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Abstract—Nonlinear feedback design via state-dependent Ric-
cati equations is well established but unfeasible for large-scale
systems because of computational costs. If the system can be
embedded in the class of linear parameter-varying systems
with the parameter dependency being affine-linear, then the
nonlinear feedback law has a series expansion with constant and
precomputable coefficients. In this work, we propose a general
method to approximate nonlinear systems such that the series
expansion is possible and efficient even for high-dimensional
systems. We lay out the stabilization of incompressible Navier-
Stokes equations as application, discuss the numerical solution
of the involved matrix equations, and confirm the performance
of the approach in a numerical example.

Index Terms—Nonlinear systems, parameter-varying approxi-
mations, Riccati matrix equations, state-feedback control

I. INTRODUCTION

NONLINEAR feedback design for large-scale systems is
challenging, as both the complexity induced by nonlin-

earities and the computationally demanding tasks caused by
the system’s size have to be resolved. The commonly used
methods of backstepping [22], feedback linearization [29, Ch.
5.3], or sliding mode control [16] require structural assump-
tions and, thus, may not be accessible to a general compu-
tational framework. The both holistic and general approach
via the Hamilton-Jacobi-Bellman (HJB) equations, however,
is only feasible for very moderate system sizes or calls for
model order reduction; see, e.g., [14] for a relevant discussion
and an application in fluid flow control. As an alternative to
reducing the system’s size, one may consider approximations
to the solution of the HJB equations of lower complexity. For
that, for example, truncated polynomial expansions [13] or
suboptimal solutions via the so called state-dependent Riccati
equation (SDRE) [2] are considered. Here, we will follow
on recent developments [1] about series expansions of the
SDRE approximation to the HJB solution that can mitigate
the still high computational costs of repeatedly solving high-
dimensional Riccati equations.

As the general setup, we consider the control-affine system

v̇(t) = f(v(t)) +Bu(t), y(t) = Cv(t), (1)
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where for time t > 0, v(t) ∈ Rn denotes the state, u(t) ∈ Rp

and y(t) ∈ Rq denote the input and output, f : Rn → Rn is a
possibly nonlinear function, and B and C are linear input and
output operators. Under the mild condition that f is Lipschitz
continuous and f(0) = 0, one can factorize the nonlinearity
f(v) = A(v)v with a state-dependent coefficient matrix A(v)
and bring the system (1) into state-dependent coefficient (SDC)
form:

v̇(t) = A(v(t))v(t) +Bu(t), y(t) = Cv(t); (2)

see, e.g., [8, Eq. (7)]. For such systems, one can define a
feedback by

u(t) = −BTP (v(t))v(t),

where P (v) solves the SDRE

A(v)TP (v) + P (v)A(v)− P (v)BBTP (v) = −CTC; (3)

see [2] for general principles and [8] for a proof of perfor-
mance beyond an asymptotic smallness condition. Because of
its nonlinear and, possibly high-dimensional nature, a solve
of the SDRE (3) comes at high costs that make the SDRE
approach unfeasible for large systems; see [8] for an example
illustrating how the effort grows with the system’s dimension.

If, however, the factorization f(v) = A(v)v is affine-linear
with respect to a parametrization ρ(v) ∈ Rm of v, i.e., it can
be represented as

A(v) = A0 +

m∑
k=1

ρk(v)Ak, (4)

then the solution P (v) of the SDRE has a first-order approx-
imation of the form

P (v) ≈ P0 +

m∑
k=1

ρk(v)Lk,

where P0 and Lk, for k = 1, . . . ,m, can be precomputed by
one Riccati and m Lyapunov equations; see [1], [4]. In this
work we propose a general approach for controller design that
bases on approximative representations as in (4) for which we
employ

• an SDC representation of the nonlinear system,
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• an approximative parametrization ρ̂(v) ∈ Rr in the sense
that r is chosen small such that an exact reconstruction
of v from ρ̂(v) might not be possible, and

• an affine-linear approximation of the coefficient (4).

Also, we discuss how such an approach can be realized for
flow control problems modeled by semi-discrete Navier-Stokes
equations (NSEs). For this, we rely on

• the coordinates provided by a proper orthogonal decom-
position (POD) of the velocity states; see [24] for an
introduction,

• the quadratic structure of the nonlinearity in the incom-
pressible NSEs,

• implicit treatment of the incompressibility constraint, and,
importantly,

• low-rank representations of the solutions to the high-
dimensional Riccati and Lyapunov equations and suitable
solution methods.

We note that with this line of arguments, the nonlinear
feedback design via truncated SDRE approximations becomes
feasible for finite element approximations of general nonlinear
partial differential equations (PDEs).

Apart from the proposed algorithmic advances and numeri-
cal insights into the feedback approximation, we expand here
on the work of [1] insofar as the parametrization step lifts
fundamental structural assumptions on the problem class. A re-
lated approach, though with updates that require the solutions
of nonlinear matrix equations, can be found in [15] based on
the expansion of nonlinear systems into Volterra series [27].
Furthermore, we note that, with the explicit low-complexity
parametrization of the nonlinearity in an otherwise linear
problem formulation, the difficulties of exponentially growing
dimensions that come with tensor expansions for general
nonlinearities are mitigated; see [23] for a recent discussion
regarding model order reduction and note that the approach
in [14] requires the computation of a feedback gain matrix
that scales with the square of the state-space dimension, which
limits its applicability to systems of dimension about 105.
From this perspective, the effective novelty of our contribution
lies in the numerical design of a performant nonlinear feedback
law for large-scale systems with a computational effort that
only scales linearly with the system size.

The rest of the paper is organized as follows. In Section II,
we explain how a low-complexity linear parameter-varying
approximation can be obtained by parametrizing the state of an
SDC system. The formulas for expanding the SDRE solution
and state the constituting equations for the coefficients of the
expansion are recalled in Section III. Section IV lays out how
POD can be used to realize a low-complexity affine-linear
parameter-varying approximation of incompressible Navier-
Stokes equations and in Section V, we briefly describe the
concepts for solving the high-dimensional matrix equations.
In Section VI, we provide the results of a numerical study to
show the applicability of the approach and the improvement
it brings compared to linear feedback design. The paper is
concluded in Section VII.

II. LOW-COMPLEXITY LINEAR PARAMETER-VARYING
APPROXIMATIONS

In this section, we consider now systems in SDC form (2). If
the system state v(t) is encoded into time-varying parameters
ρ(t) = µ(v(t)) ∈ Rm, with m ≤ n, and v(t) = ν(ρ(t)),
where µ and ν are the corresponding encoding and decoding
maps, then the SDC representation (2) can be formulated as a
linear parameter-varying (LPV) system via

v̇(t) = Ã(ρ(t))v(t) +Bu(t), y(t) = Cx(t), (5)

where Ã(ρ) := A(ν(ρ)). Such an embedding of a nonlinear
system into the class of LPV systems is typically called quasi
LPV system; see, e.g., [21]. Here we will focus on affine-linear
LPV representations, where Ã depends affine-linearly on ρ so
that (5) can be realized as

v̇(t) =
(
Ã0 +

m∑
k=1

ρk(t)Ãk

)
v(t) +Bu(t), y(t) = Cv(t),

where ρk is the k-th component of ρ and where Ã0, Ãk ∈
Rn×n are constant, for k = 1, . . . ,m.

If the state v is not exactly parametrized but only approx-
imated with less degrees of freedom in ρ̂(t) = µ̂(v(t)) ∈ Rr

such that the dimension of ρ̂(t) is much smaller than the
dimension of ρ(t), i.e., r ≪ m, with an inexact reconstruction

v(t) ≈ ṽ(t) = ν̂(ρ̂(t)) = ν̂(µ̂(v(t))), (6)

then an LPV approximation of (1) is given by

˙̂v(t) = Â(ρ̂(t))v̂(t) +Bu(t), ŷ(t) = Cv̂(t), (7)

with the approximated system matrix Â(ρ̂) := A(ν̂(ρ̂)) and
the new system state v̂(t) ∈ Rn. Note that the state v̂(t) is
of full dimension n, as our reduction efforts will target the
structure of the model rather than the dimension of the states.
Nonetheless, the techniques of approximate low-dimensional
parametrizations of states and estimates on approximation
errors of standard model order reduction (MOR) schemes
readily apply.

III. SERIES EXPANSIONS OF STATE-DEPENDENT RICCATI
EQUATIONS

The theory of first-order approximations to the SDRE for a
single parameter dependency [4] has been extended in [1] to
the multivariate case. We briefly recall the relevant formulas.

To prepare the argument, we assume that v is parametrized
through ρ and consider the dependency of the SDRE solution
P on the current value of ρ, i.e., P (·) = P (ρ(·)). Then, the
multivariate Taylor expansion of P about ρ0 = 0 up to order
K reads

P (ρ) ≈ P (0) +
∑

1≤|β|≤K

ρ(β)Pβ , (8)

where β = (β1, . . . , βm) ∈ Nm
0 := (N∪{0})m is a multiindex

with |β| :=
∑m

i=1 βi, where ρ(β) := ρβ1

1 ρβ2

2 · · · ρβm
m , and

where, importantly, Pβ are constant matrices:

Pβ := 1
β1!β2!···βm!

∂|β|

∂
β1
ρ1

∂
β2
ρ2

···∂βm
ρm

P (0).
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In particular, the expansion up to order one (i.e., the associated
first-order approximation) writes

P (ρ) ≈ P (0) +
∑
|β|=1

ρ(β)Pβ =: P0 +

m∑
k=1

ρkLk. (9)

Substituting P in the SDRE (3) by its series expansion (8)
and considering the affine-linear dependency of A on ρ yields( m∑

k=0

ρkAk

)T( ∑
|β|≤K

ρ(β)Pβ

)
+
( ∑
|β|≤K

ρ(β)Pβ

)( m∑
k=0

ρkAk

)
−
( ∑
|β|≤K

ρ(β)Pβ

)
BBT

( ∑
|β|≤K

ρ(β)Pβ

)
= −CTC, (10)

where, for compactness of the expression, we introduce ρ0 =
1 and use the relevant conventions for β = 0 ∈ Nm

0 . By
matching the coefficients for ρ(β) in (10), we obtain equations
for the matrices of the first-order approximation (9):

AT
0P0 + P0A0 − P0BBTP0 = −CTC, (11)

for P0 and(
A0 −BBTP0

)T
Lk + Lk

(
A0 −BBTP0

)
= −

(
AT

kP0 + P0Ak

)
, (12)

for Lk, with k = 1, . . . ,m; see also [1].

IV. APPROXIMATIONS OF NAVIER-STOKES EQUATIONS
THROUGH LINEAR AFFINE PARAMETRIZATIONS

As the standard model for incompressible flows we consider
the spatially discretized Navier-Stokes equations (NSEs). After
a shift of variables that eliminates constant nonzero Dirichlet
boundary conditions, the semi-discrete NSEs in the variables
of the velocity v(t) ∈ Rn and pressure p(t) ∈ Rnp with control
input u(t) writes

Mv̇ = Ñ(v, v) + Ãv + JTp+ B̃u, (13a)
0 = Jv. (13b)

with M , Ã ∈ Rn×n being the mass and stiffness matrix,
with J ∈ Rnp×n being the discretized divergence, with Ñ
accounting for the convection and with B modelling the effect
of the boundary control; see [5] for technical details. For the-
oretical considerations, the incompressibility constraint (13b)
can be resolved and the velocity v can be determined by the
equivalent projected equations

Mv̇ = N(v, v) +Av +Bu, (14)

where N(v, v) = ΠTÑ(v, v), A and B denote ΠTÃ and ΠTB̃,
respectively, and

Π := In −M−1JT
(
JM−1JT

)−1
J (15)

is the so-called discrete Leray projector; see [20] for properties
of Π and formulations in the coordinates of the subspace
spanned by ΠT and see [7] where we have proven that the
SDRE feedback based on (14) is equivalent to that of (13).

By the homogeneity in the boundary conditions, the
nonlinearity N(v, v) that models the convection is linear
in both arguments (see, e.g., [5] for explicit formulas of
N(·, ·) in a spatial discretization) so that both N1(v) : w 7→
N(v, w) and N2(v) : w 7→ N(w, v)can be realized as state-
dependent coefficient matrix and so that for any blending
parameter λ ∈ R, an SDC representation is given as

N(v, v) = λN1(v)v + (1− λ)N2(v)v =: Nλ(v)v. (16)

Even more, if in an approximative parametrization as in (6),
the decoding is linear, then the induced LPV approximation
is affine linear; see [18, Rem. 2].

In fact, let Vr ∈ Rn×r be the matrix of r POD modes
designed to best approximate the velocity in an r-dimensional
subspace of Rn, then with

ρ̂(t) := V T
r v(t) and ṽ(t) := Vrρ̂(t)

and the approximation property of the POD basis, we obtain

v(t) ≈ ṽ(t) = Vrρ̂(v(t)) =

r∑
i=1

ρ̂i(v(t))v̂i,

where v̂i, for i = 1, . . . , r, are the columns of Vr ∈ Rn×r.
By the linearity of v → Nλ(v), the SDC representation (16)
is readily approximated by

N(v)v ≈ N(ṽ)v =

(
r∑

i=1

ρ̂iN̂i

)
v (17)

with N̂i := Nλ(v̂i), for i = 1, . . . , r.
From the orthogonality of the POD basis it follows that

ṽ(t) = VrV
T
r v(t) → v(t) uniformly with r → n, r ≤ n, which

can be translated into convergence of the LPV approximations(
r̂∑

i=1

ρ̂iN̂i

)
→

(
r∑

i=1

ρ̂iN̂i

)
→

(
n∑

i=1

ρ̂iN̂i

)
= N(v),

for r̂ → r → n and r̂ ≤ r ≤ n. Practically, in view
of computing approximations to the SDRE solution and the
associated feedback law, this means that the series expansion
in (9) can be augmented or reduced by simply adding or
discarding parameters and the corresponding factors Lk.

V. HANDLING OF HIGH-DIMENSIONAL MATRIX EQUATIONS

The solution of the arising matrix equations poses several
challenges as outlined in the following. First, we note that
for systems like the spatially discretized NSEs (14), a mass
matrix M needs to be incorporated. Since M is typically
positive definite and, thus, invertible, such systems are readily
transformed into the standard form of (2). In practice, how-
ever, it is beneficial to consider formulations of the Riccati
and Lyapunov equations (11) and (12) without the explicit
inversion:

AT
0P0M +MTP0A0 −MTP0BBTP0M = −CTC, (18)

and

AT
0,clLkM +MTLkA0,cl = −[MTP0Ak +AT

kP0M ], (19)

6372



for k = 1, . . . ,m, where A0,cl := A0 − BBTP0M is
the closed-loop system matrix corresponding to (18); see,
e.g., [6]. Generally, these formulations cover problems where
the mass matrix is not invertible as in differential-algebraic
equations like the Navier-Stokes equations in the original
formulation (13), for the presentation we refer to the projected
system (14). In practice, the system matrices in (14) and the
involved projection Π from (15) are realized implicitly during
the application of iterative matrix equation solvers for (18)
and (19); see [9].

Other than that, the solution of these large-scale matrix
equations is a nontrivial task because of the memory re-
quirement of the solutions P0 ∈ Rn×n and Lk ∈ Rn×n,
k = 1, . . . ,m. State-of-the-art solvers address this issue by
computing approximative low-rank factorizations. In fact, the
stabilizing solution of the Riccati equation (18) namely P0

is positive semi-definite such that, if the dimensions of inputs
and outputs are small, it can be well represented by a low-rank
Cholesky factorization, i.e., P0 ≈ Z0Z

T
0 with Z0 ∈ Rn×ℓ0 and

ℓ0 being smaller than n by several orders of magnitude; see,
for example, [30] for an analysis of the low-rank structure of
solutions to Riccati equations. One can find various numerical
methods in the literature to efficiently compute these low-
rank factors of Riccati equations without ever forming the
full solution P0; see [10] for an overview. In our numerical
experiments, we rely on the low-rank Newton-Kleinman-ADI
method [11].

The solution of the equations (19) for the Lk’s comes
with the additional challenge that the solutions are symmetric
but indefinite, so that the standard approach of computing
Cholesky factors does no more apply. Here, we have to rely on
the low-rank factorization P0 ≈ Z0Z

T
0 to define the low-rank

indefinite factorization of the right hand sides as

MTP0Ak +AT
kP0M ≈

[
ZT
0M

ZT
0Ak

]T [
0 Iℓ0
Iℓ0 0

] [
ZT
0M

ZT
0Ak

]
that enables the approximation of the solution to (19) as
Lk ≈ ZkDkZ

T
k , for k = 1, . . . ,m, where Dk is a symmetric

but possibly indefinite matrix. To compute the factors, we are
using the LDLT-factorized low-rank ADI method from [25].
However, as the size of the factors in the right-hand side
is two times that of the Z0 factors, which is comparatively
large, intermediate compression steps are needed to facilitate
the computation.

VI. NUMERICAL EXPERIMENTS

The code, raw data and results of the presented nu-
merical experiments are available at [19]. For the so-
lution of Riccati and Lyapunov equations in MATLAB
9.9.0.1467703 (R2020b), we used the solver implementa-
tions from MORLAB version 5.0 [12] and M-M.E.S.S. ver-
sion 2.2 [28]. For the simulation part, we resort to our Python
interface [17] between SciPy and the finite element toolbox
FEniCS [26].

We consider the stabilization of the flow in the wake of
a 2D cylinder through two control inlets at the periphery of

Figure 1. Snapshots of the flow in the unstable steady state and in the fully
developed periodic vortex shedding regime.

the cylinder. Measurement outputs are defined as averaged
velocities over a small neighborhood of three sensor points
in the wake; see [5] on technical details, the detailed con-
trol setup, how the Dirichlet control is relaxed as penalized
Robin boundary conditions and how the coefficients of the
system (13) are exported for the controller design.

As for the numerical setup, we consider here the Reynold-
snumber Re = 60 and start from the associated non-zero
steady state, which is to be stabilized; see Fig. 1 for the basic
geometry of the example and snapshots of the steady state and
periodic regime that develops if no stabilization is employed.
For the spatial discretization, we use quadratic-linear Taylor-
Hood finite elements on a nonuniform mesh that leads to a
system of size 57 000. For the time integration, we use an
implicit-explicit Euler time stepping method that in particular
treats the linear part and the incompressibility constraint
implicitly, whereas the nonlinear part and the feedback is
treated explicitly in time. Generally, we are concerned with a
system of type (13) with

[
v(t)T p(t)T

]T ∈ R57 000 with the
input u(t) ∈ R2 and the output y(t) ∈ R6 extracted from the
velocity state by a linear output operator C as y(t) = Cv(t).

The procedure of the simulations comprises the following steps:
(0) Compute the steady state for u = 0 to be used as reference

for the stabilization, for the shift of the system that removes
nonzero boundary conditions, and as the starting value for
the closed-loop simulations.

(1) Perform open-loop simulations to collect data for the POD
basis for the affine-linear LPV approximation (17).

(2) Compute the Riccati solution P0 and the Lyapunov solutions
Lk via (18) and (19).

(3) Close the control loop with the nonlinear feedback law

u(t) = −BT(P0 +

r∑
k=1

ρ̂k(v(t))Lk

)
Mv(t). (20)

In the presented numerical study, the relevant steps were
realized as follows. To acquire the data for the POD basis, we
take 401 snapshots of the velocity equally distributed on the
time interval [0, 0.5] for the test signal

u(t) =
[
sin(t) 0

]T
, (21)

and define Vr as the matrix of the r leading left singular
vectors with respect to the weighted inner-product induced by
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the mass matrix M of the finite element discretization; see [3].
Then, the LPV approximation (16) is computed for the NSEs
with λ = 0.75. In the following, we let xSDRE-r denote the
feedback definition by the truncated SDRE series approxima-
tion (20) of parameter dimension r and let LQR denote the
linear-quadratic regulator, which is readily defined as

u(t) = −BTP0Mv(t).

Note that the LQR resembles xSDRE-r for r = 0; cf. (20).
To trigger the instabilities in the closed-loop simulations,

we apply the test signal (21) on a short time [0, tc] before
we switch on the feedback at t = tc. In this way, the system
will deviate from the linearization point. For tc too large, the
state may have left the region of attraction for which the linear
LQR or the SDRE-based controller will stabilize the nonlinear
system.

In our experiments, we employed Tikhonov regularization in
the form of an α ∈ [10−2, 103], which is included by replacing
the original input matrix B by the scaled version B̆ := 1√

α
B

in the definition of the SDRE (3) as well as in the solved
Riccati and Lyapunov equations (18) and (19). Consequently,
the corresponding feedback needs to be scaled as well, e.g.,
in the LQR case as u(t) = − 1

αB
TP̆0Mv(t), where P̆0 solves

the Riccati equation with B̆.
For a reliable estimate on the potential improvements by

the inclusion of nonlinear feedback relations, we discretized
the parameter domain of (α, tc) and recorded the results of
the closed-loop simulations for those parameters values that
appeared to be at the border of the domain of attraction; see
Fig. 2. Generally, we can confirm that a smaller regularization
parameter α, increases the performance in the sense that the
controller stabilizes the flow after larger idle times tc. However
the domain of attraction does not cover arbitrarily large tc such
that numerical issues with less regularized feedback actions
(for α < 10−2) are observed, too.

From our simulations (see Fig. 2), we can say that the
inclusion of nonlinear modes in the feedback gain reliably
increases the domain of attraction. In particular for a fixed
idle time tc during which the controller is not active and the
flow evolves exponentially away from the linearization point,
the xSDRE-r approach generally allows for larger values of
α, which is preferable from a numerical (more regularization)
and potentially practical (less input energy is used) perspective.

This widening of the domain of attraction becomes evident
for parameter values, where the LQR-feedback fails and the
xSDRE-r approach succeeds. The effect of the nonlinear
feedback can be clearly seen in Fig. 3 and 4, where the
norm of the input signals over time for the LQR feedback
and different truncation orders in the xSDRE-r feedback are
shown. In Fig. 3 and 4 we can see a decay in the input signal
norms for xSDRE-r (indicating stabilization) and a growth
for the LQR feedback (indicating that no stabilization was
achieved). Moreover, for the parameter setup of α = 100 and
tc = 0.2114, a continuous performance improvement with the
truncation order r can be observed in Fig. 3. The effects of
less regularization can be observed in Fig. 4, which shows

0 0.2 0.4 0.6

10−2

100

102

startup time tc

re
gu

la
ri

za
tio

n
α

failed stabilization
successful LQR
successful xSDRE

Figure 2. Overview about the experimental results with a sweep over the
relevant part of the (α, tc) parameter domain. For an illustration of the
feedback action for parameter configurations (α, tc) = (100, 0.2114) and
(α, tc) = (1, 0.6819) for which, in particular, xSDRE-r stabilizes the system
while LQR fails to do so, see Fig. 3 and 4, respectively.
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10−1
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LQR

xSDRE-2

xSDRE-5

xSDRE-10

Figure 3. Norms of input signal for the LQR and different r in the xSDRE-r
feedback for the case of α = 100 and tc = 0.2114. Stabilization and a
continuous performance improvement for xSDRE-r can be observed, while
the classical LQR-feedback fails.

the less regular feedback action. Nonetheless, unlike LQR, the
xSDRE-r approach with r = 10 achieves stabilization.

Overall, we can state that the truncated SDRE approach,
with an almost negligible overhead in the simulation phase, is
capable of improving the feedback performance if compared
to the classical linear but provably robust and performant LQR
feedback.

1 2 3 4 5 6 7

10−2

10−1

100

time

no
rm
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fe

ed
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ck

LQR

xSDRE-2

xSDRE-5

xSDRE-10

Figure 4. Norms of input signal for the LQR and different r in the xSDRE-r
feedback for the case of α = 1 and tc = 0.6819. The xSDRE-10-feedback
clearly stabilizes the system in contrast to the classical LQR approach and
xSDRE-r for smaller values of r.
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VII. CONCLUSION

We have presented here a general framework that uses
the embedding of nonlinear systems in the class of LPV
systems, POD for reduction of the complexity of the parameter
dimension, and the quadratic structure of the convection term
in the Navier-Stokes equations to make the nonlinear feedback
design through truncated expansions of the SDRE applicable.
With state-of-the-art matrix equation solvers, computational
feasibility of this approach was achieved, too. As illustrated by
a numerical example, this generic nonlinear approach provides
a measurable improvement over the closely related classical
LQR approach with a small additional computational effort at
runtime.

The potentials and needs for future work are manifold.
Firstly, it would be interesting to investigate expansions of
second order. Secondly, we have not paid particular atten-
tion to the definition of the coordinates for the affine LPV
approximation and simply resorted to POD. Since a small
dimension r is most important, in particular if one wants
to consider a second-order expansions of the SDRE, other,
possibly nonlinear parametrizations might be considered. For
the analysis of the approximation, suitable measures for the
residual, e.g., in the SDRE approximation, need to be derived
together with formulas for feasible evaluations in the large-
scale system case.
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