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Adaptive model predictive controller for building thermal dynamics
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Abstract—Model predictive controllers are becoming
widespread in building thermal dynamic control and energy
management systems. Decreasing building energy consumption,
load shifting, cost reduction, and indoor air quality improve-
ment are some of the topics that these controllers have been
shown to be efficient. However, they rely on accurate models
that are hard to develop and can be expensive. Additionally,
the model should be time-varying to represent the thermal
dynamics in a building. To address this issue, this paper
proposes an adaptive model predictive controller for thermal
dynamic control in buildings. It includes an adaptive parameter
identification algorithm that updates the model parameters
and guarantees that the estimated parameters converge to the
actual values. Moreover, a model predictive controller with an
additional constraint to ensure the boundedness of the system
trajectories is introduced. The proposed framework uses a
simple linear grey-box model of the thermal dynamics, as
a nominal model, and the adaptive parameter identification
updates the model. This eliminates the need for an accurate
model and an enormous bank of data, while the benefits of
the model predictive controller and adaptive controller are
retained. Simulation results are also provided to demonstrate
the capability to identify the deviations and the efficiency of
using the updated model in the model predictive controller
design.

I. INTRODUCTION

heating, i.e. space and water heating, is responsible for
around 40% of total final energy consumption in Europe [1].
Efficient management of building energy demand plays a
vital role in balancing supply and demand, reducing the costs
of extending the power plants, reducing CO, emissions, and
enhancing indoor thermal comfort [2].

Various strategies are employed for building thermal sys-
tem control [2]-[5]. Among them are 1) rule-based con-
trollers [6], [7], 2) model-based and optimal controllers [8]—
[12], and 3) data-driven machine-learning methods [13]-[15].
Rule-based controllers are suitable for single-input-single-
output (SISO) systems, while the other two can be employed
in multi-input-multi-output (MIMO) systems relatively eas-
ily. Furthermore, guaranteeing optimality cannot be achieved
in rule-based methods.

Model predictive controllers (MPCs), which are among
model-based and optimal control methods, have been shown
to be effective for building energy management in many
studies [9], [16]. While non-adaptive MPCs, in their classical
form, can overcome the drawbacks of rule-based controllers,
they cannot consider uncertainty and dynamic changes. They
also rely on accurate models that are hard to develop and can
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be expensive [16]-[18]. Grey-box models are well-known in
building energy management systems since they use prior
physical knowledge about the building as well as data.
Statistical methods can then be used to select an accurate,
but at the same time, low dimensional model of the system
appropriate for control purposes [19]-[22].

Machine learning control approaches are capable of deal-
ing with modeling problems using data-driven approaches.
Also, using deep reinforcement learning methodologies, they
can adapt the control mechanisms once a dynamic change
occurs [14], [23]. However, they need an enormous bank of
data, high computational power, and a model to learn control
policies.

The need for an optimal and adaptive control strategy that
does not rely on large data sets and expensive modeling
procedures leads to adaptive MPC approaches. The capability
of these methods is integrating adaptive parameter estimation
with MPC. A discrete adaptive generalized predictive control
for a heating, ventilating, and air conditioning (HVAC)
system is introduced in [24], [25]. In this paper, parameter
adaptation is achieved using the recursive least squares
estimator. Stability analysis of the adaptive generalized pre-
dictive control is provided in [26], [27]. In [28], a learning-
based MPC with a discrete-time model is used to learn and
compensate for the heating demand of an HVAC system. An
adaptive MPC with a simplified moving-horizon estimation
for parameter estimation is proposed in [29].

In this paper, we propose an adaptive MPC to generate
optimal control signals while considering the system param-
eter deviation and constraints using a linear grey-box model
of the thermal dynamics. Unlike the method in [29], where
the nonlinear structure of the true system is assumed to be
known, we considered the true system to have a linear form
with an additional nonlinear term. Thus, manual derivation of
a first-principles model beforehand and the need for extensive
data collection are no longer necessary. In particular, we
focus on building thermal dynamics, where a validated grey-
box model can be obtained using an automated identifica-
tion mechanism [22]. Furthermore, different from [29], a
continuous-time parameter identification method is employed
and convergence analysis is provided. Inspired by [29], a
similar constraint is added to the MPC formulation to drive
the system trajectories toward the origin.

The main contributions of this paper are as follows: 1)
The overall framework does not need a complicated model.
It utilizes a linear grey-box model that can be generated using
short-period data collection and an automated identification
method, e.g., the method presented in [22]. Thus, the pro-
posed method saves the cost and time that are generally



required for modeling. 2) After a model is obtained, the
proposed approach can be implemented in various zones
with similar, but not necessarily identical, thermal dynamics.
The adaptive identification method can identify the true
parameters and drive the parameters toward them. In parallel
MPC takes care of generating optimal control commands
based on the updated model. 3) If true dynamics are deviated
due to some fault, the adaptive method identifies it and up-
dates the model accordingly. 4) Convergence of the adaptive
identification method and the boundedness of the states in
MPC are investigated using Lyapunov stability analysis.

This paper is organized as follows. Section II presents the
true system dynamics as well as the model and introduces
the problem. In Section III, we design an adaptive parameter
identification algorithm with convergence analysis. In Sec-
tion IV, we present the adaptive MPC with a boundedness
analysis. Simulation results are added to demonstrate the
effectiveness of the identification method and the adaptive
MPC approach. A summary is given in Section V.

II. PROBLEM STATEMENT

Consider the true system dynamics
X =h(x,v,A,B)=Ax+ Bv+g(x,v), (1)

where x € R" is the state, v € R™ is the control input,
g(x,v) € G is the unmodeled dynamics, and % represents
the nonlinear dynamics. For simplicity of presentation, we
assume that there is no measurement noise and forecast
error; however, the results can be extended to the case with
measurement noise and forecast error by integrating them
in g. As introduced in [21], many thermal systems can be
modeled as resistors and capacitors (linear RC models), and
statistical methods can be employed to validate and find the
best model [20]. It is shown in [21] that more complex
models may not necessarily lead to a better model. In this
paper, we assume that there exists a linear model that behaves
similarly as (1) such that

X = AX + B|V + Bod = AX + Bi, )

where ¥ is the state of the model, B=[B| B>],iu=[v d]" €
R™*1d ig the input vector, consists of control input v and
bounded disturbance d, A € R™" is the state matrix and
B € R™(m+na) g the input matrix. In this setup, A and B
are considered unknown. To delineate the variables, we add
a bar above x and v for the model. It is noted that B,d is
not necessarily equal to g(x,v).

Consider the thermal dynamics of a building. One simple
model consists of an interior, heater, envelope, and ambient,
with two storing elements: 7; as interior temperature and 7¢
as envelope temperature. RC model of the thermal dynamics
is shown in Figure 1. The thermal dynamics can be written
in the following state-space representation as

D,
al

where T, = [T; T.]", ®;, is the heat input, and T, is the
ambient temperature as a disturbance. C, and C; are the
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Fig. 1. RC circuit representing a simple model for the heat flows in
buildings [21].

thermal capacitance of the envelope and interior, respectively.
Moreover, Re, and Rj. are the thermal resistance between the
building envelope and the ambient, and between the interior
and the building envelope, respectively.

Model predictive controllers are able to control thermal
and energy systems efficiently, due to their capability to find
the optimal solution, constraint consideration, and forecast
data usage. Model predictive controllers are based on solving
an optimization problem utilizing a mathematical model that
represents the dynamics of the real system.

Suppose that the thermal dynamics of a building can
be modeled as (2), where A and B are known. Then, the
optimization problem can be formulated as

n
min / J(X,v,d, p)dt 3)
v tl
s.t. x=Ax+Bi, x()=x(t), )
veV, @)

where J is a convex function, p is an additional signal, and
the control inputs are restricted to the convex set V C R™.
For example, v is the required power for heating (v > 0)
and cooling (v < 0) of an HVAC system. It is assumed that
weather forecasts are available, e.g., for ambient tempera-
ture. During each time interval, the optimization problem is
formulated as (3)-(5) and can compute the optimal control
trajectory that satisfies the constraints. However, only the first
element of this trajectory is adopted.

It is seen that the optimization problem (3)-(5) relies on a
model of the system. Although, this model is time-invariant
in (4), the dynamics of the real system may deviate from it
due to aging, faults, human-in-the-loop changes, etc. These
changes require to be taken into account so that it does not
diminish the controller performance.

An adaptive identification algorithm should be employed
to identify the parameters. However, introducing time-
varying dynamics to the MPC formulation may cause insta-
bility problems. In the sequel, we introduce an adaptive algo-
rithm to collaborate with MPC, leading to an adaptive MPC.
A new constraint is also added to the MPC optimization
formulation. Moreover, to guarantee that the model variations
do not cause problems, a Lyapunov analysis is added.

III. ADAPTIVE PARAMETER IDENTIFICATION

In this section, we introduce an adaptive identification
algorithm to keep track of the parameters of the system.



Consider that the system can be modeled as (2), where the
true values of the elements of A and B matrices are unknown.
Also assume that A is stable and state accessible, using some
measurement or estimation methods.

Remark 1: The matrix A being stable is a common as-
sumption for the thermal dynamics of buildings. See for
example [20], [21]. Also, with more accessibility of the
sensors and their price reduction, measuring states seems
to be straightforward. Furthermore, the states of the system
can be selected based on the measurements of the sensors in
hand so that state accessibility is provided.

In the following, we first provide two necessary definitions
and then introduce the adaptive parameter identification
mechanism for identifying the elements of the unknown
matrices A and B. To this end, we use Lyapunov stability
analysis to guarantee that the states remain bounded.

Definition 1: The element-wise projection Proj(6; ;,Y; ;)
is defined as [30], [31]

Proj(0;,;,Y; ;) 6)
_ { Yi ;=Y ;if(6;;) if f(6;;)>0& Yi,j(%) >0
Yl,]

otherwise,
where f(.) is a convex and continuously differentiable func-
tion, defined as

(6;,; -6 =i, ) 0ij = Omax;; + i j)
(emax,j,_,- - gt ])gl J

and where {; ; is the projection tolerance. Omax; ; and Omin; ;
are the upper and lower bound of the (i, j) element of 6.
This bound form the projection set, Qprj, = {6 : 6;; €
[Omin; j» Omax; ;1}. Also, a measure of the projection set can
be provided as Ag = max; ; |0max; ; = Omin; ;|-

Definition 2: The signal u is said to be persistently excit-
ing (PE) if for all ¢ > #¢ there exists positive constants 7" and
7, such that [32]

min,-,j

£ = , (D

mm, j

t+T
/ o()To(r)dT > . ®)
t

Theorem 1: Consider the model (2) with a stable state
matrix and assume that the palr (A, B) is controllable.
Suppose that the parameters of A and B are updated using
the following adaptive laws,

A

A =Proj(A, yaexT), 9)
B= Proj(B, ygeu"), (10)

where x and u = [v d]" are measured values from the true
system (1), y4 and yp are positive scalars, and Proj is defined
in Definition 1. If u is bounded, satisfies the conditions
of Definition 2 about PE, and each of its elements con-
tains different frequencies, then the estimation error remains
bounded. If in addition g(x,v) = g(x,v) — Bod = 0, then A
and B converges to A and B, respectively.

Proof: Consider an arbitrary matrix I',;, with negative
eigenvalues. Add and subtract I',,,x in (2), then it leads to

Xx=Tpx+(A-T)x+Bu+g(x,v). (1n

The estimation model can be derived as [32]

£=Tuk+ (A(t) = Tp)x + B(Du, (12)
where A(t) and B(r) are the estimates of A and B at time
t, respectively. Defining the error as e(t) = x(¢) — £(¢) the
error dynamics can be obtained as

é=Tne—A(t)x — B(t)u + g(x,v), (13)
where A(f) = A(t) — A and B(t) = B(r) — B are deviations of
identified parameters from their actual values. Consider the
Lyapunov function

V=e"Pe+tr(ys 'ATPA) +tr(yg ' BT PB) (14)

where tr(.) is the trace operator and P is a positive def-
inite symmetric matrix solution of the Lyapunov equation
I} P+ PI,, = -0, where Q is a symmetric positive definite
matrix. The time derivative of the Lyapunov function along
the trajectories can be obtained as

V=—eTQe+2tr(ya " (ATP(A — yaex™)))

+2tr(yg (BTP(B - ygeu™))) +2¢"Pg.  (15)

Using the adaptive laws (9) and (10) and using the prop-
erties of projection algorithm [30], it implies that V <
_eTQe + 2eTPg < _/lmin(Q)He“2 + 2||e||G/lmax(P)v where
G > ||gll, and Apin(.) and Apax(.) provide the minimum
and the maximum eigenvalues. Therefore, V < 0 if ||e|| >
(2GAmax(P))/ (Amin(Q)). This implies that the identification
error, e, remains bounded.

If g = 0, it can be shown that V < —e"Qe < 0. A
negative semi-definite Lyapunov function derivative ensures
that the error signal e and the adaptive parameters, A and
B, are bounded. This also leads to the boundedness of A, B,
and é. In addition, it can be shown that fot e(t)TQe(t)dt <
- fot V(t)dt < V(0) for all + > 0, which reveals that
||e||2L2 < V(0)/Amin(Q), where Anin(.) stands for minimum
eigenvalue of a matrix. Therefore, given that e € £, N L
and ¢ € L, and using Barbalat’s Lemma, e(¢) converges to
zZero as t — oo, that is, A and B elements converge to that
of A and B, respectively. [ ]

Remark 2: The adaptive parameter identification method
is inspired by the method described in [32]. Different from
[32], this study analyzes the case when g # 0 and utilizes
the projection operator. Using the projection operator in the
adaptation laws (9)-(10) guarantees that the adaptive param-
eters, i.e., the elements of A and B, are bounded, regardless
of any stability condition. In [30], a step-by-step approach
is suggested for establishing projection boundaries. Also,
[31] presents a modified element-wise projection method that
ensures stability while bounding the magnitude and rate of
change of adaptive parameters.

Remark 3: This paper focuses on building thermal dy-
namics. These dynamics represent a dissipative system with
stable eigenvalues [33]. Therefore, the assumption on the
stability of the state matrix in Theorem 1 holds.
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Fig. 2. Identification of the elements of A and B.

A. Simulation results

This section provides a numerical example to demonstrate
the adaptive identification algorithm results. Consider the
thermal dynamics of a building that can be modeled with
two states, like the model previously shown with C. =
1.4 kWh/°C, Ci = 5.7 kWh/°C, Re, = 1.18 °C/kW and
Ric = 2.4 °C/kW, that are taken from [34]. With the given
parameters, the elements of the state and input matrices
are ap;; = —0.073, ajp = 0.073, az) = 0.3, ajyy = —0.9,
by = 0.17, by = 0, bp; = 0, and by, = 0.6. Suppose
that a landlord wants to add or upgrade the insulation of
the outer walls (envelope). This leads to an increase in
the envelope resistance and the capacitance between the
envelope and the ambient. Specifically, the new values are
Ry = 2 °C/kW and C. = 2 kWh/°C. The process of
adding or upgrading the insulation can be completed in a
relatively short amount of time compared to the building’s
thermal dynamics. Therefore, we assume that these changes
occur at time ¢t = 30 hours and that the parameters of
the state and input matrices will change accordingly to
ail = —0.073, alpp = 0.073, ajz = 0.166, ajyy = —0.5,
b11 = 0.17, b12 = 0, b21 = 0, and b22 = 0.33. The goal
is to identify the values of the elements of A and B using
adaptive identification. Using the estimation model (12) with
I, = diag(—7, —7), and employing the adaptation laws (9)-
(10), and ensuring the PE of the signals by adding auxiliary
inputs v = 0.1sin(2¢)+cos(6¢) and v, = sin(5¢)+0.1cos(31),
Figure 2 demonstrates the identification of the elements of
matrices A and B, respectively. It is seen that the method
can track the parameters of the state and input matrices, A
and B. Figure 2 excludes b1, and by, as they are zero.

IV. ADAPTIVE MODEL PREDICTIVE CONTROLLER

The previous section introduced the adaptive parame-
ter identification algorithm. In the following, we propose
the adaptive model predictive controller which utilizes the
parameter identification in the model predictive controller.

Stability analysis is provided to guarantee the stability of
the proposed approach.

Suppose that the system is state accessible, the assump-
tions of Theorem 1 hold, and states are measured at time
ty, as x(t4). In addition, the control input and disturbance
prediction at time t, is in hand. Then, using the adaptive
parameter identification (see Section III), A and B are
calculated. Having A and B, and x(t4) as an initial condition,
one can formulate the optimization problem for the time
interval 1 € [t4,1441) as

tq+N

min J (X, 9,d, p)dt (16)
% tq

s.t. X(t) = Ax(0) + Bia(r), %(t) = x(ty) (17)

A= Proj(A, yaex"), B= Proj(B, ygei'), (18)

FevV, (19)

Vi(ty) (Ax(ty) + Bu(t,)) < Vi(ty)(Ax(ty) + Bu'(1,)), (20)

where (16) includes integration of the cost function J over
the control horizon N, (17) is the dynamic estimate with
initial condition x(#,), measured from the system (1) at
sampling time 7, u*(t4) = [v*(t4) d(t4)] " is the vector con-
sisting of a stabilizing control (v*(¢,)) at sampling time ¢,
e.g. linear quadratic regulator (LQR) v*(t;) = KLorXp(tg),
and a disturbance measurement (d(z,)) at sampling time ¢,
tg+i = ty +iAt, and where i is the sample nuerer and At
is the sample interval. Moreover, using (18), A and B are
calculated as estimates of A and B. The control input u
and u* is also assumed to be constant during each sampling
interval, that is, u(t;) = u(t) and u*(t4) = u*(t), for all ¢ €
[t4, tg+1). In addition, the inequality (20) is added to keep
the closed-loop system trajectories toward the equilibrium
point. The continuously differentiable function V, employed
in inequality (20), will be introduced in more detail next. It
is noted that V, stands for g—‘;.
Using the projection algorithm, defined in Definition 1, it
is ensured that A(r) and B(t) belong to Qproj, and Qi
for all # > 0, respectively, with measures Ay and Ap. For
all A € Qproj, and B e $pr0j,» there exists a stabilizing
control law, v* € V for the dynamics (2), such that (2) is
exponentially stable. Then, using Converse Theorems [35],
for all A € Qproj,, and Be Qproj,, there exist a continuously
differentiable function V(¢) that satisfies the inequalities

killx||* < V(1) < kallx]|?, 1)
V(1) (Ax(t) + Bu* (1)) < —ksllx||%, (22)
V()] < kallx]], (23)

where ki, ko, k3, and k4 are positive constants. It is noted
that V(¢) stands for V(x(z)). Therefore, with the existence
of the stabilizing controller, v*, the set Q = {x : V(x) < 0}
exists. In the following, the stability analysis of the proposed
adaptive model predictive controller is investigated.

A. Stability analysis

In the following, we provide the stability analysis of the
adaptive MPC and prove that the states remain bounded



for each time interval [7,,,+1). Notice that the continuous
differentiable property of V and the Lipschitz property of
h(x,v,d, A, B) provides that there exist positive constants
ky, ka, kg, kx, ka, kg, and p, such that for each x,x; €
Q,={x:V(x) <0,V(x) <p} CQ and A € Qproj,» and
B € Qpyj,» the inequalities

[|h(x,v,d, A, B)|| <R, (24)
l|h(x1,v,d,A, B) — h(x2,v,d, A, B)||
< kxllxr = xo|| + kaAa + kpAp, (25)
IV (x1)h(x1, v, d,A, B) = Vi (x2)h(x2, v, d, A, B)||
< kllxy — x|l + kada + kpAp,  (26)

hold, where A4 and Ap are the projection measures for
matrices A and B, respectively. The following lemma is
provided before the main stability theorem.

Lemma 1: [36] The matrix exponential norm, ||eA(~)||
with Hurwitz A is bounded as ||eA(=0)|| < ke~ €('~10) for
all t > 1y, where k = || X-||X]], & = 1/(2]|1X]]), and X
is the solution of the Lyapunov equation A”X + XA = -1,
where [ is the identity matrix.

From (2) and using Lemma 1, there exists a state transition
matrix ®(7,1,) for all v € [ty,t541) With [[®(7,1,)]] <
ke $(*~1a) such that

x(1) = D(7,14)x(24) +/ (7, y)Bu(ty)dy. 27

q

Considering ||u|| < U leads to

lIx(D)ll < ||®(Tatq)||||x(tq)||+/ DT, )1BI [ (2g)l1dx

q

< k||x(ty)|| + kABU J&. (28)

Remark 4: 1t is noted that k and € in inequality (28) are
dependant on A. While A is unknown, the range of change
of its elements is known and forms the projection boundary.
To find an upper bound for ||x(7)|| independent of A, the
maximum value of k and the minimum value of & can be
calculated by using Lemma 1 and by solving the following
optimization problems:

kmaxzmax ||X_l||||X||
s.t. A€ Qpoj,, ATX+XA=-I, (29)
and
Emin = min 1/(2[|X]])
5.t A€ Qpoj,, ATX+XA=-I. (30)

Thus, [[x(D)| < k= kmax| [X(19) 1] + kmaxABU /& min.

Theorem 2: Consider the adaptive MPC with optimization
problem (16)-(20) and adaptive update laws (18) with pro-
jection algorithm given in Definition 1. If there exist positive
constants At, p and p; < p such that

—k3p1/ko + kyRAt + kaAa + kpAp < 0,
At < (p1 = p)/(=k3p1/ka + kxkp + kala + kpAp),

€1V
(32)

then for each initial condition x(#,) € Q,/Q,, = {x : V(x) <
0,01 < V(x) < p}, the solution of (2) remains bounded in
/2y,

Proof: Suppose that there exist p and p; such that
x(tg) € Q,/Q, = {x : V(x) < 0,p; < V(x) < p}. Also,
consider the continuously differentiable function V(7) for
T € [tg,t4+1). From (20), (22) and (26), we have

V(1) = Vi (x(1))(Ax(1) + Bu(tg))
< Vie(x(0) (Ax(7) + Bu(iy)) = k3|lx(1)11?

- Vx(x(tq))(Ax(tq) + Bu(tq))
< —k3p1/ky + ky||x(7) = x(1g)|| + kala + kpAp.

(33)

Also, using the Lipschitz property (24), it obtains that
[lx(7) — x(t4)|| < RAt. Thus, an upper bound for (33) is
provided as

V(1) < B =—kspi/ko+ kxRAt + kaAa + kgAp.  (34)
Using (31) and (34), we get V(t) <0,V1 € [t4, tg+1). Thus,

V(x(1)) < V(x(19)) + B(T —1g) < p+ B(T —14),

which implies that V reduces to p; in the time interval

[tq, 14+ ‘%). Therefore, (32) should also be satisfied. This

guarantees that the trajectories cannot leave /€, . [ ]

(35)

B. Simulation results

The simulation results of the adaptive MPC in the presence
of parameter deviations are demonstrated using the same
numerical values and simulation scenario as those in Section
II-A. These results are provided in Figure 3. The two top
panels show the indoor temperature and heat input with
adaptive and conventional MPCs. The conventional MPC
performs incredibly well for the period ¢ < 30 since it is
aware of the building’s thermal dynamics during this period.
On the other hand, for the period ¢ < 30, the indoor temper-
ature by the adaptive MPC oscillates at the beginning and
converges to the reference value ultimately. By increasing
the insulation of the outer walls at ¢+ = 30, the ambient
temperature has less effect on the indoor temperature. As a
result, the building needs less energy to maintain the indoor
temperature after + = 30. While the conventional MPC is not
aware of this dynamic change, the adaptive MPC identifies
this and adjusts the heat input. Furthermore, except for a
relatively short transient period, the temperature deviation
from the reference is within +1 °C bound, demonstrating
that the adaptive MPC can provide thermal comfort. The
third panel shows the ambient temperature while the bottom
panel displays the trajectories of Figure 2.

V. SUMMARY

An adaptive MPC in the presence of uncertain system
dynamics is proposed for the thermal dynamics of buildings.
The method needs neither an expensive model nor historical
data and can be implemented in buildings with similar ther-
mal dynamics. Lyapunov analysis for parameter convergence
and state boundedness is also provided. Simulation results
show the effectiveness of the proposed method.
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