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Abstract— Decision-making individuals are often considered
to be either imitators who copy the action of their most suc-
cessful neighbors or best-responders who maximize their benefit
based on the frequency of their neighbors. In the context of
coordination games, where individuals earn more if they take the
same action as those of their neighbors, by means of potential
functions, it was shown that populations of all imitators and
populations of all best-responders equilibrate in finite time
when they become active to update their decisions sequentially.
However, for mixed populations of the two, the equilibration
was shown only for specific finite activation sequences. It is
therefore, unknown, whether a potential function also exists
for mixed populations or if there actually exists a counter
example where an activation sequence prevents the population
from reaching an equilibrium. We show that the number of
consecutive individuals who have taken the same action in a path
network serves as a potential function, leading to equilibration,
and that this result can be extended to sparse trees. The
existence of a potential function for other types of networks
remains an open problem.

I. INTRODUCTION

Evolutionary game theory has been successfully applied in
different applications ranging from cancer and epidemiology
to finance and rumour propagation [1]–[4]. In the context of
decision-making, individuals are modeled as game-playing
agents who choose from a number of available strategies and
accordingly earn payoffs against their matched opponents.
The agents revise their decisions according to some update
rules, the most common being (myopic) best-response and
imitation. An agent following best-response, called a best-
responder, chooses the strategy that maximizes its payoff
against its neighbors given that they would not change their
strategies. On the other hand, an agent following imitation,
known as an imitator simply imitates a neighbor with a
higher payoff. The wide use of best response by human
has been confirmed in experimental studies [5]. Similarly,
imitation behavior emerges in several real-world scenarios,
such as the supervisor’s role in “sweethearting behavior”
among employees [6], the role of imitation in building
cultural intelligence [7], and training language models [8].

Researchers have explored the existence and convergence
towards an equilibrium point in both imitation and best-
response dynamics [9]–[12]. In the anti-coordination context
where the highest-earning decision is the opposite of the
opponent’s, a population of best-responders converges to
an equilibrium state [13]. The same situation is true for a
population of best-responders in the coordination context,
where the highest-earning strategy matches the opponent’s
[13]. The convergence to an equilibrium is, however, guar-
anteed only for a coordination population of imitators [14,
Theorem 1]. All of these studies used a potential function to

prove equilibrium convergence. Clearly, a mixed population
of imitators and best-responder may not equilibrate and
undergo perpetual fluctuations. The outcome is known for
the anti-coordination case: equilibration takes place if and
only if there exists an equilibrium [15]. What about a mixed
population of imitators and best-responders in the coordi-
nation context? The existence of an activation sequence
was established in [16] that would drive any such mixed
population to an equilibrium state. It however remains open
whether a potential function exists for such populations, or
if there is a counter example where an activation sequence
can prevent a mixed population from equilibration.

We start tackling this problem for the simple path network
and find that the number of so-called sections (consecutive
number of same-strategy playing agents) serves as a potential
function. We then extend the results to a ring network. Next,
we proceed to starlike networks that is a tree with only
one agent with a degree greater than two, which has several
“branches.” We show that there always exists a branch where
the number of sections in that branch will again be a potential
function, leading to the convergence of starlikes. Finally, we
generalize the idea to sparse tree networks that are trees,
where the distance between each two branching nodes is at
least three.

II. MODEL

Consider an undirected network G over a finite set N =
{1, 2, . . . , n} of agents who decide between strategies A and
B over time t = 0, 1, 2, . . .. For each agent i ∈ N , the
network defines a set of neighbors Ni ⊆ N \ {i} that are
linked to agent i. At every time step, each agent i ∈ N plays
a two-player coordination game with each of its neighbors
j ∈ Ni and earns a payoff according to their strategies and
its payoff matrix

πij =

[
Rij Sij

Tij Pij

]
, Rij , Pij > Tij , Sij (1)

where Rij , Sij , Tij , and Pij are agent i’s payoffs when
agents i and j play strategy pairs (A, A), (A, B), (B, A), and
(B, B). The inequality Rij , Pij > Tij , Sij represents the
coordination setting of the game, implying that each player
earns more if it plays the same strategy as its neighbor. Then
agent i’s utility ui is the accumulated payoff earned against
all of its neighbors:

ui(x) =
∑
j∈Ni

πij
xi,xj

where xk is the strategy of agent k, the state x = [xk]
is the vector of all agents’ strategies, and Xpq denotes the
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entry of matrix X at row p and column q. Agents update
their strategies based on the type of update rule they follow,
which is either best response, that is to choose the strategy
that maximizes its utility, or imitation, that is to copy the
strategy of its highest earning neighbor. The updates happen
asynchronously over time, i.e., at each time step, a single
agent becomes active to update her strategy at the next time
step. More specifically, agent i active at time t updates its
strategy at time t+ 1 to the following if it is an imitator:

xi(t+ 1) = xk(t), k = argmax
j∈Ni

uj(t). (2)

and to the following if it is a best-responder:

xi(t+ 1) = arg max
X∈{A,B}

ui(xi=X(t)) (3)

where xi=X is the vector x where the ith entry is fixed
to strategy X. In the case where both strategies A and B

maximize the utilities in (2) or (3), agent i does not switch
strategies, i.e., xi(t+ 1) = xi(t).

Example 1. [Programming languages] Given the required
effort to master a new programming language, programmers
have to decide between two options each time they program
an application: (i) the comfort of working in the already
experienced language and (ii) the benefit of learning a
new language. Some base their decisions on the prevalence
of the language, because commonly used languages are
supported by a community of peers who can smoothen the
learning experience via online forums. Others may base
their decisions on how successful other programmers were
in terms of, e.g., their salaries or reputation of developed
applications.

The agents here are the community of App developers who
interact via online networks. The programming languages
Python and Java may be considered as the strategies. An
example of the payoff matrix for a particular programmer is

Python Java
Python
Java

[
1 1

3
1
4

1
2

]
, (4)

indicating that he would benefit more from his peers if they
use the same language.

Example 2. [Social media] Telegram and WhatsApp
are two social media applications. Individuals choosing one
of them as their main communication stream may decide
based on the frequency or satisfaction of their friends on
each platform, implying the best response and imitation
update rules respectively. The individuals also have personal
preferences over the apps because of their features, resulting
in different payoff matrices.

Define the agents’ activation sequence as the sequence
⟨at⟩∞t=0, where at is the active agent at time t. An activation
sequence together with update rules (2) and (3) govern the
population state x(t) and define the decision-making dynam-
ics, which we refer to as the coordinating best-response and

imitation dynamics. A state x∗ ∈ {A, B}n is an equilibrium
of the dynamics if under every activation sequence,

x(0) = x∗ ⇒ x(t) = x∗∀t ≥ 0. (5)

We are interested in determining the asymptotic behaviour
of the dynamics.

In view of the coordinating condition (1), update rule (3)
for best-responders can be simplified as

xi(t+ 1) =


A if nA

i (x) > n∗
i ,

B if nA
i (x) < n∗

i ,

xi(t) otherwise,
(6)

where nA
i is the number of A-playing neighbors of

agent i, and ni is agent i’s temper defined by n∗
i =

|Ni| Pij−Sij

Rij−Tij+Pij−Sij
. It follows that if agent i tends to

play A at some state, so does it at any other state with
more A-playing neighbors. In a more restrictive sense, it
can be also shown that if an imitator tends to play A at
some state, so does it at any other state where all of its A-
playing neighbors still play A. This property is referred to
as A-coordinating [16, Definition 2], based on which, the
existence of an activation sequence that would drive the
dynamics from a given initial condition to an equilibrium
state was shown in [16, Lemma 1, Theorem 2]. However,
it remains open whether the dynamics equilibrate under an
arbitrary activation sequence. We investigate the problem for
the simple path network structure, and then extend the results
to a ring, a starlike, and finally a “sparse” tree.

III. PATH NETWORKS

Consider network G = (N , E) with edge set E is {(i, i+
1) | i = 1, . . . , n − 1}, called a path. We call agent i a
right-border (resp. left-border) if it has a different strategy
compared to agent i + 1 (resp. i − 1). A single agent with
a strategy different from those of its two neighbors is both
a right and left border agent. Agent i is a border if it is
right or left-border (or both). We consider the most “left”
(resp. “right”) agent, i.e., agent 1 (resp. n), as a left (resp.
right) border agent. Two consecutive borders with the same
strategy form a section (Figure 1).

Definition 1 (Section). A section in a path network at a given
strategy state is a set of consecutive same-strategy playing
agents p, p+ 1, . . . , q, where q ≥ p and agents p and q are
borders. The size of the section is defined as q − p+ 1.

1 2 3 4 5 6 7 8

Fig. 1: A path network with three sections. The sections
in this path are {1}, {2}, {3, 4, 5}, {6, 7}, and {8}. Blue and
red are used for strategies A and B, respectively. Agents 1, 2,
and 8 are each both left and right borders. Agents 3, and 6
are only left-borders, while agents 5 and 7 are right-borders.
Agent 4 is a non-border agent.

The special case of p = q results in a size-one section
consisting of a single agent. The number of sections appears
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to serve as a potential function according to the following
lemma. The key idea of the proof is that the emergence of
a new section requires the sequence (A, A, A) (resp. (B, B, B))
to turn into (A, B, A) (resp. (B, A, B)), which is impossible due
to the coordinating nature of the dynamics.

Lemma 1. The number of sections in a path network
does not increase under the coordinating best-response and
imitation dynamics with an arbitrary activation sequence.

Proof: A change in the population state takes place only
if a border agent is active because other agents play the same
strategy as their neighbors and hence do not switch strategies
according to update rules (6) and (2). So the number of
sections change at time t only if some border agent i becomes
active at time t−1 and switches its strategy at time t to s. At
least one neighbor of the border agent plays s at time t− 1
as otherwise, the agent is not border. We have the following
two cases:

Case 1. Agent i has two neighbors, i.e., i ̸∈ {1, n}. If
both neighbors play s, then the border agent itself forms a
section at time t − 1, which disappears at time t. Since no
other sections are generated, this results in a reduction in the
number of sections. If only one neighbor plays s, then the
number of sections does not change after the switch.

Case 2. Agent i has one neighbor, i.e., i ∈ {1, n}. Then
the neighbor plays s at time t−1, implying that agent i itself
again forms a section, which disappears at time t, resulting
in a reduction.

The proof is complete as the number of sections does not
increase in both cases. ■

As the number of sections are finite, in view of Lemma 1,
there exists some time T > 0 when the number of sections
becomes fixed and no longer changes. The sections may still
expand or shrink though, preventing equilibration. However,
one can show that once a section expands from a certain
direction, say left (i.e., in the descending order of the agents’
labels), then it may no longer shrink from left. Namely, if
the left border of a section “moves” left after time T , it never
“moves” right in the future. This idea is rigorously captured
in the following lemma.

For every time t ≥ T , there is the same number of sections
which we label as 1, 2, . . . , S from left to right; that is in the
ascending order of their left borders. Denote by Ls(t) and
Rs(t) the left and right borders of section s at time t ≥ T .
Given a sequence of consecutive agents p, p+1, . . . , q, where
q ≥ p, we denote their strategies by x(p,p+1,...,q).

Lemma 2. Consider the time T when the number of sections
in the path network is fixed. Then for every section s and
any time t1 ≥ T ,

Ls(t1 + 1) = Ls(t1)− 1 ⇒ ∀t ≥ t1 Ls(t+ 1)≤Ls(t),
(7)

Rs(t1 + 1) = Rs(t1) + 1 ⇒ ∀t ≥ t1 Rs(t+ 1)≥Rs(t).

Proof: We prove the first equation by contradiction; the
proof of the second equation is similar. Assume the contrary
and let t3 > t1 be the first time (7) is violated, i.e., Ls(t3 +

1) = Ls(t3) + 1. Let t2 ∈ [t1, t3 − 1] be the last time that
the left border of s decreased, i.e., Ls(t2 +1) = Ls(t2)− 1.
Let agent i be the left border of section s at time t2, i.e.,
i = Ls(t2). Then

Ls(t2) = i, (8)
Ls(t) = i− 1 ∀t ∈ [t2 + 1, t3], (9)

Ls(t3 + 1) = i. (10)

Without loss of generality, assume that xi(t2) = B. It is
straightforward to show that if the agents of section s play
a strategy, say B, at time T , then the agents of section s will
play B at every future time step as well. Therefore, since
agent i is the left border of section s at time t2 and plays
B at t2, it follows that all the agents in section s play B at
every time t ≥ T . Thus, in view of (8) to (10),

x(i−2,i−1,i)(t2) = (A, A, B),

x(i−2,i−1,i)(t2 + 1) = (A, B, B),

x(i−2,i−1,i)(t) = (A, B, ∗), ∀t ∈ [t2 + 1, t3 − 1]

x(i−2,i−1,i)(t3) = (A, B, B),

x(i−2,i−1,i)(t3 + 1) = (A, A, B).

The reason why xi−2(t2) = A is that otherwise a section
would be removed at t2 +1, which is impossible. Similarly,
xi−2(t3) = A as otherwise a new section would be generated
at time t3 + 1.

Now we show that the two switches of strategies of agent
i−1 at times t2+1 and t3+1 are in conflict. Note that at both
times t2 and t3 agent i plays B but has at time t2 at most and
at time t3 at least one other B-playing neighbor. So as the
game is coordinating, i.e., in view of (1), ui(t3) ≥ ui(t2).
We reach a contradiction in view of Lemma 6 and by letting
T = t2 and T ′ = t3.

We are ready to prove the equilibration of paths. Consider
a section s at time T . We say that the left border of section
s moves left at time t ≥ T + 1 if Ls(t) = Ls(t − 1) − 1
and moves right if Ls(t) = Ls(t − 1) + 1. Similarly, the
movement of the right border is defined.

Proposition 1. A path network equilibrates under the co-
ordinating best-response and imitation dynamics with an
arbitrary activation sequence.

Proof: Consider some section s at time T when the
number of sections is fixed. If the left border of section
s moves left at any future time, then it can only move
left afterward according to Lemma 2. Since the path is
constrained from left by agent 1, the left border of section
s will be fixed at some time. Similarly, the right border will
be fixed if it moves right at some point. So if the left border
moves left at some time and the right border moves right,
then the borders of section s will be fixed for all future times.

Now if any of the borders, say right, becomes fixed but
the left one only moves right after time T , then also the
left border becomes fixed at some point as it cannot pass the
fixed right border. On the other hand, if the right border only
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moves left after time T and the left only moves right, again
the two will become fixed as they cannot pass each other.

Therefore, the borders of section s will become fixed at
some finite time. Since s was an arbitrary section, it holds
that at some finite time, the borders of every section becomes
fixed. This implies equilibration, completing the proof.

A. Extension to rings

A network G = (N , E) with edge set E is
{(1, 2), (2, 3), . . . , (n, n+ 1), (n+ 1, 1)} is a ring.

Proposition 2 (Rings). A ring network equilibrates under
the coordinating best-response and imitation dynamics with
an arbitrary activation sequence.

Proof: Following the same arguments used for the
proof of the equilibration of a path, it can be shown that the
number of sections in a ring may not increase, and hence will
become fixed at some time T , and that if a section moves
right at some time, it may never move left afterwards. So
the only possibility for the non-equilibration of a ring is that
some section s only and infinitely often moves right or only
and infinitely often moves left. Consider the first case, i.e.,
moving right. Then for every agent i in the ring, there exists
a time when it belongs to the section s and a time when it
does not belong to the section. Hence, it will undergo the
switches from x(i−1,i,i+1) = (A, A, B) to (A, B, B) and from
(B, B, A) to (B, A, A). So the agent decides differently at two
states with the same number of A and B-playing neighbors.
Thus, in view of (6), agent i, and hence, the whole ring are
imitators. In view of the convergence result in [14, Theorem
1] for arbitrary networks of all coordinating imitators, the
proof is complete. ■

IV. STARLIKE POPULATIONS

We now proceed to a more general network: The starlike
[17], that is a tree with at most one node having more than
two neighbours, which we refer to as the branching agent.
Define a branch as a path that begins from a neighbour of the
branching agent and ends with a leaf but does not contain the
branching agent itself (Figure 2-a). The following definition

1
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The branching agent
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Fig. 2: a) Starlike graph. The agent on the top is the
branching agent. The graph has three branches. b) A sparse-
tree population. Each red section demonstrates a line in
the population. Blue agents are branching agents of the
population.

is motivated by the notion of eventually periodic sequences
[18].

Definition 2 (Eventually periodic sequences). The activation
sequence ⟨at⟩∞t=0 is eventually periodic if both the sequence
and the resulting states of the decision-making dynamics
become periodic after some finite time t0, i.e.,

∃T, t0 ∈ N : (at0+t+T = at0+t,xt0+t+T = xt0+t ∀t ∈ N),

where T as the periodicity of both the states and activation
sequence after time t0, and time interval [t0,∞) as the
periodic part of the activation sequence.

The following result holds for general decision-making
dynamics but is framed here according to Section II.

Lemma 3. If the imitation and best-response dynamics do
not equilibrate under some persistent activation sequence,
then there also exists a persistent eventually periodic ac-
tivation sequence under which the population does not
equilibrate.

Lemma 4. A starlike network equilibrates under the coordi-
nating best-response and imitation dynamics, if the branch-
ing fixes does not switches strategies infinitely many times.

Proof: It is straightforward to show that Lemmas 1 and
2 and hence proposition 1 hold if any of the end nodes in a
line network fix their strategies. Consequently, every branch
together with the branching agent forms a path in the starlike
that will equilibrate, leading to the equilibration of the whole
starlike. ■

The equilibration of starlike networks is established in
Proposition 3. The idea of the proof is to focus on the
times when the branching agent has the maximum number of
same strategy, say B,-playing, neighbors. The moment one of
these neighbors, referred to as the “special agent” switches,
the number of sections in the branch containing this special
agent, referred to as the “special branch”, will decrease, and
this decrement will never be compensated in the future. So
the number of sections in the the spacial branch is an energy-
like function (see (11)). If before any of the neighbors switch,
the branching agent itself switches, then the branching agent
must be an imitator and the neighbor with the maximum
utility will serve as the special agent. Given a path P , denote
the number of sections in P by n(P ), and more specifically
by n(P, t) to denote the number at time t.

Proposition 3 (Starlike). A starlike network equilibrates
under the coordinating best-response and imitation dynamics
with an arbitrary activation sequence.

Proof: We prove by contradiction. By assuming the
contrary, it follows from Lemma 3, the existence of a
persistent eventually periodic activation sequence denoted
by ⟨bt⟩∞t=0 with periodic part [t0,∞). The branching agent,
say i, switches strategies under ⟨bt⟩∞t=0 infinitely often;
otherwise, the network equilibrates due to Lemma 4. Let
tB ≥ t0 be the first time agent i plays B and has the maximum
number of B-playing neighbours during [t0,∞). Denote by
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t1 the first moment after time tB when either agent i or one
of its neighbors switches strategies, resulting in the following
two cases:

Case 1: An agent i’s neighbour, say agent j, changes its
strategy at time t1. Consider the branch P (referred to as
the “special” branch) including agent j (referred to as the
“special” agent). Denote the times when agent j switches
strategies after t1 by t2, t3 . . .. Out of these time steps, let
⟨tBk⟩∞k=1 ⊂ ⟨tk⟩∞k=1 be those time steps such that agent i had
its maximum number of B-playing neighbors at each time
tBk − 1. Clearly, tB1 = t1. We show that

∀k ≥ 1 n(P, tBk+1)− n(P, tBk) ≤ −1. (11)

At every time tBk agent j switches from B to A; otherwise,
agent i will have more B-neighbors at time tBk compared to tB.
Thus, as the dynamics are coordinating, agent j has at least
one A-playing neighbour at tBk, who is not agent i. Because
the network is starlike, agent j has at most two neighbors, so
it has exactly one other neighbor, say agent k, who plays A

at tBk. So n(P ) reduces by one at time tBk. In view of Lemma
7, n(P ) does not increase if any agent other than j switches
strategies. So n(P ) may increase in the future, only at times
when agent j switches strategies, i.e., tk+1, tk+2, . . ..

We show that n(P ) decreases at each time T = t2r for an
arbitrary r ∈ N. Agent j switches from A to B at time t2r. If
neighbor k plays A at time T −1, then agent i plays B at the
same time; otherwise, agent j does not tend to switch. So
x(k,j,i)(T − 1) = (A, A, B). Having the maximum number of
B-playing neighbors at time t1, agent i’s utility at time T −1
is no more than at time t1 − 1: ui(T − 1) ≤ ui(t1 − 1).
But this is impossible according to Lemma 6. So neighbor
k plays B at time T − 1. Then n(P ) reduces by the switch
of agent j at time T .

On the other hand, n(P ) may increase by at most one at
each time t2r+1, r ∈ N. Therefore, there is no finite time
T ′ > tBk when n(P ) equals its value at tBk, proving (11), a
contradiction.

Case 2: Agent i switches from B to A at time t1. There
exists time t2 > t1 when agent i tends to switch back to
B. However, the number of agent i’s B-playing neighbors is
maximized at time t1, when it switched to A. Hence, because
of the coordinating dynamics, agent i is an imitator.

Denote by ⟨Tr⟩∞r=0 the time steps after t0 that agent i
changes its strategy, and let ⟨ar⟩∞r=0 be the corresponding
neighbors imitated by agent i. Let aj be an agent among
⟨ar⟩∞r=0 with the maximum utility, i.e.,

aj = argmax
r

uar
. (12)

So the maximum utility among the agent i’s neighbors was
earned by agent aj at time Tj . Consider the branch P
including agent aj . We show that the number of sections in
P decreases at least once after time Tj but never increases
afterwards, which is in contradiction with Tj belonging to
the periodic part of the activation sequence.

First, we prove the following:
Statement 1. At any time Tr, r ≥ 0, when agent i switches

to A, agent aj must also play A. At time Tj − 1, agent aj
plays B and has at most one B-playing neighbor. At time
Tr − 1, agent i plays B, so agent aj has at least one B-
playing neighbor. So if agent aj plays B at time Tr, it earns
no less than at time Tj because of the coordinating dynamics,
i.e., uaj

(Tr) ≥ uaj
(Tj). Hence, in view of (12), agent aj is

a maximum earner at time Tr. Since agent i does switch at
time Tr, it has to switch to the strategy of agent aj according
to (2). This is, however, impossible since both agents aj and
i play the same strategy B at time Tr. This proves Statement
1.

Now we list and investigate the possible strategy states for
the pair (i, aj) starting from time Tj :

Case 2.1. x(i,aj)(t) = (B, B). Then at the next time Tr ≥ t
when agent i changes strategies, it switches to A. Hence,
according to Statement 1, x(i,aj)(Tr − 1) = (B, A). So
according to Lemma 7, n(P ) reduces by at least 1 during
[t, Tr−1] as agent i does not switch strategies in this interval.
We reach Case 2.2 at time Tr as x(i,aj)(Tr) = (A, A).

Case 2.2. x(i,aj)(t) = (A, A). Then at the next time Ts ≥
t when agent i changes strategies, it switches to B. Now
if agent aj plays B at time Ts − 1, we have x(i,aj)(t) =
(A, B). So again according to Lemma 7, n(P ) reduces by at
least 1 during [t, Ts − 1]. We reach Case 1 at time Ts as
x(i,aj)(Ts) = (B, B). Now if agent aj plays A at time Ts−1,
we have x(i,aj)(t) = (A, A). So according to Lemma 7, n(P )
may not increase during [t, Ts−1]. We reach Case 2.3 at time
Ts as x(i,aj)(Ts) = (B, A).

Case 2.3. x(i,aj)(t) = (B, A). Then at the next time Tp ≥ t
when agent i changes strategies, it switches to A. Hence,
according to Statement 1, x(i,aj)(Tp − 1) = (B, A) which is
the same as the state at time t in this case. So according
to Lemma 7, n(P ) does not increase during [t, Tp − 1]. We
reach Case 2.2 at time Tp as x(i,aj)(Tp) = (A, A).

At time Tj , the strategy state x(i,aj) matches Case 1,
where n(P ) reduces. The proof is complete since it does
not increase afterwards in any of the above cases. ■

V. SPARSE TREE-STRUCTURED POPULATIONS

The distance of two nodes in a graph is the number of
edges in the shortest path connecting the two. We call a tree
sparse if the distance between every pair of its branching
agents is greater than two. Equilibration of sparse trees is
presented in the following theorem. The idea of the proof is
to show that the “special branches” of two branching nodes
will intersect, resulting in a “golden branch” (figure 2) which
is guaranteed to equilibrate.

Theorem 5 (Sparse tree). A sparse tree network equilibrates
under the coordinating best-response and imitation dynamics
with an arbitrary activation sequence.

Proof: Equilibration of starlike networks were shown in
Proposition 3. So here we consider the case with at least two
branching agents. We prove by contradiction and consider
a persistent eventually periodic activation sequence denoted
by ⟨bt⟩∞t=0 with periodic part [t0,∞). Similar to the proof
of lemma 4, it can be shown that at least one branching
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agent changes its strategy during the periodic part of the
oscillation. We refer to the agents who change their strategy
during [t0,∞) a settling agent and otherwise unsettling. For
each unsettling agent i, denote its special branch defined
in the proof of Proposition 3 by Pi. Equilibration can be
shown using Lemma 4 when there is no unsettling branching
agent and similar to Proposition 3 when the special branches
of no two branching agents overlap (no golden branch).
So consider the case where there are two branching agents
with the corresponding special neighbors i and j, and whose
special branches intersect, denoted by P . In view of Lemma
7, n(P ) increases only at the time steps when either agent
i or j switches. On the other hand, for both Case 1 and
2 in Proposition 3, it is guaranteed that there exists some
infinite time series ⟨tik⟩∞k (when agent i switches) such
that n(P, tik+1) − n(P, tik) ≤ −1 for all k ≥ 0, and a
some time series ⟨tjk⟩∞k (when agent j switches) such that
n(P, tjk+1) − n(P, tjk) ≤ −1 for all k ≥ 0. This is a
contradiction as then n(P ) is unbounded. ■

VI. CONCLUSION

We showed that every sparse tree network of coordinating
imitators and best-responders equilibrates under any activa-
tion sequence. For the proof, we introduced the number of
sections (consecutive same-strategy playing agents) in a path
as a potential function and generalized it to the starlike and
then sparse tree networks. Whether dense trees or general
graphs equilibrate under every activation sequence remains
an open problem.

APPENDIX

Lemma 6. Consider a network governed by the coordi-
nating best-response and imitation dynamics with an arbi-
trary activation sequence. Assume that the network includes
neighboring agents p − 1 and p, each of degree two, and
denote the other neighbor of agent p by p + 1. If there
exists some time T ≥ 0 when agent p tends to switch
strategies and x(p−1,p,p+1)(T ) = (A, A, B), then agent p
does not tend to switch strategies at any time T ′ when
x(p−1,p,p+1)(T

′) = (A, B, B) and when agent p + 1 earns
non-less, i.e., up+1(T

′) ≥ up+1(T ).

Proof: Should agent p be a best-responder, its tendency
to switch strategies at time T implies that it tends to play
B if at least one of its neighbors plays B in view of (3)
and (1). Therefore, agent p also tends to play B at time T ′

since it has a B-playing neighbor. So consider the case where
agent p is an imitator. At time T agent p tends to imitate
agent p+1 who plays B and has at most one other B-playing
neighbor. So agent p + 1 earns more than agent p − 1, i.e.,
up+1(T ) > up−1(T ). We know that agent p + 1 earns at
time T no more than at time T ′, i.e., up+1(T ) ≤ up+1(T

′).
Moreover, at both times T and T ′, agent p−1 plays A but has
at time T at least and at time T ′ at most one other A-playing
neighbor, implying up−1(T ) ≥ up−1(T

′). These inequalities
result in up+1(T

′) > up−1(T ), which completes the proof.
We say that a network admits a path (1, 2, . . . ,m) if there

is a link between node i and i+ 1 for all i = 1, . . . ,m− 1

and the degree of every node 2, . . . ,m− 1 is two. We refer
to (2, . . . ,m− 1) as the interior of the path.

Lemma 7. Consider a network admitting the path
(1, . . . ,m) governed by the coordinating best-response and
imitation dynamics. Then the number of sections in the
interior of the path does not increase if each of the ending
agents 1 and 2 either are a leaf or its strategy does not
change under the activation sequence.

Proof: The proof follows Lemma 1 and by choosing an
activation sequence that does not activate the ending agents.
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