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Abstract— Robustness of residual signals to model uncertain-
ties and noise in the measurements is of paramount impor-
tance in model-based fault diagnosis. Model uncertainty has
been mainly represented in a structured way by considering
known bounds on the model parameters, thus relying on
prior knowledge about the plant structure and values of its
physical parameters. When the plant is completely unknown,
system identification techniques must be used for model-based
diagnosis. In this work, we present a data-driven approach
to represent the uncertainty in the identified model. This
uncertainty is described in the frequency domain using kernel-
based identification and robust control tools. The estimated
model uncertainty region overlaps with the true uncertainty
region with a probability specified by the user. The user choices
are thus reduced to the selection of only some interpretable
hyperparameters. Then, a residual generator robust to the es-
timated model uncertainty and measurements noise is designed
by a standard H∞ approach. Simulation results on SISO LTI
systems show the effectiveness of the approach in producing a
residual signal viable for the detection of additive faults.

I. INTRODUCTION

Model-based fault diagnosis aims to detect, isolate, iden-
tify and estimate faults acting on dynamical plants [1]. Based
on a model of such systems, a filtering scheme is designed
to process inputs/outputs plant measurements, producing a
set of residual signals. The residuals are nominally zero
considering a perfect model of the plant, in absence of
faults, disturbances and noises1 [1]. When a fault is present,
the residuals must become non-zero for correct detection of
faults. However, residuals become nonzero also if modeling
errors, disturbances and noises are present, hindering the
faults presence and therefore their diagnosis. Thus, the
generation of residual signals should be made robust to such
sources of uncertainty, while not reducing their sensitivity to
faults (active robustness) [2]. Robust residuals can be also
complemented by adaptive thresholds at the decision-making
stage (passive robustness) [3]2.

Many approaches have been considered for achieving
robustness in model-based fault diagnosis, especially in
a Linear Time Invariant (LTI) context [2][4, Chapter 8].
Model uncertainty is often the most problematic source of
uncertainty [5, Chapter 1], as a perfect model for even a
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1We refer to a “disturbance” as an unknown input such that its decoupling
from residuals is possible and can be targeted in design of the residual
generator. “Noises” are other unknown inputs that cannot be perfectly
decoupled.

2Passive robustness can be employed to further compensate modeling
errors with less conservatism in the choice of the fault detection threshold.

simple engineering plant is hardly available and most plant
parameters are unknown. In these cases, system identification
procedures must be employed, which however come with
estimation errors due to limited, noisy data and model
structure/complexity determination. A typical representation
of the model uncertainty consists in restating modeling errors
as additive unknown inputs, which could be perfectly or ap-
proximately decoupled from residuals by specific diagnostic
schemes [2, Chapter 5]. This reframing process requires the
use of prior information or assumptions about the model
uncertainties. One of the most useful assumptions considers
bounded errors on the model parameters, representing the
model uncertainty as structured [6], and paving the way for
the application of set-membership approaches [7], [8].

The use of uncertainty regions provided by system iden-
tification methods has been investigated in the context of
robust fault diagnosis, but mainly in a bounded-error setting
[9], [10]. Stochastic uncertainty in the estimated model
parameters for fault diagnosis has been considered in [11],
with small assumptions about the boundedness of the norm
of some covariance matrices. However, both these recent
contributions focused on a parametric/structured model un-
certainty representation. On the contrary, an unstructured
representation allows to describe the model uncertainty in the
frequency domain without specifying an uncertainty bound
for each model parameter, also providing an alternative
understanding of the designed residuals generator filter.

In this paper, we propose a rationale to design residual
generators that are robust to the uncertainty originating by
two sources: (i) model estimation variance, (ii) measure-
ments noise at the outputs, considering SISO LTI systems.
To this end, we adopt low-bias regularized kernel-based
identification methods that relax the user from model struc-
ture/complexity determination [13]. The uncertainty region is
estimated from input/output data by means of a randomized
approach [14], that guarantees with high probability the
goodness of the uncertainty region estimate [15]. Thanks to
the low-bias property of regularized models, the estimated
uncertainty region contains with high probability the true
plant. The overall model uncertainty quantification procedure
relieves the user from the development of an ad-hoc model-
error model [16], that requires several critical user choices,
to quantify the bias and variance of the estimated parametric
model. The use of low-bias kernel identification leaves,
approximately, only the model variance to be taken into
account in the residual generator design [17]. In the proposed
approach, the user needs only to specify a set of configuration
hyperparameters, as a bound on the output noise amplitude.
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Then, a residual generator with optimal tradeoff between
rejection of model uncertainty (e.g. model estimation vari-
ance), measurements noise and sensitivity to additive faults
is provided by a standard H∞ optimization problem, solved
with recent computational and numerically reliable tools [1],
[18], thus providing active robustness to uncertainties. With
the proposed rationale, an automatic (optionally adaptive) de-
tection threshold is defined, so providing passive robustness.

The remainder of the paper is as follows. Section II
presents the problem statement and reviews the basics of
kernel-based identification. Section III describes the rationale
to design a residual generator robust to noise and model
uncertainties, while being sensitive to faults. Section IV pro-
vides extensive simulation examples to validate the method.
Section V is devoted to concluding remarks.

II. PRELIMINARIES

This section introduces the problem statement and the
adopted representation of model uncertainty. Kernel methods
are briefly reviewed since they will form the basis for
estimating the model uncertainty region.
Notation. The output signal y(t) filtered by a SISO LTI
discrete transfer function G(z) fed by input u(t), is described
as y(t) = G(q)u(t), where q is the the lag operator so that
y(t − 1) = q−1 · y(t), where z is the Z-transform variable
and t ∈ N is a discrete time index.

A. Problem statement

Consider an unknown stable LTI SISO plant G0
u(z) subject

to control, fault and noise inputs3

S : y(t) = G0
u(q)u(t) +Gw(q)w(t) +Gf (q)f(t), (1)

where u(t) ∈ R, f(t) ∈ R and w(t) ∈ R denote the
(known) control input and (unknown) fault and noise inputs,
respectively. The transfer functions G0

u(z), Gw(z), Gf (z) in
(1) relate the inputs to the output measurements y(t) ∈ R.
We impose the following assumptions on the additive noise.

Assumption 1 (Output error noise): The noise w(t) in (1)
is a measurement output error, so that Gw(z) = σ with
σ ∈ R>0 a known constant positive value, denoting the noise
standard deviation.

Assumption 2 (Bounded noise): Define the noise signal
e(t) := Gw(q)w(t) = σ · w(t) The noise e(t) is possibly
stochastic and norm-bounded with |e(t)| < δ̄e, ∀t. It follows
that |w(t)| < δ̄e/σ, ∀t.

Model-based design of a residuals generator Q(z;S) for
the system (2) aims to find Q(z;S) so that a residual signal
r(t) ∈ R can be computed by the computational form

r(t) := Q(q;S)
[
y(t)
u(t)

]
=

[
Qy(q) Qu(q)

] [y(t)
u(t)

]
, (2)

where Q(z;S) is a 1 × 2 transfer functions matrix (TFM).
As represented in (2), the output y(t) and control input
u(t) signals are filtered, respectively, by the SISO LTI filters
Qy(z) and Qu(z) to produce the residual r(t).

3In this work, we do not consider perfect decoupling of disturbances. In
such cases, distrubances can be considered as noise inputs.

The residual r(t) in (2) depends on all plant inputs u(t),
w(t), and f(t) through y(t). The internal form of the residual
generator is obtained by substituting (1) into (2) as

r(t) =
[
Ru(q;S, G0

u) Rw(q) Rf (q)
]︸ ︷︷ ︸

R(q;S)

u(t)
w(t)
f(t)

 , (3)

with R(z;S) a 1× 3 TFM defined by

Ru(z;S, G0
u) := Q(z;S)

[
G0

u(z)
1

]
, (4)

Rw(z) := Q(z;S)
[
Gw(z)

0

]
, Rf (z) := Q(z;S)

[
Gf (z)

0

]
.

The TFM R(z;S) in (3) maps all plant inputs to the residual
signal, fulfilling, whenever possible, specific fault detection
and isolation requirements [1, Chapter 3]. The design of
Q(z;S) in (2)-(4) relies on the perfect knowledge of the
system model (1). When this is not the case, the residual
signal r(t) should be made robust to model uncertainty.

A bounded model uncertainty can be represented follow-
ing a robust control description [21]. To this end, let ∆(z)
be a stable transfer function that satisfies the bounded real
condition ∥∆(z)∥∞ ≤ 1 and consider a multiplicative output
uncertainty model set [19]

Π : Gp(z) :=
(
1 + ∆(z)W (z)

)
G0

u(z), (5)

where Gp(z) is a particular perturbed SISO plant model in Π
and ∆(z) describes a normalized bounded frequency-domain
unstructured uncertainty with W (z) its frequency magnitude
[20, Chapter 7]. Descriptions of model uncertainty as (5) are
used to represent measurement output errors and neglected
high-frequency dynamics [21, Chapter 9].

Since G0
u(z) is assumed to be unknown, practical use

of (2) for robust residual generation under the uncertainty
description (5) requires the development of a plant model.
Here we focus on the case where a data-driven model
Ĝu(z) is identified from a set of n noisy input/output data
D =

{
u(t), y0(t)

}n

t=1
collected from an open-loop, fault-

free experiment on the plant, so that

y0(t) = G0
u(q)u(t) +Gw(q)w(t) = G0

u(q)u(t) + e(t) (6)

where n is the number of measurements.
The randomness in e(t) influences the estimate of Ĝu(z),

thereby acting as a source of model uncertainty. We de-
scribe such uncertainty as in (5), where the boundedness of
∆(z)W (z) derives from the bounded nature of e(t).

Combining (1), (5), and Ĝu(z) leads to the the following
uncertain model for plant G0

u(z) subject to noise and faults:

M : y(t) =
(
1 + ∆(q)W (q)

)
Ĝu(q)u(t)

+Gw(q)w(t) +Gf (q)f(t). (7)

The aim of this work is to provide and automatic procedure
to design a residuals generator Q(z;M) as in (2), with
Ĝu(z) in place of G0

u(z) and an estimation of the worst-
case uncertainty Ŵ (z) (i.e. when ∥∆(z)∥∞ = 1), so that
the residual r(t) is robust to measurements noise and to
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the model uncertainty endowed in the identification process
under Assumption 2, described by the uncertain model (5),
see Figure 1.

Gw(z)w(t)

y(t)u(t)
Ĝu(z)

+

+

W (z) ∆(z)

+

+

M

Q(z;M)
r(t)

f(t)

Fig. 1. Open-loop plant with multiplicative output uncertainty and identified
model Ĝu(z) for the design of the residual generator Q(z;M). The term
∆(z)W (z) represents the uncertainty in the identification of Ĝu(z).

While Assumption 2 calls for a set-membership identi-
fication approach, in this framework there is no guarantee
that Ĝu(z) is close to G0(z) in L2-norm [16]. Thus, mod-
eling bias may jeopardize the quality of the residual signal
r(t). So, we employ low-bias kernel-based methods, where
G0

u(z) ≈ Ĝu(z) if the model is flexible enough. When using
stochastic identification approaches, the Assumption 2 on
bounded noise is not leveraged. However, the price paid for
ignoring this information is way lower than the price paid by
using a model with high bias in robust residuals generator
design, as the true system may well be outside the defined
uncertainty region. This happens also when wrong modeling
choices are performed in a model-error model design to
characterize the model uncertainty region.

B. Kernel-based identification review

Consider (6) with w(t) ∼ N (0, 1) and Gw(z) = σ the
noise standard deviation, and the FIR model of order ng

G(q,θ) =

ng∑
i=1

giq
−i, θ =

[
g1 g2 . . . , gng

]⊤
. (8)

Assume that a prior distribution θ ∼ N (0,K) is placed
on θ ∈ Rng×1, where K ∈ Rng×ng is a covariance
(kernel) matrix encoding prior information on parameters
θ. A common parametrization of K employs the tuned-
correlated kernel [13], where the (i, j) element of K is
defined as Kij := λ · αmax(i,j) with λ > 0, 0 ≤ α < 1 are
the kernel hyperparameters. The posterior distribution θ|y is
then Gaussian with [13]

θ|y ∼ N
(
θ̂, Σ̂

)
, (9a)

θ̂ =
(
KΦ⊤Φ+ σ2Ing

)−1
KΦ⊤y, (9b)

Σ̂ = K−KΦ⊤ (
ΦKΦ⊤ + σ2In

)−1
ΦK, (9c)

where Φ := [φ(1) φ(2) . . . φ(n)]
⊤ ∈ Rn×ng , (9d)

φ(t) := [u(t− 1) . . . u(t− ng)]
⊤ Rng×1 (9e)

y := [y(1) y(2) . . . y(n)]
⊤ ∈ Rn×1. (9f)

The kernel’s hyperparameters ζ = [α, λ]⊤ (along with
the noise variance σ2) can be estimated by employing an
Empirical Bayes scheme, by maximizing the log-marginal
likelihood of the data [13]

ζ̂ = argmin
ζ

y⊤Z (ζ)
−1

y + log detZ(ζ), (10a)

Z(ζ) := ΦK(ζ)Φ⊤ + σ2In. (10b)

At this stage, a model order reduction to order nr can be
performed, at the expense of introducing a bit of modeling
bias.

The data-driven estimation of the model uncertainty region
relies on (9b)-(9c) and it will be covered next.

III. UNCERTAINTY-AWARE ROBUST RESIDUAL
GENERATORS

This section reviews the procedure proposed in [15] for
estimating the model uncertainty region ∆(z)W (z) in (5) in
the worst-case scenario ∥∆(z)∥∞ = 1, by using kernel meth-
ods. Then, a robust residual generator is designed to perform
fault detection in spite of modeling and noise uncertainties,
using H∞ tools and the estimate of the uncertainty region.

A. Estimation of the model uncertainty region

Let ∥∆(z)∥∞ ≤ 1 and Gp(z) := G(z,θp), with θp
a random sample drawn from (9a), denoting an impulse
response. Then, the relation between the modules in (5) reads
as ∣∣∣∣∣Gp

(
ejω

)
G0

u (e
jω)

− 1

∣∣∣∣∣ ≤ ∣∣W (ejω)
∣∣ , ∀ω ∈ [0, fsπ] (11)

where ω is a specific pulse in rad/s and fs is the sampling
frequency. Define

Ω
(
ejω;G0

u

)
:= max

p

∣∣∣∣∣Gp

(
ejω

)
G0

u (e
jω)

− 1

∣∣∣∣∣ , (12)

so that Ω
(
ejω;G0

u

)
denotes an amplitudes envelope. The

magnitude of the least conservative W (z) can be estimated
by evaluating (12) in a discrete grid of nm frequencies F =
{ω1, ω2, . . . ωnm

} ⊆ [0, πfs] for a set of np samples, with
fs the sampling frequency of the measurements.

However, (12) can not be computed since G0
u(z) is un-

known. Thus, by assuming that G0
u(z) ≈ Ĝu(z), where

Ĝu(z) := G(z, θ̂) by (9b), a nonparametric sampled estimate
of the magnitude of W (z) is∣∣∣Ŵ (

ejωm
)∣∣∣ = Ω

(
ejωm ; Ĝu

)
, ∀ωm ∈ F . (13)

Remark 1 (Low-bias model): The assumption Ĝu(z) :=
G(z, θ̂) is not critical if low-bias regularized models of
enough flexibility are employed.

A stable and proper parametric model Ŵ (z) of fixed order
nw can then be obtained by fitting a parametric model to
the magnitude frequency points (13), taking care that the
magnitude of the fitted model lies above (or is equal to)
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(13). The number np of dynamical systems drawn from (9a)
can be selected relying on the following result4.

Proposition 1 (Uncertainty bound reconstruction):
Define a fixed confidence level δ ∈ (0, 1) and a fixed
accuracy level ε ∈ (0, 1). Let

np ≥ 1

2ε2
ln

(
2

δ

)
. (14)

Then, with probability ≥ 1− δ, it holds that∣∣∣Ŵ (
ejωm

)
−W

(
ejω

)∣∣∣ < ε, ∀ω, ωm ∈ F .

Proof: The proof follows from the Chernoff’s bound
[14, Chapter 8].

Implementation details for the uncertainty region estima-
tion are described in [15]. The model of the uncertainty
region Ŵ (z) will be used to design a residual generator with
robustness properties against modeling uncertainty and noise.

B. Design of robust residual generators
With Ŵ (z) as a description for the model uncertainty

region representing ∆(z)W (z), the uncertain model in (7)
can be replaced by the robust diagnostic model

Mv : y(t) =
(
1 + Ŵ (q)

)
Ĝu(q)u(t)

+Gw(q)w(t) +Gf (q)f(t)

= Ĝu(q)u(t) +Gv(q)v(t) +Gf (q)f(z) (15)

where

Gv(z) :=
[
Ŵ (z)Ĝu(z) Gw(z)

]
(16a)

v(t) :=

[
u(t)
w(t)

]
, (16b)

so that the effects of the known input u(t) and uncertain or
unknown terms in v(t) have been separated.

Similar to (3), the internal form of a residual generator
Q(z;Mv) for the diagnostic model (15) reads as

r(t) =
[
Ru(q;Mv, Ĝu) Rv(q) Rf (q)

] u(t)v(t)
f(t)

 , (17)

with Rv(z) := Q(z;Mv)

[
Gv(z)

0

]
. The aim is now to

design Q(z;Mv) requiring

Ru(z;Mv, Ĝu) = 0, (18a)
Rv(z) ≈ 0, (18b)
Rf (z) ̸= 0, (18c)

Rv(z), Rf (z) stable, (18d)

so that the effect of uncertainties v(t) is minimized while
maintaining the faults effect on the residual. The design of
Q(z;Mv) satisfying (18) can be performed by the nullspace-
based synthesis approach [1, Chapter 5]. The solution is a
residual generator of the form

Q(z;Mv) = Q̄(z)Q1(z) (19)
= Q̄(z) [Q1,y(z) Q1,u(z)] = [Qy(z) Qu(z)] ,

4The choice of nm is not critical. It suffices for the frequency grid to be
resolute enough.

where Q1(z) is a 1× 2 proper and stable TFM that satisfies
(18a) and (18c) by filtering plant outputs and inputs trough
Q1,y(z) and Q1,u(z) respectively, and Q̄(z) acts as a post-
filter for enhancing the robustness of the residual signal, thus
enforcing (18b). The synthesis procedure is composed by two
stages. In the first stage, Q1(z) is designed by solving for
(18a). To this end, define

R̄v(z) := Q1(z)

[
Gv(z)

0

]
, R̄f (z) := Q1(z)

[
Gf (z)

0

]
.

Let γ ≥ 0 be a given admissible level for the effect of the
uncertainties signal v(t) on the residual r(t). Then, in the
second stage of the synthesis procedure, the post-filter Q̄(z)
is found by solving the H∞ problem

β =max
Q̄(z)

∥∥Q̄(z)R̄f (z)
∥∥
∞ (20)

s.t.
∥∥Q̄(z)R̄v(z)

∥∥
∞ < γ,

with β > 0 the fault sensitivity level. The fault/uncertainties
gap η = β/γ can be interpreted as a measure of the quality
of fault detection (the higher, the better).

Remark 2: When an estimate of the uncertainty region
∆(z)W (z) is not available, the uncertain model in (7) can
be employed for residual generator design by defining the
diagnostic model

M′
v : y(t) = Ĝu(q)u(t) +G′

v(q)v
′(t) +Gf (q)f(t) (21)

with

G′
v(z) :=

[
Ĝu(z) Gw(z)

]
(22a)

v′(t) :=

[
∆(z)W (z)u(t)

w(t)

]
, (22b)

so that all the uncertainty is coupled in the noise term
(22b). In our proposed approach, the modeling uncertainty is
explicitly moved outside the noise signal as shown in (16),
guiding the residual generator design in (20).

C. Automatic threshold determination

Considering (18)-(19), the residual (17) can be written as

r(t) = Q̄(q)
[
R̄v(q) R̄f (q)

] [v(t)
f(t)

]
, (23)

In a fault-free situation, f(t) = 0∀t and∥∥r(ejω)∥∥∞ =
∥∥Q̄(ejω)R̄v(e

jω)v(ejω)
∥∥
∞ (24)

≤
∥∥Q̄(ejω)R̄v(e

jω)
∥∥
∞ ·

∥∥v(ejω)∥∥∞
≤ γ · max

{∥∥u(ejω)∥∥∞ ,
∥∥w(ejω)∥∥∞}

= γ · max
{∥∥u(ejω)∥∥∞ , δ̄e/σ

}
.

Therefore, an adaptive threshold τ(t) can be generated as

τ(t) = γ · max
{
|u(t)| , δ̄w

}
, δ̄w := δ̄e/σ. (25)
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IV. EXAMPLE

Consider the following benchmark system [22]

G0
u(z) =

0.28261z + 0.50666

D(z)
, (26a)

y0(t) = G0
u(q)u(t) +Gw(q)w(t) = G0

u(q)u(t) + e(t),

D(z) = z4− 1.41833z3+1.58939z2− 1.31608z+0.88642,
sampled at Ts = 1/fs = 0.01 s. For model identification, we
simulated n = 5000 data from (26) using a Gaussian white
noise input signal u(t) ∼ GWN(0, 1) and a bounded Gaus-
sian white noise e(t) ∼ GWN(0, σ2), e(t) = Gw(q)w(t)
with SNR = var

[
G0

u(q)u(t)
]
/var [e(t)] = 25, with var[·]

the variance operator. This lead to Gw(z) = σ = 0.5151.
Noise boundaries were set to δ̄e = 2 so that no saturation in
e(t) was present in the noise signal. The first 1000 samples
are discarded to remove the transient effects from the data.
The FIR order for kernel identification is set as ng = 200,
followed by model reduction to order nr = 10. By selecting
δ = 0.05 and ε = 0.01 the number of sampled system is set
as np = 18445 following (14), and the number of sampled
frequencies is set to nm = 200, logarithmically spaced in the
range

[
10−3, πfs

]
rad/s. The order of the parametric model

Ŵ (z) for (13) is set to nw = 3. As stated in Assumption 1,
we assume to know the true value of the noise variance σ.5

A. Comparison for fixed estimated model Ĝu(z)

We compare three cases:
1) Not robust design: the residual generator

Q(z;Mv,Gv = 0) is designed for the system
(15), using the data (6), by ignoring the information
about the modeling uncertainty ∆(z)W (z) and noise
w(t) (i.e. Gv(z) is set to zero) and it satisfies only
(18a) and (18c);

2) Partially robust design: the residual generator
Q(z;M′

v) is designed for the system (21), using
the data (6), by ignoring the information about the
modeling uncertainty ∆(z)W (z), so that it satisfies
(18a) and (18c), and partially (18b);

3) (Proposed) Uncertainty-aware robust design: the
residual generator Q(z;Mv) is designed for the sys-
tem (15), using the data (6), so that it fully satisfies
(18a)-(18c).

In all the three cases, (18d) is satisfied, and the estimated
model Ĝu(z) = G(z, θ̂) is employed in place of the
unknown plant G0

u(z) for fault detection. Moreover, γ = 1
is employed in cases 2) and 3). Healthy and failed data are
collected from the true plant G0

u(z) in (26) for 40 s. A step-
like input fault of amplitude 5 is injected after 20 s.

Figure 2 shows the estimation of the modeling uncertainty
region Ŵ (z) as described in Section III-A. Figure 3 depicts
the residual signals, with automatic threshold selection for
the proposed design rationale, which also exhibit the highest
fault/uncertainties gap η.

5This assumption is not critical since the noise variance can be estimated
with good accuracy from data using (10).

Fig. 2. Uncertainty region estimation. (Continuous line) Magnitude of
a second-order parametric model Ŵ (z). (Dots) Nonparametric estimate
Ω(ejωm ). (Dashed line) Evaluation of

∣∣Gp(ejωm )/Ĝu(ejωm )− 1
∣∣ in (12)

for a sample of systems Gp(z) := G(z,θp) drawn from the sampling
distribution of the parameters estimate (9), in the frequency grid F .

Fig. 3. (Continuous line) Residual signals. (Dashed line) Automatic
threshold (25). The fault/uncertainties sensitivity gap η is reported.

Fig. 4. Comparison of post-filter Q̄(z) from different design rationales.
The estimated model uncertainty Ŵ (z), the frequency response of the
estimated model Ĝ(z) and frequency response of the true plant G0

u(z)
are also depicted.

Figure 4 represents a comparison of the post-filter Q̄(z)
from (20). In the not robust case, Q̄(z) = 1. In both the par-
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tially robust and proposed uncertainty-aware robust designs,
the post-filter counteracts the resonances of the true plant
G0

u(z). However, in the proposed design, the high-frequency
components of the model uncertainty are greatly penalized:
where the uncertainty is greater, the attenuation performed
by the post-filter is higher. This helps the detection of the
fault by rejecting model and noise uncertainty contributions.

B. Comparison for different perturbed systems

We now compare the same three designs as in Section IV-
A, by considering 50 systems drawn from the distribution

θV ∼ N (θ0, Σ̂), (27)

where each θV is the impulse response of a perturbed system
and θ0 is the noiseless impulse response of the true plant
(26), with Σ̂ derived in (9c). The idea is to evaluate the
robustness of the proposed design scheme when the data-
generating system and the model used for residual generator
design are different. To this end, for each system θV , we
generate the data as in Section IV-A. The residual generator,
for the three design schemes, is built by using G0

u(z) in
place of Ĝu(z), so to avoid any modeling bias on average
with respect to the data-generating system. In this way, we
are effectively evaluating the robustness against modeling
variance and measurements noise. The results are shown in
Figure 5, where again the proposed design scheme shows
superior performance.

Fig. 5. (Continuous lines) Residual signals, for each of the 50 randomly
drawn perturbed systems. (Dashed line) Automatic threshold (25). The
fault/uncertainties sensitivity gap η is reported.

V. CONCLUSIONS

This paper presented a rationale for designing a residual
generator for SISO LTI systems that is robust to model
uncertainty and measurements noise. The model uncertainty
region is estimated using a randomized approach with low-
bias kernel identification methods, avoiding the explicit
model-error modeling phase and neglecting the effect of
identification bias on the estimated model. The proposed

robust residual generator is also endowed with an automatic
(eventually adaptive) threshold selection mechanism, assum-
ing a known bound on output measurements noise. The
approach is vastly data-driven and the user needs to select
only several hyperparameters.

Fault diagnosis benefits from multiple independent output
measurements. Thus, a future direction is the extension of
the approach to MIMO systems.
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