq if
πw(P∥cC) = R [3]. In other words, a controller behavior
implements a given reference behavior if the resulting
controlled plant behavior obtained from interconnecting the
plant with the controller coincides with the reference behavior.
Consequently, a behavior R ∈ Lq is said to be implementable
if there exists a controller which implements R.

Problem 1 (Data-driven controller implementability problem).
Consider a plant behavior P ∈ Lq+k and a reference behavior
R ∈ Lq. Given trajectories of length T ∈ N of the plant
behavior (w, c) ∈ P|T and of the reference behavior r ∈ R|T ,
the data-driven controller implementability problem is to find,
if possible, a controller C ∈ Lk which implements R.

The data-driven implementability problem is solvable if R is
implementable, in which case any controller C implementing
R is a solution of the problem.

IV. MAIN RESULTS

This section contains the main results of the paper and is
logically divided in two parts. First, we provide necessary and
sufficient conditions for implementablity of a given reference
behavior which only rely on measured data. Second, we
present a data-driven strategy to obtain controllers for any
given implementable reference behavior.

A. Data-driven implementability conditions

The data-driven controller implementability problem is
closely related to the controller implementability problem [3],
which seeks to determine all implementable reference be-
haviors R ∈ Lq for a given plant P ∈ Lq+k. The problem
has been first studied in a continuous-time setting in [3]. An
elegant solution is provided by the following result.

Theorem 1 (Infinite-horizon implementability conditions).
[3, Theorem 1] Consider a plant behavior P ∈ Lq+k and a
reference behavior R ∈ Lq . Then R is implementable if and
only if

N ⊆ R ⊆ πw(P). (8)

Theorem 1 provides a powerful necessary and sufficient
condition for the existence of controllers implementing a given
reference behavior. However, verifying the implementability
condition (8) may be challenging in practice because it
requires full knowledge of both the hidden behavior and
the uncontrolled plant behavior; this is especially true if
only measured data of the plant and reference behaviors are
available.

We now present a simple, but important extension of
the controller implementability theorem, which provides
necessary and sufficient condition for a reference behavior
to be implementable while only requiring knowledge of the
hidden behavior and the uncontrolled plant behavior over a
finite time horizon.

Theorem 2 (Finite-horizon implementability conditions).
Consider a plant behavior P ∈ Lq+k and a reference behavior
R ∈ Lq . Suppose L > max{ℓ(P), ℓ(R), ℓ(πw(P))}. Then R
is implementable if and only if

N|L ⊆ R|L ⊆ πw(P)|L. (9)

Theorem 2 offers an alternative non-parametric necessary and
sufficient condition for the existence of controllers that can
implement a given reference behavior. Similar to Theorem 1,
Theorem 2 establishes implementability conditions that do not
rely on a specific representation. However, unlike Theorem 1,
the subspace inclusions (9) only need information about finite-
horizon behaviors, whereas subspace inclusions (8) require
knowledge of the complete (infinite-dimensional) behaviors.

An important consequence of Theorem 2 is that the
subspace inclusions (9) can be translated into implementability
criteria which can be verified directly from data. In particular,
the following result provides general necessary and sufficient
conditions for the implementability of a given reference
behavior using data.

6094



Corollary 1 (Data-driven implementability conditions). Con-
sider a plant behavior P ∈ Lq+k and a reference behav-
ior R ∈ Lq . Suppose L > max{ℓ(P), ℓ(R), ℓ(πw(P))}. Let
(w, c) ∈ P|T and r ∈ R|T be GPE of order L. Define

N = HL(w)
(
I −HL(c)

†HL(c)
)

(10)
R = HL(r) (11)

Pw = HL(w). (12)

Then N|L = imN , R|L = imR, πw(P)|L = imPw. Conse-
quently, the reference behavior R is implementable if and
only if the system of linear equations

N = RΦ, R = PwΨ, (13)

in the unknown matrices Φ and Ψ admits a solution.

Corollary 1 establishes necessary and sufficient conditions
for testing the implementability of a given reference behavior
directly from data. This, in turn, provides a necessary and
sufficient condition for the solvability of the data-driven
controller implementability problem.

B. Data-driven canonical controller representation

Theorem 2 and Corollary 1 provide conditions under which
a reference behavior is implementable, but do not provide
expressions for a controller which implements the reference
behavior. We first recall an expression for a controller C ∈ Lk

which implements a given implementable reference behavior
R ∈ Lq and, subsequently, obtain an expression for such
controller which relies only on data.

Theorem 3 (Canonical controller). [5, Theorem 2.1] Con-
sider a plant behavior P ∈ Lq+k and a reference behavior
R ∈ Lq. Assume R is implementable. Then R is imple-
mented by the controller

C = πc(P∥wR). (14)

Theorem 3 provides a universal formula which defines the
behavior of a controller which implements any implementable
reference behavior. Consequently, the controller (14) is
referred to as the canonical controller. Fig. 3 offers a pictorial
illustration of the canonical controller behavior.

w

c

P
πw(P)

R

C = πc(P∥wR)

P∥wR

Fig. 3: Pictorial illustration of the canonical controller.

The concept of canonical controller has been implicitly
defined in the seminal paper [3] and extended to general
systems, e.g., in [5] and [6]. The canonical controller is
appealing due to its simple construction and its representation-
free formalization of the internal model principle [14].

Remark 1 (Canonical controller and well-posedness). The
canonical controller is such that the interconnection of P and
C is well-posed, i.e., P∥cC ̸= ∅. If R is implementable, then

P∥cC
(14)
= P ∩ (P∥wR)

(8)
= P∥wR ≠ ∅,

where the last inequality follows from the implementability
assumption on R. △

Next, we show that this concept also allows us to define the
restricted behavior of a controller C ∈ Lk which implements
a desired reference behavior R ∈ Lq using only measured
data. For L ∈ N, we define the matrix representations
Πw ∈ RqL×(q+k)L and Πc ∈ RkL×(q+k)L of the projections
πw and πc over the time horizon [1, L] as

Πw = block-diag
([
I 0

]
, . . . ,

[
I 0

])
,

Πc = block-diag
([
0 I

]
, . . . ,

[
0 I

])
.

Corollary 2 (Data-driven canonical controller representation).
Consider a plant behavior P ∈ Lq+k and a reference behavior
R ∈ Lq . Assume R is implementable and let C be the canon-
ical controller (14). Let L > max{ℓ(P), ℓ(R), ℓ(πw(P))}.
Let (w, c) ∈ P|T and r ∈ R|T be GPE of order L. Define

P ∼ HL((w, c)), R = HL(r),

and

Pp = PP †, Pr ∼
[

RR† 0
0 IkL

]
,

where ∼ denotes similarity under a coordinates permutation.
Then

C|L = imΠcPr (Pr + Pp)
†
Pp. (15)

Corollary 2 provides a data-based description of the finite-
horizon behavior of the canonical controller. This formula
serves a dual purpose: it can be used to identify a controller
from measured data of the reference and the plant, or for
direct control purposes by generating finite-length trajectories
of the canonical controller. Note that longer trajectories for
specific control requirements may be also generated using
the lemma on weaving trajectories [15, Lemma 8.21].

Remark 2 (Persistency of excitation of the data). Corol-
laries 1 and 2 rely on the assumption that (w, c) ∈ P|T
and r ∈ R|T are GPE of order L. In order to check
such assumption from data, upper bounds on n(P), m(P),
n(R), and m(R) are needed (see the rank condition (4)).
Alternatively, the rank condition (4) can be guaranteed to
hold for controllable systems if a certain rank condition on
the inputs hold [12]. △

Remark 3 (Alternative matrix representations). Corollaries 1
and 2 can be also expressed using alternative data-driven
representations of the restricted behaviors N|L, R|L, and
πw(P)|L, e.g., using Page matrices [16] or mosaic-Hankel
matrices [17 , 18]. △

Remark 4 (Connections to exact model matching). The
controller implementability problem is closely related to the
exact model matching [7 , 8], where the goal is to design a
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state feedback law for an LTI system to match a reference
transfer function. The problem is well-studied in a model-
based context [7 – 9] and it typically reduces to solving a set
of linear algebraic equations [8 , 9]. The recent paper [10]
presents analogous findings in a data-driven context. It can
be shown that the data-driven implementability condition (13)
generalizes the results obtained in [10]. △

Remark 5 (Reference behaviors that are not implementable).
When the reference behavior R does not satisfy the
implementability conditions (8) or, equivalently, (9) for
L > max{ℓ(P), ℓ(R), ℓ(πw(P))}, one option is to adjust
R [5, Remark 2.6]. This involves excluding w values
without corresponding c values in P and including w values
from R that match with c values in P , creating a new
implementable reference R′. Alternatively, one may search for
implementable controlled behaviors such that (9) holds, while
minimizing the distance from the original reference behavior
by exploiting the (Grassmannian) geometry of finite-horizon
LTI behaviors [19]. △

V. CONCLUSION

We have studied the controller implementability problem
from the lens of data-driven control, providing necessary and
sufficient implementability conditions which can rely solely
on raw data. Furthermore, we have addressed the problem of
constructing controllers directly from data. By employing the
notion of canonical controller, we have presented a formula for
generating controllers which implement any plant-compatible
reference behaviors in a data-driven fashion. Future research
should address noisy scenarios and study an approximate
version of the controller implementability problem.

APPENDIX

A. Proofs

1) Preliminary results. The proofs of our main results rely
on several preliminary results about the interplay between co-
ordinate projections, the cut operator, restricted LTI behaviors,
and orthogonal projections onto intersections of subspaces.

Lemma 2 (Preimages under coordinate projections). Let
B ∈ Lq. Assume (w, c) is a partition of (Rq+k)N, with
w ∈ Rq and c ∈ Rk. Then

π−1
w (B) = B × (Rk)N.

Proof. By definition, we have

π−1
w (B) =

{
(w, c) ∈ (Rq+k)N : w ∈ B

}
= B × (Rk)N.

Lemma 3 (Coordinate projections and LTI behaviors). Let
B ∈ Lq+k. Assume (w, c) is a partition of B, with w ∈ Rq

and c ∈ Rk. Then

πw(B)|L = Πw(B|L)

for all L ∈ N.

Proof. (⊆). We first show πw(B)|L ⊆ Πw(B|L). Let
(w̃(1), . . . , w̃(L)) ∈ πw(B)|L. Then there is w ∈ πw(B) such

that w|L = (w̃(1), . . . , w̃(L)). Furthermore, there exists c
such that (w, c) ∈ B and, hence,

(w, c)|L = (w̃(1), c(1), . . . , w̃(L), c(L)) ∈ B|L.

This implies (w̃(1), . . . , w̃(L)) ∈ Πw(B|L), and, hence,
πw(B)|L ⊆ Πw(B|L).
(⊇). Next, we show πw(B)|L ⊇ Πw(B|L). Let

(w̃(1), . . . , w̃(L)) ∈ Πw(B|L).

Then there exists (c̃(1), . . . , c̃(L)) such that

(w̃(1), c̃(1), . . . , w̃(L), c̃(L)) ∈ B|L.

Thus, there exists (w, c) ∈ B such that

(w, c)|L = (w̃(1), c̃(1), . . . , w̃(L), c̃(L)).

Then w ∈ πw(B) and, hence, w|L ∈ πw(B)|L. This implies

(w̃(1), . . . , w̃(L)) ∈ πw(B)|L,

which proves Πw(B|L) ⊆ πw(B)|L and, hence, the claim.

Lemma 4 (Intersection of restricted LTI behaviors). [20,
Proposition 16] Let B ∈ Lq and B̄ ∈ Lq . Then

(B ∩ B̄)|L ⊆ B|L ∩ B̄|L.

for all L ∈ N. Furthermore, if L > max{ℓ(B), ℓ(B̄)}, then

(B ∩ B̄)|L = B|L ∩ B̄|L.

Lemma 5 (Cartesian product of restricted LTI behaviors).
[20, Proposition 19] Let B ∈ Lq and B̄ ∈ Lk. Then for all
L ∈ N, (B × B̄)|L = B|L × B̄|L.

Lemma 6 (Inclusion between restricted LTI behaviors). Let
B ∈ Lq and B̄ ∈ Lq. Then B̄|L ⊆ B|L implies B̄ ⊆ B for
L > max{ℓ(B̄), ℓ(B)}.

Proof. We have that B̄|L ⊆ B|L if and only if B̄|L ∩ B|L =
B̄|L. By Lemma 4, we have

B̄|L ∩ B|L = (B ∩ B̄)|L.

Then B̄|L = (B ∩ B̄)|L. By [13, Corollary 14], B̄ = B ∩ B̄
which implies that B̄ ⊆ B, proving the claim.

Lemma 7 (Projectors on intersection of subspaces). [21,
p.2] Let V and W be subspaces of Rn and let PV and PW
be the orthogonal projectors on V and W , respectively. Then
the orthogonal projector on the intersection of V and W is

PV∩W = 2PV(PV + PW)†PW .

2) Proof of Theorem 2. We prove the claim
by showing that (8) is equivalent to (9) for
L > max{ℓ(P), ℓ(R), ℓ(πw(P))}.
(8)⇒(9): This holds by definition of the cut operator.
(9)⇒(8): We first show that N|L ⊆ R|L implies N ⊆
R. First, note that L > max{ℓ(N ), ℓ(R)}. Indeed, by
assumption, L > ℓ(R). Furthermore, L > ℓ(N ). Indeed,
let

P = ker
[
Rw(σ) Rc(σ)

]
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be a minimal kernel representation for P . Then N =
kerRw(σ). Thus, ℓ(P) ≥ ℓ(N ) and, hence, L >
max{ℓ(N ), ℓ(R)}. By Lemma 6, we conclude that N ⊆ R.
It can be shown that R|L ⊆ πw(P)|L implies R ⊆ πw(P)
using similar arguments.

3) Proof of Corollary 1. Let w̄ ∈ πw(P)|L. Since
(w, c) ∈ P|T and r ∈ R|T are GPE of order L, there exists
g and c̄ such that [

HL(w)
HL(c)

]
g =

[
w̄
c̄

]
.

Thus w̄ ∈ imHL(w). Now let w̄ ∈ imHL(w). Then there
exists g such that HL(w)g = w̄. Thus there exists c̄ ∈
imHL(c) such that (w̄, c̄) ∈ P|L. Hence, w̄ ∈ πw(P)|L, so
that πw(P)|L = imHL(w).

Now let w̄ ∈ N|L. Then there exists g such that[
HL(w)
HL(c)

]
g =

[
w̄
0

]
.

Thus, g ∈ kerHL(c) = im(I −HL(c)
†HL(c)). This, in turn,

implies

w̄ ∈ imHL(w)(I −HL(c)
†HL(c)).

Now let w̄ ∈ imHL(w)(I−HL(c)
†HL(c)). Then there exists

g such that w̄ = HL(w)(I −HL(c)
†HL(c))g. Thus,[

w̄
0

]
=

[
HL(w)(I −HL(c)

†HL(c))
0

]
g =

[
HL(w)
HL(c)

]
ḡ,

with ḡ = (I − HL(c)
†HL(c))g. Hence, (w̄, 0) ∈ P|L, so

w̄ ∈ N|L, showing that

N|L = im(I −HL(c)
†HL(c)).

The second claim now follows directly from Theorem 2 and
the fact that the subspace inclusions

imN ⊆ imR ⊆ imPw

hold if and only if the system of linear equations (13) admits
a solution.

4) Proof of Corollary 2. By assumption, R is imple-
mentable and, hence, the canonical controller (14) is well-
defined. By applying the cut operator to the definition of the
canonical controller (14), we obtain

C|L = πc(π
−1
w (R) ∩ P)|L.

By Lemma 3, we obtain

C|L = Πc

(
(π−1

w (R) ∩ P)|L
)
.

Using Lemma 4 and L > max{ℓ(P), ℓ(R), ℓ(πw(P))}, we
obtain

C|L = Πc

(
π−1
w (R)|L ∩ P|L

)
.

By Lemma 2 and Lemma 5, we can write the above as

C|L = Πc

(
(R|L ×RkL) ∩ P|L

)
.

By Lemma 7, the fact that (w,wc) ∈ P|T and wr ∈ R|T are
GPE of order L, and the definition of the projectors Pp and
Pr, we obtain

C|L = Πc imPr (Pr + Pp)
†
Pp.

Finally, since Πc is surjective,

C|L = imΠcPr (Pr + Pp)
†
Pp.

This proves the result.
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