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Abstract—Recurrent neural networks (RNNs) are a dynamic
mapping that can capture time-varying, accumulative effects
in a sequence that static, feedforward neural networks (NNs)
cannot. Long short-term memory (LSTM) NNs are a type
of RNNs that have gained recent popularity because the cell
structure allows them to retain long-term information more
efficiently than traditional RNNs. Existing results develop LSTM-
based controllers to compensate for uncertainties in nonlinear
systems. However, these results use discrete-time LSTMs with
offline-trained weights. In this paper, a Lyapunov-based LSTM
controller is developed for general Euler-Lagrange systems.
Specifically, an Lb-LSTM is implemented in the control design to
adaptively estimate uncertain model dynamics, where the weight
estimates of the LSTM cell are updated using Lyapunov-based
adaptation laws. This allows the LSTM cell to adapt to system
uncertainties without requiring offline training. A Lyapunov-
based stability analysis yields uniform ultimate boundedness
(UUB) of the tracking errors and LSTM state and weight
estimation errors. Simulations indicate the developed Lb-LSTM-
based controller yielded significant improvement in tracking and
function approximation performance when compared to several
DNN examples.

Index Terms—Long short-term memory, neural networks,
adaptive control, Lyapunov methods, nonlinear control systems

I. INTRODUCTION

Adaptive neural network (NN)-based controllers have be-
come increasingly popular in recent years due to their real-
time function approximation capabilities [1]–[3]. While most
adaptive control results only consider single-hidden layer NNs,
recent developments focus on deep learning with feedback
control [1]–[4]. However, the developed adaptation methods
are restricted to feedforward NNs, which are static structures
and therefore only have access to current state information.
Previous results in [5]–[7] establish that the presence of a
memory capable of accessing previous state information both
reduces the required data set for training and leads to faster
learning. Motivated by the improved performance of NNs with
access to previous state information, results in [8] augment
static NN-based controllers with an external memory and
show faster learning and improved function approximation
performance. Although the results in [8] augment the NN with
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a working memory, the NN is feedforward and the augmented
memory is external to the NN.

Unlike feedforward NNs, recurrent NNs (RNNs) are a
dynamic mapping. Thus, RNNs have an internal memory
that can leverage dependencies in a sequence and increase
approximation capabilities, thus improving performance [9].
This internal memory allows RNNs to capture time-varying,
accumulative effects exhibited in some dynamical systems
that feedforward NNs cannot (cf., [4], [9]–[17]). However,
theoretical and empirical evidence has shown that the struc-
ture of traditional RNNs inhibits their ability to learn long-
term time dependencies. One type of RNNs, long short-term
memory (LSTM) NNs, have a better ability to learn long term
dependencies, and therefore, have improved memory capability
when compared to traditional RNNs.

LSTMs have gained recognition in machine learning appli-
cations such as computer vision, natural language processing,
sound recognition, and handwriting recognition due to their
improved memory capability [18]–[20]. Specifically, LSTMs
regulate the flow of the gradient along long time sequences
by adding an explicit memory through three gate units: the
input, forget, and output gates [21]. Compared to traditional
RNNs, the addition of an explicit memory to the LSTM cell
improves function approximation performance by retaining
relevant information across each time step and forgetting
irrelevant information stored in the internal memory [20].
Results such as [4], [15], [16] develop LSTM-based controllers
and implement offline optimization techniques to train the
weights of the LSTM based on some loss function. While
these offline optimization techniques have been successfully
implemented in empirical studies, they often require large,
sufficiently rich data sets for training, and when used offline,
are not able to adjust to disturbances in real-time due to
the lack of sustained learning. In contrast to offline learning
techniques, real-time stability-driven methods consider data
online in a closed-loop implementation and provide stability
guarantees. While previous results develop Lyapunov-derived
adaptation laws for some of the weights of a simplified LSTM
cell structure, they employ offline optimization techniques to
train the remaining weights [15]. Thus, deriving Lyapunov-
based adaptation laws for LSTMs remains an open problem.

In this paper, an adaptive LSTM controller is developed for
general Euler-Lagrange systems, where the adaptation law is
derived from Lyapunov-based methods (hence, we refer to the
architecture as Lb-LSTM). Specifically, a continuous-time Lb-
LSTM NN is constructed and implemented in the controller
as a feedforward term to adaptively estimate uncertain model
dynamics. Despite the technical challenges posed by the com-
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plexity of the LSTM cell structure, stability-driven adaptation
laws adjust the Lb-LSTM weights in real-time and allow
the developed architecture to adapt to system uncertainties
without any offline training requirements. A Lyapunov-based
stability analysis is performed to guarantee uniform ultimate
boundedness (UUB) of the tracking errors and LSTM state and
weight estimation errors. To demonstrate the performance of
the adaptive Lb-LSTM controller, simulations were performed
and compared to the adaptive DNN-based controller in [2]
using three different DNN architectures. The simulation results
indicate significant improvements in tracking and function
approximation performance when compared to various feed-
forward DNN architectures.

Notation and Preliminaries

An n × n-dimension identity matrix is denoted by In ∈
Rn×n. The Hadamard (element-wise) and Kronecker products
are denoted by � and ⊗, respectively. The function composi-
tion operator is denoted by ◦, i.e., given appropriate functions
f (·) and g (·), f ◦ g (x) = f (g (x)). The vectorization
operator is denoted by vec (·), i.e., given A , [ai,j ] ∈
Rn×m, vec (A) , [a1,1, . . . , a1,m, . . . , an,1, . . . , an,m]>. The
Hadamard product satisfies the following properties [22, Def-
inition 9.3.1]. Given any a, b ∈ Rn, a � b = Dab and
therefore, ∂

∂b (a� b) = Da, where Da ∈ Rn×n denotes a
diagonal matrix with the vector a as its main diagonal. The
vectorization operator satisfies the following properties [22,
Proposition 7.1.9]. Given any A ∈ Rn×m, B ∈ Rm×p, and
C ∈ Rp×r, vec (ABC) =

(
C> ⊗A

)
vec (B) , and therefore

∂
∂vec(B)vec (ABC) =

(
C> ⊗A

)
.

II. SYSTEM DYNAMICS AND CONTROL OBJECTIVE

Consider a general uncertain Euler-Lagrange system mod-
eled as

M (q) q̈ + Vm (q) q̇ + F (q̇) +G (q) = τ, (1)

where q, q̇, q̈ ∈ Rn denote the generalized position, veloc-
ity, and acceleration, respectively, and M : Rn → Rn×n,
Vm : Rn×Rn → Rn×n, G : Rn → Rn, F : Rn → Rn×n, and
τ : R≥0 → Rn denote unknown, continuous generalized iner-
tial effects, generalized centripetal-Coriolis effects, generalized
vector of potential forces, generalized dissipation effects, and
the control input, respectively. The model dynamics in (1)
satisfy the following property.

Property 1. The inertial and centripetal-Coriolis effects satisfy
ξ>
(
Ṁ (q)− 2Vm (q, q̇)

)
ξ = 0 for all q, q̇, ξ ∈ Rn.

The control objective is to design an adaptive Lb-LSTM
controller to achieve UUB tracking of a desired trajectory qd ∈
Rn. To quantify the control objective, a tracking error e ∈ Rn
and an auxiliary tracking error r ∈ Rn are defined as

e , qd − q, (2)

r , ė+ αe, (3)

respectively, where α ∈ R>0 denotes a user-selected con-
stant. The desired trajectory qd is designed to be sufficiently

Fig. 1. LSTM model in (5), where the green box represents the LSTM cell.

smooth, i.e., qd, q̇d, q̈d can be bounded as ‖qd‖ ≤ qd, ‖q̇d‖ ≤
q̇d, ‖q̈d‖ ≤ q̈d, where qd, q̇d, q̈d ∈ R>0 denote known constants
and q̇d ∈ Rn and q̈d ∈ Rn denote the first and second time-
derivatives of qd, respectively.

Taking the time-derivative of (3), multiplying by M (q), and
using (1) and (2) yields

M (q) ṙ = g (x)− τ − Vm (q, q̇) r, (4)

where x , [q>, q̇>, q>d , q̇
>
d , q̈

>
d ]> ∈ R5n denotes a concate-

nated vector and the function g (x) ∈ Rn denotes the unknown
system dynamics defined as g (x) , M (q) (q̈d + αė) +
Vm (q, q̇) (q̇d + αe) + F (q̇) +G (q).

III. CONTROL DEVELOPMENT

Long short-term memory (LSTM) NNs have grown in recent
popularity due to their ability to leverage both long-term and
short-term dependencies in time sequences for faster learning
and improved performance. This motivates the development of
an LSTM-based controller that can estimate and compensate
for the unknown model dynamics in (4). Based on the design
of continuous-time RNNs [23] and using Euler’s method, an
LSTM NN (see Fig. 1) can be modeled in continuous-time as
[21]12

f (z,Wf ) = σg ◦W>f z, i (z,Wi) = σg ◦W>i z,
o (z,Wo) = σg ◦W>o z, c∗ (z,Wc) = σc ◦W>c z,
ċ = −bcc+ bcΨc (x, c, h, θ) ,

ḣ = −bhh+ bhΨh (x, c, h, θ,Wo) , (5)

where bc, bh ∈ R>0 denote user-selected constants and c ∈ Rl2
and h ∈ Rl2 denote the cell state and hidden state, respectively,
where h (0) = c (0) = 0 and l2 ∈ R>0 denotes the number
of neurons. The concatenated state vector z ∈ Rl1 is defined
as z , [x>, h>, 1]>, where x ∈ R5n denotes the LSTM input
and l1 , 5n + l2 + 1. The state z is augmented with a 1 to
incorporate a bias term. The forget gate, input gate, cell gate,
and output gate are denoted by f (z,Wf ) ∈ Rl2 , i (z,Wi) ∈

1The LSTM cell architecture developed in [21] is in discrete-time and is
converted to a continuous-time model in (5) to make it more appropriate for
controlling a continuous-time system. The gains bc and bh in (5) are a result of
constructing a continuous-time model and can be tuned accordingly to enhance
the performance of the continuous-time LSTM.

2Like the hidden state h, the cell state c is passed from one time step to
the next. The gate output c∗ (typically referred to as c̃ in literature) is not
passed to the next time step and represents the output of one of the internal
gates within the LSTM cell.
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Rl2 , c∗ (z,Wc) ∈ Rl2 , and o (z,Wo) ∈ Rl2 , respectively.
The sigmoid and tanh activation functions are denoted by
σg : Rl2 → Rl2 and σc : Rl2 → Rl2 , respectively, and the
weight matrices are denoted by W>f ,W

>
c ,W

>
i ,W

>
o ∈ Rl2×l1 ,

where θ , [W>c ,W
>
i ,W

>
f ]> ∈ Rl2×3l1 . The functions

Ψc (x, c, h, θ) ∈ Rl2 and Ψh (x, c, h, θ,Wo) ∈ Rl2 are defined
as Ψc (x, c, h, θ) , f (z,Wf ) � c + i (z,Wi) � c∗ (z,Wc)
and Ψh (x, c, h, θ,Wo) , o (z,Wo) � (σc ◦Ψc (x, c, h, θ)),
respectively. To ensure the output of the LSTM has the
appropriate dimensions, a fully-connected layer is added to
the LSTM cell. To add generality to the LSTM model, a feed-
forward component is added to the output of the LSTM. The
resulting LSTM model allows for a direct transmission of the
input information through the feedforward component while
leveraging the internal memory capabilities of LSTMs. Thus,
the output of the LSTM Φ (x, c, h, θ,Wo,Wh,WFF ) ∈ Rn
can be modeled as

Φ = W>h
(
Ψh (x, c, h, θ,Wo) + σ ◦W>FFx

)
, (6)

where σ : Rl2 → Rl2 denotes a vector of smooth activation
functions and W>h ∈ Rn×l2 and W>FF ∈ Rl2×5n denote the
output weight matrix and weight matrix of the feedforward
NN component, respectively.

The universal function approximation property states that the
function space of (5) is dense in C (Z), where C (Z) denotes
the space of continuous functions over the set Z ⊆ Rl1 , where
z ∈ Z [24, Theorem 1.1]3. Therefore, for any prescribed ε ∈
R>0, there exist ideal weight matrices W>c , W

>
i , W

>
f W>o ,

W>h , and W>FF such that the system dynamics g (x) can be
modeled using the LSTM architecture in (5) as

g (x) = Φ (x, c, h, θ,Wo,Wh,WFF ) + ε (x) . (7)

It is assumed that there exists a known constant W ∈ R>0

such that the ideal weights can be bounded as ‖Wj‖F ≤ W
for all j ∈ {c, i, f, o, h, FF} [2].

To compensate for the unknown LSTM model dynamics
in (5), auxiliary cell and hidden state estimation errors are
introduced in this section. The auxiliary cell and hidden state
estimation errors c̃ ∈ Rl2 and h̃ ∈ Rl2 are defined as

c̃ , c− ĉ+ ηc, (8)

h̃ , h− ĥ+ ηh, (9)

respectively, where ĉ ∈ Rl2 and ĥ ∈ Rl2 denote the estimated
cell state and hidden state, respectively, and ηc ∈ Rl2 and
ηh ∈ Rl2 are designed as

η̇c , −k1,cηc −K2,cr, (10)

η̇h , −k1,hηh −K2,hr, (11)

where k1,c, k1,h ∈ R>0 denote user-selected constants and
K2,c,K2,h ∈ Rl2×n denote user-selected matrices.

The following lemma establishes boundedness properties of
the cell state and hidden state of the LSTM model in (5), which
is essential for the ensuing development.

3Since the subspace of LSTMs in (6) involving the feedforward term
W>h σ ◦W

>
FF x is dense in C (Z), the space of LSTMs is also dense.

Lemma 1. Consider the LSTM model in (5). The hidden state
h and cell state c can be bounded as

‖h‖ ≤ bh
√
l2√

2
(
bh − 1

2

) , ‖c‖ ≤ √
l2√

2
(
bc − bc

√
l2 − 1

2

) .
Proof: Consider the hidden state dynamics in (5), where

the input Ψh can be bounded as ‖Ψh‖ ≤
√
l2 by design

of the sigmoid and tanh activation functions. Consider the
candidate Lyapunov function Vh : Rl2 → R≥0 defined as
Vh (h) , 1

2h
>h. Taking the derivative, using (5), bound-

ing, and applying the Gronwall inequality yields Vh ≤
Vh (h (t0)) exp

(
−2
(
bh − 1

2

)
(t− t0)

)
+

b2hl2

4(bh− 1
2 )
. Therefore,

provided bh ≥ 1
2 , initializing h as h (t0) = 0 yields

‖h‖ ≤ bh
√
l2√

2(bh− 1
2 )
. Similarly, to prove boundedness of the

cell state c, consider the candidate Lyapunov function Vc :
Rl2 → R≥0 defined as Vc = 1

2c
>c. By design of the

sigmoid and tanh activation functions, ‖f‖ ≤
√
l2 and

‖i� c∗‖ ≤
√
l2. Taking the derivative of the candidate

Lyapunov function, substituting the cell state dynamics in
(5), bounding, and applying the Gronwall inequality yields
Vc(c(t)) ≤ Vc (c (t0)) exp

(
−2
(
bc − bc

√
l2 − 1

2

)
(t− t0)

)
+

l2
4(bc−bc

√
l2− 1

2 )
. Therefore, provided bc ≥ 1

2(1+
√
l2)

, initializ-

ing c as c (t0) = 0 yields ‖c‖ ≤
√
l2√

2(bc−bc
√
l2− 1

2 )
.

A. Control Design

Let the adaptive estimates of the LSTM weights be de-
noted as θ̂ , [Ŵ>c , Ŵ

>
i , Ŵ

>
f ]> ∈ R3l1×l2 , Ŵ>o ∈ Rl2×l1 ,

Ŵ>h ∈ Rn×l2 , and Ŵ>FF ∈ Rl2×5n. Based on the adaptive
weight estimates, an Lb-LSTM adaptive feedforward term
Φ̂ , Φ

(
x, ĉ, ĥ, θ̂, Ŵo, Ŵh, ŴFF

)
is constructed and the

control input is designed as

τ , Φ̂ + krr −K2,cηc −K2,hηh + e, (12)

where kr, ks ∈ R>0 denote user-selected constants. Substitut-
ing the LSTM model in (7) and the control input in (12) into
(4) yields the closed-loop error system

M (q) ṙ = Φ̃ + je + ε (x)− Vm (q, q̇) (r)

− krr +K2,cηc +K2,hηh − e, (13)

where the function je (x, c, h, θ,Wo,Wh) ∈ Rn
is defined as je , Φ (x, c, h, θ,Wo,Wh,WFF ) −
Φ
(
x, ĉ, ĥ, θ,Wo,Wh,WFF

)
.

B. Weight Adaptation Laws
Using the LSTM model in (5), the estimated cell state ĉ and

estimated hidden state ĥ evolve according to

˙̂c = −bcĉ+ bc
(
f
(
ẑ, Ŵf

)
� c+ i

(
ẑ, Ŵi

)
� c∗

(
ẑ, Ŵc

))
, (14)

˙̂
h = −bhĥ+ bh

(
o
(
ẑ, Ŵo

)
� σc ◦Ψc

(
x, ĉ, ĥ, θ̂

))
, (15)

respectively, where ẑ , [x>, ĥ>, 1]> : R≥0 → Rn+l2+1 de-
notes the augmented input of the LSTM estimate. To facilitate
the subsequent stability analysis, let the shorthand notations
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Ψ̃c ∈ Rl2 and Ψ̃h ∈ Rl2 be defined as Ψ̃c , Ψc

(
x, ĉ, ĥ, θ

)
−

Ψ̂c, and Ψ̃h , Ψh

(
x, ĉ, ĥ, θ,Wo

)
− Ψ̂h, respectively, where

Ψ̂c , Ψc

(
x, ĉ, ĥ, θ̂

)
and Ψ̂h , Ψh

(
x, ĉ, ĥ, θ̂, Ŵo

)
. Taking

the derivative on both sides of (8) and (9) and substituting in
the LSTM model in (5) and the auxiliary error dynamics in
(10) and (11) yields

˙̃c = −bcc̃+ bcΨ̃c + ge + η̇c, (16)
˙̃
h = −bhh̃+ bhΨ̃h + fe + η̇h, (17)

where the functions fe

(
x, c̃, h̃, θ,Wo

)
∈ Rl2

and ge

(
x, c̃, h̃, θ

)
∈ Rl2 are defined as fe ,

bhΨh (x, c, h, θ,Wo) − bhΨh

(
x, ĉ, ĥ, θ,Wo

)
and

ge , bcΨc (x, c, h, θ) − bcΨc

(
x, ĉ, ĥ, θ

)
, respectively.

Furthermore, let Φ̃ , Φ
(
x, ĉ, ĥ, θ,Wo,Wh

)
− Φ̂. Based on

the subsequent stability analysis, the weight adaptation laws
are designed as4

vec
(

˙̂
θ
)
, projθ

(
Γθ

(
bcΨ̂
′>
c ηc + bhΨ̂′>h,θηh + Φ̂′>θ r − γθvec

(
θ̂
)))

,

vec
(

˙̂
W o

)
, projW1

(
Γo
(
bhΨ̂′>h,Woηh + Φ̂′>Wor − γovec

(
Ŵo

)))
,

vec
(

˙̂
Wh

)
, projW2

(
Γh

(
Φ̂′>Whr − γhvec

(
Ŵh

)))
,

vec
(

˙̂
WFF

)
, projW3

(
ΓFF Φ̂′>WFF r − γFF vec

(
ŴFF

))
, (18)

where γθ, γo, γh, γFF ∈ R>0 denote user-selected constants,
Γθ ∈ R3l1l2×3l1l2 , Γo ∈ Rl1l2×l1l2 , Γh ∈ Rl2n×l2n, and
ΓFF ∈ R5l2n×5l2n denote user-selected positive-definite gain
matrices, the short-hand notations Ψ̂′c, Ψ̂′h,θ, Ψ̂′h,Wo

, Φ̂′θ, Φ̂′Wo
,

Φ̂′Wh
, and Φ̂′WFF

denote the Jacobians Ψ̂′c ,
∂Ψ̂c

∂vec(θ̂)
, Ψ̂′h,θ ,

∂Ψ̂h
∂vec(θ̂)

, Ψ̂′h,Wo
, ∂Ψ̂h

∂vec(Ŵo)
, Φ̂′θ , ∂Φ̂

∂vec(θ̂)
, Φ̂′Wo

, ∂Φ̂

∂vec(Ŵo)
,

Φ̂′Wh
, ∂Φ̂

∂vec(Ŵh)
, and Φ̂′WFF

, ∂Φ̂

∂vec(ŴFF )
, respectively,

and proj(·) denotes the projection operator defined in [25,
Appendix E, Eq. E.4]. The projection operators projθ (·),
projW1

(·) , projW2
(·), and projW2

(·) in (18) are used to ensure
θ̂ (t) ∈ Bθ , {ς ∈ R3l1l2 : ‖ς‖ ≤

√
3W}, Ŵo (t) ∈ BW1

,
{ς ∈ Rl1l2 : ‖ς‖ ≤ W}, Ŵh (t) ∈ BW2

, {ς ∈ Rl2n :

‖ς‖ ≤ W}, and ŴFF (t) ∈ BW3
, {ς ∈ R5nl2 : ‖ς‖ ≤ W},

respectively.
The Jacobians Ψ̂′c, Ψ̂′h,θ, and Φ̂′θ can be represented as

Ψ̂′c , [Ψ̂′c,Wc
, Ψ̂′c,Wi

, Ψ̂′c,Wf
], Ψ̂′h,θ , [Ψ̂′h,Wc

, Ψ̂′h,Wi
, Ψ̂′h,Wf

],

and Φ̂′θ , [Φ̂′Wc
, Φ̂′Wi

, Φ̂′Wf
], respectively, where Ψ̂′c,Wj

,
∂Ψ̂c

∂vec(Ŵj)
, Ψ̂′h,Wj

, ∂Ψ̂h
∂vec(Ŵj)

, and Φ̂′Wj
, ∂Φ̂

∂vec(Ŵj)
for

all j ∈ {c, i, f}. Using (5), (14), (15), the chain rule, the
properties of the Hadamard product, and the properties of

4The terms ηc and ηh are introduced and implemented in the auxiliary cell
and hidden state estimation errors c̃ and h̃ to allow the weight adaptation
laws in (18) to adaptively compensate for the uncertainty in the internal
dynamics inherent in the LSTM cell through the terms bcΨ̂′>c ηc, bhΨ̂′>h,θηh,
and bhΨ̂′>h,Woηh.

vectorization, the terms Ψ̂′c,Wc
, Ψ̂′c,Wi

, and Ψ̂′c,Wf
can be

expressed as

Ψ̂′c,Wc = diag
(
σg
(
Ŵ>i ẑ

))
σ′c

(
W>c ẑ

)(
Il2 ⊗ ẑ

>
)
,

Ψ̂′c,Wi = diag
(
σc
(
Ŵ>c ẑ

))
σ′g

(
W>i ẑ

)(
Il2 ⊗ ẑ

>
)
,

Ψ̂′c,Wf = diag (ĉ)σ′g

(
Ŵ>f ẑ

)(
Il2 ⊗ ẑ

>
)
, (19)

respectively. Similarly, using (19), the terms Ψ̂′h,Wj
and Ψ̂′h,Wo

can be expressed as

Ψ̂′h,Wj
= diag

(
σg

(
Ŵ>o ẑ

))
σ′c

(
Ψ̂c

)
Ψ̂′c,Wj

,

Ψ̂′h,Wo
= diag

(
σc

(
Ψ̂c

))(
σ′g

(
Ŵ>o ẑ

)) (
Il2 ⊗ ẑ>

)
, (20)

for all j ∈ {c, i, f}, respectively. Using (6) and the chain
rule, the Jacobians Φ̂′Wj

, Φ̂′Wo
, Φ̂′Wh

, and Φ̂′WFF
can be

expressed as Φ̂′Wj
= Ŵ>h Ψ̂′h,Wj

, Φ̂′Wo
= Ŵ>h Ψ̂′h,Wo

, Φ̂′Wh
=

In ⊗ Ψ̂>h , and Φ̂′WFF
= Ŵ>h σ

′
(
Ŵ>FFx

) (
Il2 ⊗ x>

)
, for all

j ∈ {c, i, f}, respectively. NNs such as the LSTM model in
(5) are nonlinear in terms of the weights. Moreover, the LSTM
model has added complexity due to the three gate units present
in the cell architecture. To address the resulting mathematical
challenges, a first-order Taylor Series approximation-based
error model of the LSTM in (5) and (6) is given by

Ψ̃c = Ψ̂′cvec
(
θ̃
)

+O2
c

(
θ̃
)
,

Ψ̃h = Ψ̂′h,Wovec
(
W̃o

)
+ Ψ̂′h,θvec

(
θ̃
)

+O2
h

(
θ̃, W̃o

)
,

Φ̃ = Φ̂′Whvec
(
W̃h

)
+ Φ̂′WFF vec

(
W̃FF

)
+ Φ̂′Wovec

(
W̃o

)
+ Φ̂′θvec

(
θ̃
)

+O2
Φ

(
θ̃, W̃o, W̃h, W̃FF

)
, (21)

where O2
c

(
θ̃
)

∈ Rl2 , O2
h

(
θ̃, W̃o

)
∈ Rl2 , and

O2
Φ

(
θ̃, W̃o, W̃h, W̃FF

)
∈ Rn denotes the higher-order terms.

Using Lemma 1, the higher-order terms can be bounded as∥∥∥O2
c

(
θ̃
)∥∥∥ ,∥∥∥O2

h

(
θ̃, W̃o

)∥∥∥ ,∥∥∥O2
Φ

(
θ̃, W̃o, W̃h, W̃FF

)∥∥∥ ≤ O,
where O ∈ R>0 denotes a known constant.

IV. STABILITY ANALYSIS

To facilitate the subsequent stability analysis, let
the concatenated state vector ζ : R≥0 → Rψ
and constant κ ∈ R>0 be defined as ζ ,
[e>, r>, η>c , c̃

>, η>h , h̃
>, vec(θ̃)>, vec(W̃h)>, vec(W̃o)

>,

vec(W̃FF )>]> and κ , min{ bc2 − k1,c
2 −

‖K2,c‖F
2 , bh2 − k1,h

2 − ‖K2,h‖F
2 , kr2 − ‖K2,c‖F

2 −
‖K2,h‖F

2 ,
k1,c

4 ,
k1,h

4 , γθ, γh, γFF , γo, α}, respectively, where
ψ , 2n + 4l2 + 4l1l2 + 6nl2. Additionally, let the
auxiliary function Ñ : Rψ → R be defined as
Ñ , r>je + c̃>ge + h̃>fe + bcΨ̂

′
cvec

(
θ̃
)
> (c− ĉ) +(

bhΨ̂′h,Wo
vec
(
W̃o

)
+ bhΨ̂′h,θvec

(
θ̃
))
>
(
h− ĥ

)
, where Ñ

represents a group of terms that appear in the subsequent
stability analysis. Applying the mean value theorem-
based inequality [26, Appendix A] on the terms r>je,
c̃>ge, and h̃>fe, and bounding ‖r‖, ‖c̃‖,

∥∥∥h̃∥∥∥, and

‖z‖ terms with ‖ζ‖, the auxiliary function Ñ can be
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bounded as
∥∥∥Ñ∥∥∥ ≤ ρ (‖ζ‖) ‖ζ‖2, where ρ (·) denotes

an invertible, strictly non-increasing function. Let the
open and connected sets D ⊂ Rψ and Υ ⊆ Z be
defined as D ,

{
ς ∈ Rψ : ‖ς‖ <

√
β1

β2
ρ−1 (κ− λ)

}
and

Υ = {ς ∈ Z : ‖ς‖ < z} , respectively, where λ ∈ R>0 denotes

a user-selected constant, δ , (O2+ε)
2

2kr
+

(2bcO2)
2

k1,c
+

(2bhO2)
2

k1,h
+

(bcO2)
2

2bc
+

(bhO2)
2

2bh
+ 6γθW + 2 (γh + γo + γFF )W

2
, and

z , (2 + α)ω + 2qd + 2q̇d + q̈d +
√
l2√

2(bh− 1
2 )

+ 1. The

developed adaptive LSTM-based architecture in (12) and (18)
is shown to be uniformly ultimately bounded (UUB) in the
following theorem.

Theorem 1. Consider the model dynamics in (1) with Property
1. The Lb-LSTM controller in (12) and the weight adaptation
laws in (18) ensure the states ζ are UUB in the sense that

‖ζ‖ ≤
√

β2

β1
‖ζ (t0)‖2 e−

λ
β1

(t−t0) + δ
λ

(
1− e−

λ
β1

(t−t0)
)

provided the sufficient gain conditions κ ≥
λ + ρ

(√
β2

β1

(
‖y(t0)‖+ 2

√
l2 + 6W + 6W

2
))

,

bh ≥ 1
2 , bc ≥ 1

2(1+
√
l2)

are satisfied, where

y ,
[
e>, r>, η>c , η

>
h

]>
, β1 , λmin{1,Γ

−1

θ ,Γ
−1

o ,Γ
−1

FF ,Γ
−1

h }
and β2 , λmax{1,Γ

−1

θ ,Γ
−1

o ,Γ
−1

FF ,Γ
−1

h }.

Proof: Consider the Lyapunov candidate function VL :
Rψ → R≥0

VL (ζ) ,
1

2
η>c ηc +

1

2
η>h ηh +

1

2
c̃>c̃+

1

2
h̃>h̃+

1

2
e>e+

1

2
r>Mr

+
1

2
vec
(
W̃h

)>
Γ

−1

h vec
(
W̃h

)
+

1

2
vec
(
W̃o

)>
Γ

−1

o vec
(
W̃o

)
+

1

2
vec
(
θ̃
)>

Γ
−1

θ vec
(
θ̃
)

+
1

2
vec
(
W̃FF

)>
Γ

−1

h vec
(
W̃FF

)
,

(22)

which can be bounded as β1 ‖ζ‖2 ≤ VL (ζ) ≤ β2 ‖ζ‖2 . Sub-
stituting (2), (3), (13), (16), and (17) into the time derivative
of VL and canceling cross-terms yields

V̇L = −αe>e− krr>r − k1,cη
>
c ηc − k1,hη

>
h ηh + h̃> (fe + η̇h)

− h̃>
(
bhh̃− bhΨ̃h

)
− c̃>

(
bcc̃− bcΨ̃c − ge − η̇c

)
+ r>

(
Φ̃ + je + ε (xd)

)
− vec

(
W̃o

)>
Γ

−1

o vec
(

˙̂
W o

)
− vec

(
W̃h

)>
Γ

−1

h vec
(

˙̂
Wh

)
− vec

(
θ̃
)>

Γ
−1

θ vec
(

˙̂
θ
)

− vec
(
W̃FF

)>
Γ

−1

FF vec
(

˙̂
WFF

)
. (23)

Using [25, Lemma E.1.IV], −Ṽ >Γ−1proj (κ) ≤ −Ṽ >Γ−1κ,
where the estimation error Ṽ ∈ Rm is defined as Ṽ , V − V̂
for some V, V̂ ,∈ Rm such that ‖V ‖ ≤ V and proj (·)
ensures V̂ (t) ∈ BV , {ς ∈ Rm : ‖ς‖ ≤ V }, where
V ∈ R>0 denotes a known constant. Therefore, substituting
in (10) and (11), the weight adaptation laws in (18), the first
order Taylor series approximation in (21), and the definition
of Ñ , and using the facts that Ψ̃>c c̃ = Ψ̃>c (c− ĉ+ ηc) and

Ψ̃>h h̃ = Ψ̃>h

(
h− ĥ+ ηh

)
, yields

V̇L ≤ −αe>e− krr>r − bcc̃>c̃− bhh̃>h̃− k1,cη
>
c ηc − k1,hη

>
h ηh

+ r>
(
O2
(
θ̃, W̃o, W̃h, W̃FF

)
+ ε (x)

)
+ bhηhO2

(
θ̃, W̃o

)
− c̃> (k1,cηc +K2,cr)− h̃>

(
k1,hηh +K2,hr

)
+ bcηcO2

(
θ̃
)

+ bcO2
(
θ̃
)>

(c− ĉ) + bhO2
(
θ̃, W̃o

)> (
h− ĥ

)
+ Ñ

− vec
(
θ̃
)> (

−γθvec
(
θ̂
))
− vec

(
W̃o

)> (
−γovec

(
Ŵo

))
+ γhvec

(
W̃h

)T
vec
(
Ŵh

)
+ γFF vec

(
W̃FF

)>
vec
(
ŴFF

)
.

(24)

Using Young’s inequality and the facts that
∥∥∥Ñ∥∥∥ ≤

ρ (‖ζ‖) ‖ζ‖2, θ̂ = θ − θ̃, Ŵo = Wo − W̃o, ŴFF =

WFF − W̃FF , and Ŵh = Wh − W̃h, (24) can be
bounded as V̇L ≤ − (κ− ρ (‖ζ‖)) ‖ζ‖2 + δ. From (22),
‖ζ‖ ≤

√
VL
β1

, and therefore V̇L can be bounded as V̇L ≤

−
(
κ− ρ

(√
VL
β1

))
VL
β1

+δ. Selecting κ according to Theorem

1 ensures ‖ζ(t0)‖ is bounded as ‖ζ(t0)‖ <
√

β1

β2
ρ−1 (κ− λ).

Thus, when all trajectories are initialized in D, V̇L can
be further bounded as V̇L ≤ − λ

β1
VL + δ, which implies

VL(t) ≤ VL(t0)e−
λ
β1

(t−t0) + δβ1

λ (1− e−
λ
β1

(t−t0)). Then, [27,
Def. 4.6] can be invoked to conclude that ζ is UUB such that

‖ζ‖ ≤ µ ,

√
β2

β1
‖ζ (t0)‖2 e−

λ
β1

(t−t0) + δ
λ

(
1− e−

λ
β1

(t−t0)
)

.

To show z ∈ Z , and therefore the universal function ap-
proximation property holds, let ξ , [e>, r>]> and let ω =

ρ−1(κ−λ). Thus, if ‖ζ (t0)‖ ≤ ω
√

β1

β2
, then ‖ξ (t)‖ ≤ ω, and

therefore ‖e (t)‖ ≤ ω and ‖r (t)‖ ≤ ω. Hence, using (2), (3),
and Lemma 1, ‖z‖ can be bounded as ‖z‖ ≤ (2 + α)ω+2qd+

2q̇d+q̈d+
√
l2√

2(bh− 1
2 )

+1 provided the sufficient gain conditions

bh ≥ 1
2 , bc ≥ 1

2(1+
√
l2)

are met for Lemma 1 to hold.

Therefore, if ζ (t0) ∈ D, then z ∈ Υ ⊆ Z . Since ζ ∈ L∞,
q, q̇ ∈ L∞. That and the fact that ĉ, ĥ, θ̂, Ŵo, Ŵh, ŴFF ∈ L∞
by design imply τ ∈ L∞.

V. SIMULATIONS

To demonstrate the performance and efficacy of the devel-
oped Lb-LSTM control design, simulations were performed on
the two-link robot manipulator model in [26, Eqn. (80)]. To
demonstrate the advantages of using the Lb-LSTM architecture
instead of a feedforward DNN architecture in the adaptive
controller, the results are compared with the DNN-based adap-
tive controller developed in [2] as the baseline. The baseline
adaptive DNN-based controller in [2] is τ , Φ̂DNN +krr+e,
where the DNN estimate Φ̂DNN was updated according to
the weight adaptation laws defined in [2, Eqns. (7)-(8)]. The
LSTM model in (5) was used with tanh activation functions
for the feedforward term and l2 = 12 neurons and was
compared to 3 baseline fully-connected DNN architectures,
DNN1, DNN2, and DNN3, with 1, 2, and 5 hidden layers each,
respectively, with tanh activation functions. DNN1 and DNN2
had 12 neurons in each layer and DNN3 had 14 neurons. The
weights of all NNs were randomly initialized with a uniform
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distribution with values ranging between -1 and 1. The gains
were selected as α = 15, kr = 50, k1,c = 5, k1,h = 5, K2,c =

0.1 · [I2 02×10]
>, K2,h = 0.1 · [I2 02×10]

>, bc = 5, bh = 1,
Γθ = 40·I3l1l2 , Γo = 40·Il1l2 , Γh = 40·Il2n, ΓFF = 40·I5l2n,
and γθ = γo = γh = γFF = 0.01 for the adaptive LSTM
controller. For the baseline controllers, the gains were selected
as α = 15, kr = 50, and Γj = 24 · ILjLj+1 ∀j ∈ {0, ..., k}.
For a fair comparison, the same robust control gains were used
for each controllers. The NN gains and parameters (e.g., the
learning gains and activation functions) were empirically ad-
justed to achieve the best performance for each network. For all
simulations, the desired trajectory qd (t) , [qd,1, qd,2]

> ∈ R2

was selected as qd ,

[
π
3 sin

(
π
4 t
)

π
2 sin

(
π
2 t
) ] ∈ R2 [rad], and the

simulations were performed for 25 s with the initial conditions
q (0) = [1.0472,−0.5236]

> [rad] and q̇ (0) = [0, 0]
> [rad/s].

Although all four adaptive NN architectures compensated
for the uncertainty in the dynamics and achieved tracking, the
LSTM provided improved tracking performance with a signifi-
cant improvement in both function approximation performance
and control effort, when compared to the feedforward NN
architectures (see Table I). Moreover, the LSTM provided
twofold and fourfold faster tracking and function approxi-
mation error convergence, respectively, compared to DNN3
with better transient behavior. When compared to the adaptive
controller DNN3, the LSTM-based controller and developed
weight adaptation law resulted in 25.1343% and 68.3541%
improvement in the tracking error and function approximation
error, respectively, while requiring 33.6015% reduced control
effort, as shown in Table I.

TABLE I
PERFORMANCE COMPARISON RESULTS

NN Architecture ‖e‖[deg]
∥∥∥g (x)− Φ̂

∥∥∥ ‖τ‖[N·m]
DNN1 0.6374 36.4609 33.3563
DNN2 0.6360 22.2069 19.5852
DNN3 0.5302 11.8436 9.2579
LSTM 0.3970 3.7480 6.1471

VI. CONCLUSIONS

An adaptive LSTM-based controller was developed for
general uncertain Euler-Lagrange systems. Leveraging the
dynamic structure and internal memory inherent in LSTMs,
the developed Lb-LSTM architecture is able to leverage time
dependencies in the system dynamics and capture time-varying
accumulative effects in the system dynamics that static, feed-
forward NNs cannot. Unlike traditional RNNs, the cell struc-
ture of LSTMs allows the LSTM to retain relevant information
across longer time sequences. Stability-driven weight adapta-
tion laws are developed for the Lb-LSTM weights in real-
time, eliminating the need for offline pre-training. A Lyapunov-
based stability analysis is performed and guarantees UUB
for the tracking errors, LSTM estimation errors, and weight
estimation errors. To validate the developed adaptive LSTM-
based controller, simulations were performed to compare the
developed method to the adaptive DNN-based controller in
[2] and yielded twofold and fourfold faster tracking error and
function approximation error convergence, respectively, when
compared to a baseline DNN architecture of a similar size.
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