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Abstract— We extend the relation between univariate polyno-
mial optimization in one complex variable and the polynomial
eigenvalue problem to the multivariate case. The first-order nec-
essary conditions for optimality of the multivariate polynomial
optimization problem, which are computed using Wirtinger
derivatives, constitute a system of multivariate polynomial equa-
tions in the complex variables and their complex conjugates.
Wirtinger calculus provides an elegant way to differentiate real-
valued (cost) functions in complex variables. An elimination
of the complex conjugate variables, via the Macaulay matrix,
results in a (rectangular) multiparameter eigenvalue problem,
(some of) the eigentuples of which correspond to the stationary
points of the original real-valued cost function. We illustrate
our novel globally optimal optimization approach with several
(didactical) examples.

I. INTRODUCTION

Complex-valued signals arise in many areas of science and
engineering, like communications, systems theory, oceanog-
raphy, geophysics, optics, and electromagnetics [1], [2].
Especially in signal processing, one often encounters (nonlin-
ear) functions in complex variables [3], for example, transfer
functions of linear time-invariant models. An important issue
when working with complex-valued signals and complex
variables is related to (nonlinear) optimization. Most of the
optimization literature deals with real variables only, seem-
ingly suggesting that complex variables are not encountered
in practice. However, optimization problems in complex
variables appear in various applications, some of which very
relevant to the systems and control community, e.g., filter
design [2], [3], [4], [5], system identification [6], blind source
separation [2], tensor decomposition [1], [7], [8], parameter
estimation [2], and nonlinear electrical circuit simulation [1].

Cost functions of optimization problems in complex vari-
ables are real-valued: it makes no sense to optimize a
complex-valued cost function, because the field of complex
numbers is not (totally) ordered. So, from an application
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point of view, these real-valued functions are exactly the kind
of cost functions that we expect to encounter. However, real-
valued cost functions in complex variables are necessarily
non-holomorphic (i.e., the complex generalization of non-
analytic) [1]. They have no complex derivatives. An opti-
mization problem in complex variables is typically tackled by
reformulating the cost function as a function of the real and
imaginary parts of the complex variables, so that standard
real optimization techniques can be used. Wirtinger calculus
provides a more elegant solution by relaxing the definition
of differentiability and defining a general framework that
includes holomorphic functions as a special case [2], [3],
[4]. The development of Wirtinger calculus1 by the Austrian
mathematician Wilhelm Wirtinger dates back to 1927 [10]. It
was rediscovered in 1983, without any reference to Wirtinger,
by David Brandwood [5]. The advantage of Wirtinger cal-
culus is that the expressions do not become unnecessarily
complicated and the derivations are rather similar to the real
situation.

Sorber et al. [7], [8] have highlighted an interesting
relation between univariate polynomial optimization in one
complex variable and the polynomial eigenvalue problem.
The first-order necessary conditions for optimality of the
real-valued univariate polynomial cost function obtained via
Wirtinger calculus yield a system of two polyanalytic poly-
nomials in the complex variable and its complex conjugate.
An elimination of this complex conjugate variable, via the
Sylvester matrix, results in a polynomial eigenvalue problem
that can be solved with standard techniques from numerical
linear algebra. In this paper, we extend this relation to
the multivariate case: we show that multivariate polynomial
optimization in multiple complex variables is a (rectangular2)
multiparameter eigenvalue problem, of which at least one
of the eigentuples corresponds to the global minimizer.
This paper has not the ambition to provide a competitive
alternative with respect to the current state-of-the-art. Rather
it serves a tutorial purpose, presenting a novel optimization
approach in a didactical way. It highlights several interest-
ing research avenues initiated by this reformulation, while
omitting technical derivations.

Note that reformulating a multivariate polynomial opti-

1The idea of using Wirtinger derivatives can be traced back to at least
1899, with Henri Poincaré [1], [9]. The name Wirtinger calculus is especially
present in the German literature, while in other sources one often reads CR-
calculus, referring to the fields C and R [4].

2Since we only consider the rectangular multiparameter eigenvalue prob-
lem, we no longer mention the qualification rectangular in the remainder
of this paper.
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mization problem in real variables as an (one-parameter)
eigenvalue problem is a well-established methodology and
there exist several techniques in the optimization literature
to obtain such an eigenvalue problem. For example, in the
scope of the moment hierarchy approach, the extraction of
global minimizers reduces to eigenvalue computations [11],
[12], [13], [14]. Furthermore, the use of the first-order nec-
essary conditions for optimality (i.e., the gradient ideal) for
polynomial optimization has thoroughly been investigated in,
among others, [15], [16], [17], and can be combined with a
multivariate polynomial system solving approach that resorts
on eigenvalue computations [18], [19]. A reformulation of
the cost function as a function of the real and imaginary parts
of the complex variables makes it possible to also use these
(efficient) numerical optimization techniques in a complex
setting. In this paper, however, we stick to an optimization
approach over the complex variables, which avoids doubling
the number of variables at the cost of solving a more difficult
multiparameter eigenvalue problem.

Notation and preliminaries: We denote scalars by low-
ercase letters, e.g., a, and tuples/vectors by boldface lower-
case letters, e.g., a. Matrices are characterized by boldface
uppercase letters, e.g., A. When a matrix contains one or
more parameters, we use a bold calligraphic font, e.g., A(a)
with parameter a. We use j to denote the imaginary unit√
−1. The complex conjugate, transpose, and Hermitian

transpose of a are indicated by ā, aT, and aH, respectively.
∥·∥2 is the 2-norm and ∥·∥F is the Frobenius-norm.

Outline and contribution: The remainder of this paper is
organized as follows: In Section II, we define the multivariate
polynomial optimization problem. Next, in Section III, we
look at the implications of working with real-valued cost
functions in complex variables and give a brief introduction
to Wirtinger calculus. The reformulation of the multivariate
polynomial minimization problem in complex variables as a
multiparameter eigenvalue problem is the main contribution
of this paper and can be found in Section IV. Section V
deals with so-called ghost solutions. Since this paper serves
mainly a tutorial purpose, it also identifies some open
research questions; a non-exhaustive overview of which is
given in Section VI. Finally, we conclude this paper and
point to ideas for future work in Section VII.

II. PROBLEM DEFINITION

In this paper, we deal with real-valued (multivariate)
polynomial cost functions f(z, z̄) in n complex (decision)
variables z ∈ Cn and their complex conjugates z̄ ∈ Cn,

f : Cn → R : z 7→ f(z, z̄), (1)

where we express the dependency of the cost function on
the complex variables z and their complex conjugates z̄
explicitly to highlight that the polynomial is real-valued
(Section III). We consider, primarily, the unconstrained min-
imization problem, i.e.,

min
z

f(z, z̄), (2)

but adaptations to maximization or constrained optimiza-
tion via the Lagrangian are straightforward (Example 1).
A prototypical problem with a real-valued polynomial cost
function is the minimization of the squared Frobenius-norm
of a matrix polynomial F(z, z̄),

F : Cn → Cm1×m2 : z 7→ F(z, z̄),

that maps n complex variables z and their complex conju-
gates z̄ onto m1m2 function values, i.e.,

min
z

∥F(z, z̄)∥2F, (3)

which is also known as the complex nonlinear least-squares
optimization problem. Because of the imposed norm, the cost
function in (3) is a real-valued polynomial in z and z̄.

III. WIRTINGER DERIVATIVES

Before we tackle (2), we need to take a closer look at
the implications of differentiation in the complex domain.
Consider a multivariate complex-valued function f(z) in n
complex variables z ∈ Cn,

f : Cn → C : z = x+ jy 7→ f(z) = u(x,y) + jv(x,y),

where u(x,y) and v(x,y) are ordinary real-valued functions
in 2n multivariate real variables x ∈ Rn and y ∈ Rn. The
transformation from (z, z̄) to (x,y) is a simple change of
variables for two independent vector variables,

x =
z + z̄

2
, y =

z − z̄

2j
, (4)

and, vice versa,

z = x+ jy, z̄ = x− jy. (5)

The complex-valued function is said to be differentiable at a
point z0 ∈ Cn if the complex-valued limit operation

lim
∆z→0

f(z0 +∆z)− f(z0)

∆z
(6)

exists, i.e., when the limit value is independent of the
direction in which ∆z approaches zero. For example, the
result of the limit should be the same when ∆z approaches
zero on the real axis (∆x → 0) or on the imaginary
axis (∆y → 0). This requirement is formalized in the
Cauchy–Riemann conditions [2], [3] for differentiability at
z0 = x0 + jy0:

∂u(x0,y0)

∂x
=

∂v(x0,y0)

∂y
,

−∂v(x0,y0)

∂x
=

∂u(x0,y0)

∂y
.

(7)

The Cauchy–Riemann conditions (7) are necessary and suf-
ficient conditions3 for the existence of the limit defining
the complex differentiation operation in (6). A multivariate
function in complex variables is said to be holomorphic in
a domain (i.e., the complex generalization of analytic), if
the function is differentiable for all points in that domain.

3The Cauchy–Riemann conditions are necessary and sufficient only for
continuous functions u(x,y) and v(x,y), see [2] for more information.
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Real-valued functions are, however, non-holomorphic. It is
easy to see that the Cauchy–Riemann conditions (7) do not
hold, except for the constant real-valued polynomial, because
v(x,y) ≡ 0. In other words, there exists no Taylor series in
z of f(z, z̄) at z0 so that the series converges to f(z, z̄) in
a neighborhood of z0 [1].

Wirtinger calculus provides a general framework for dif-
ferentiating non-holomorphic functions; it is general in the
sense that it includes holomorphic functions as a special case.
It only requires that f(z, z̄) or f(z) is real differentiable: if
u(x,y) and v(x,y) have continuous partial derivatives with
respect to x and y, then the function is real differentiable [2].
The idea in Wirtinger calculus is to differentiate functions
of the form f(z, z̄) by considering the partial derivatives
with respect to the complex variables z and their complex
conjugates z̄, which can be formally written as

∂f(z, z̄)

∂z
=

∂f(z)

∂x

∂x

∂z
+

∂f(z)

∂y

∂y

∂z

=
1

2

(
∂f(z)

∂x
− j

∂f(z)

∂y

)
,

∂f(z, z̄)

∂z̄
=

∂f(z)

∂x

∂x

∂z̄
+

∂f(z)

∂y

∂y

∂z̄

=
1

2

(
∂f(z)

∂x
+ j

∂f(z)

∂y

)
.

We call ∂(·)
∂z and ∂(·)

∂z̄ the cogradient operator and conju-
gate cogradient operator, respectively. They act as a partial
derivative with respect to z (or z̄), while treating z̄ (or z)
as a constant vector. Note that, for a complex-valued cost
function that satisfies the Cauchy–Riemann conditions (7),
∂f(z,z̄)

∂z̄ is equal to zero [3]. Hence, differentiability in a
complex domain requires the function f(z, z̄) to be solely a
function of z and not exhibit any dependency on z̄. This is
also the reason why we explicitly write real-valued functions
in terms of z and z̄. For a real-valued function f(z, z̄), it
holds that (

∂f(z, z̄)

∂z

)
=

∂f(z, z̄)

∂z̄
. (8)

Although their definitions allow the cogradient and conjugate
cogradient to be expressed elegantly in terms of z and z̄,
neither contains enough information by itself to express the
change in a function with respect to a change in z or z̄
as independent variables. Therefore, we define the complex
gradient operator ∇(·) as

∇(·) =
(
∂(·)
∂z

,
∂(·)
∂z̄

)
.

Relation (8) between both cogradients, however, allows us
to only compute one cogradient and obtain the other one by
simply taking the complex conjugate of that expression.

For the real-valued multivariate polynomial cost functions
in complex variables in (1), a complex derivative does not
exist, but Wirtinger calculus provides an elegant alternative
framework to compute the first-order necessary conditions

for optimality:
pi(z, z̄) =

∂f(z, z̄)

∂zi
= 0, for i = 1, . . . , n,

pi(z, z̄) =
∂f(z, z̄)

∂z̄i−n
= 0, for i = n+ 1, . . . , 2n.

(9)

The common roots (z0, z̄0) of this square system of 2n
multivariate polynomial equations in the complex variables z
and their complex conjugates z̄ correspond to the stationary
points of (1):

VC = {z0 ∈ Cn : pi(z0, z̄0) = 0,∀i = 1, . . . , 2n}. (10)

Notice that the polynomials in (9) are not necessarily real-
valued, only the original cost function is. We can illustrate
all the above with a didactical example.

Example 1: Let us consider the optimization problem:

min
z

−j
(
z3 + z2z̄ − zz̄2 − z̄3

)
subject to ∥z∥22 − 3 = 0,

which amounts to minimizing the real-valued polynomial
cost function f(z, z̄) = −j

(
z3 + z2z̄ − zz̄2 − z̄3

)
= 8x2y,

where x = ℜ(z) and y = ℑ(z), on a circle with radius
√
3.

We could approach this constrained optimization problem
from the traditional point of view, via (4), and consider x
and y as two independent real variables:

min
x,y

8x2y

subject to x2 + y2 − 3 = 0.

However, since the cost function is real-valued, we can
alternatively use Wirtinger derivatives, such that we keep
using complex variables. The Lagrangian that corresponds
to this optimization problem is

L(z, z̄, λ) = −j
(
z3 + z2z̄ − zz̄2 − z̄3

)
+ λ(zz̄ − 3)

and its first-order necessary conditions for optimality are

∂L(z, z̄, λ)
∂z

= −j
(
3z2 + 2zz̄ − z̄2

)
+ λz̄ = 0,

∂L(z, z̄, λ)
∂z̄

= −j
(
z2 − 2zz̄ − 3z̄2

)
+ λz = 0,

∂L(z, z̄, λ)
∂λ

= zz̄ − 3 = 0.

(11)

When we solve this system of multivariate polynomial equa-
tions, we obtain six stationary points: two global maximizers
±
√
2 + 1j, two global minimizers ±

√
2 − 1j, one local

minimizer
√
3j, and one local maximizer −

√
3j (subject

to the constraints). This agrees with the visually identified
stationary points in Fig. 1. Notice that the first and second
equation in (11) are complex conjugates of each other and
that they are clearly not real-valued.

Remark 1: In the real case (z = x), (9) corresponds to
the well-known real gradient set equal to zero. Suppose that
we are only interested in the real stationary points x0 of the
real-valued cost function f(z, z̄), then we need to consider
only the real gradient [7], given by

∂f(x)

∂x
= 2

∂f(z)

∂z

∣∣∣∣
z=x

= 2
∂f(z)

∂z̄

∣∣∣∣
z=x

.
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Fig. 1. Contour lines of the real-valued polynomial cost function f(z, z̄)
in Example 1: the optimization problem has two global minimizers ( ),
two global maximizers ( ), and two local optima ( ), subject to ( ).

IV. MULTIPARAMETER EIGENVALUE PROBLEM

The fact that both the complex (decision) variables z and
their complex conjugates z̄ are present in (9) clearly creates
redundancy. After all, solving a system of multivariate poly-
nomial equations is not an easy task at hand [20]. In this
section, we show that the stationary points of (1) correspond
to (some of) the eigentuples of a multiparameter eigenvalue
problem (MEP), by eliminating z̄ via the Macaulay matrix.

Firstly, we rewrite every polynomial in (9) in terms of the
different complex conjugate monomials z̄α:

pi(z, z̄) =
∑
{α}

p
(α)
i (z)z̄α,

for i = 1, . . . , 2n, where the summation runs over all multi-
indices α. The multi-index α = (α1, . . . , αn) ∈ Nn labels
the powers of the conjugate variables z̄ in the monomials
z̄α =

∏n
k=1 z̄

αk

k = z̄α1
1 · · · z̄αn

n . The total degree of a
monomial with respect to z̄ is equal to the sum of its
powers, denoted by |α| =

∑n
k=1 αk, and the hightest total

degree with respect to z̄ among all the monomials of pi(z, z̄)
defines the degree di in z̄ of that polynomial. For example,

p(z, z̄) = 2 + z2 + 3z1z2z̄1 + z21 z̄2

= p(00)(z) + p(10)(z)z̄1 + p(01)(z)z̄2
(12)

has a degree in z̄ equal to 1 and the corresponding polyno-
mial coefficients p(α)(z) are

p(00)(z) = 2 + z2,

p(10)(z) = 3z1z2,

p(01)(z) = z21 .

When we multiply a polynomial pi(z, z̄) by an arbitrary
monomial z̄δi , we obtain a “new” polynomial,

z̄δipi(z, z̄) =
∑
{α}

p
(α)
i (z)z̄α+δi , (13)

which is similar to re-assigning every p
(α)
i (z) to a monomial

of higher total degree. Note that these “new” polynomials

do not alter the solution set VC in (10) when we add
them, after equating to zero, to (9). Therefore, we define
the Macaulay matrix with respect to the conjugate variables
z̄. This matrix corresponds to the Macaulay matrix from
elimination theory when treating the complex variables z
as a constant vector [21], [20].

Definition 1: Given the polynomials pi(z, z̄), each with
total degree di in z̄, the Macaulay matrix with respect to
the complex conjugate variables of degree d in z̄, M(z) ∈
Ck×l, contains the polynomial coefficients p

(α)
i (z) of the

polynomials z̄δipi(z, z̄) with all monomials z̄δi so that
|δi| = 0, . . . , d− di, for i = 1, . . . , 2n. Every row of M(z)
contains one polynomial z̄δipi(z, z̄), while every column
is associated with one monomial z̄α+δi , the highest total
degree of the monomials is equal to d.

The Macaulay matrix M(z) with respect to the conjugate
variables is clearly a polynomial matrix in the complex
variable z that gathers the polynomial coefficients p

(α)
i (z)

according to a certain pre-defined monomial ordering [20],
[22]. The number of rows and columns of M(z) depend on
the degree d in z̄:

k =

2n∑
i=1

(
d− di + n

d− di

)
and l =

(
d+ n

d

)
.

Definition 1 can be used to rewrite (9) and additional
equations (13) as a matrix-vector product,

M(z)q = 0, (14)

where the vector q contains the different complex conjugate
monomials z̄α+δi ordered the same as the columns of
M(z). This Macaulay matrix eliminates the explicit depen-
dency on the complex conjugate variables z̄. For example,
we can multiply p(z, z̄) in (12) with all monomials z̄δ for
which |δ| = 1, i.e., z̄1p(z, z̄) and z̄2p(z, z̄), or, construct
the Macaulay matrix with respect to z̄ of degree d = 2 in
z̄, to obtain a matrix-vector product as in (14):

2 + z2 3z1z2 z21 0 0 0
0 2 + z2 0 3z1z2 z21 0
0 0 2 + z2 0 3z1z2 z21


︸ ︷︷ ︸

M(z)


1
z̄1
z̄2
z̄21
z̄1z̄2
z̄22


︸ ︷︷ ︸

q

=0.

Finally, notice that (14) is an MEP when expanding
the multivariate matrix polynomial M(z) in terms of the
different complex monomials zβ,

M(z)q =

∑
{β}

Mβz
β

q = 0, (15)

where the summation runs over all the multi-indices β.
The minimal required degree d of M(z) is such that k ≥
l + n − 1, which is a necessary condition for the MEP to
have a zero-dimensional solution set [22]. The coefficient
matrices Mβ ∈ Ck×l of the MEP impose the structure of q
and contain the coefficients of the polynomial coefficients
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Fig. 2. Contour lines of the real-valued polynomial cost function f(z, z̄)
in Example 2: the optimization problem has three minimizers ( ) and two
saddle points ( ).

p
(α)
i (z) associated with zβ. For the polynomial p(z, z̄)

in (12), the polynomial coefficient p(00)(z) = 2+ z2 creates
coefficients 2 and 1 in M00 and M01, respectively. For a
more rigorous definition of MEPs, we refer the interested
reader to [22]. One approach to solve4 MEPs is via the block
Macaulay matrix approach [22], [23].

Remark 2: In the univariate case, (9) only consists out
of two bivariate equations in on complex variable z and
its complex conjugate z̄. An elimination of z̄ results in a
polynomial eigenvalue problem (PEP) instead of the MEP
in (15). The Macaulay matrix from Definition 1 reduces to
the well-known Sylvester matrix for n = 1. Note that the
univariate case of our proposed optimization approach yields
a similar PEP as in [7], [8].

Example 2: Consider the univariate problem

min
z

∥∥∥z(z − 0.5j)
2 − z

∥∥∥2
2
.

The corresponding system of Wirtinger derivatives for one
complex variable z and its complex conjugate z̄ is

p1(z, z̄) = 3z2z̄3 + 3jz2z̄2 − 3.75z2z̄ − 2jzz̄3

+ 2zz̄2 + 2.5jzz̄ − 1.25z̄3 − 1.25jz̄2

+ 1.5625z̄ = 0,

p2(z, z̄) = 3z3z̄2 − 3jz2z̄2 − 3.75zz̄2 + 2jz3z̄

+ 2z2z̄ − 2.5jzz̄ − 1.25z3 + 1.25jz2

+ 1.5625z = 0.

(16)

We can construct the corresponding Sylvester matrix via
Definition 1 (cf., Remark 2),

M(z) =


p
(0)
1 (z) p

(1)
1 (z) p

(2)
1 (z) p

(3)
1 (z) 0

0 p
(0)
1 (z) p

(1)
1 (z) p

(2)
1 (z) p

(3)
1 (z)

p
(0)
2 (z) p

(1)
2 (z) p

(2)
2 (z) 0 0

0 p
(0)
2 (z) p

(1)
2 (z) p

(2)
2 (z) 0

0 0 p
(0)
2 (z) p

(1)
2 (z) p

(2)
2 (z)

,

4We do not elaborate further on the solution methods, but we men-
tion that we use the block Macaulay matrix methods available at www.
macaulaylab.net to obtain all our numerical results.

p1(z, z̄)

z̄1p1(z, z̄)

z̄2p1(z, z̄)

p2(z, z̄)

z̄1p2(z, z̄)

z̄2p2(z, z̄)

p3(z, z̄)

z̄1p3(z, z̄)

z̄2p3(z, z̄)

z̄21p3(z, z̄)

z̄1z̄2p3(z, z̄)

z̄22p3(z, z̄)

p4(z, z̄)

z̄1p4(z, z̄)

z̄2p4(z, z̄)

z̄21p4(z, z̄)

z̄1z̄2p4(z, z̄)

z̄22p4(z, z̄)

1 z̄1 z̄2 z̄21 z̄1z̄2 z̄22 z̄31 z̄21 z̄2 z̄1z̄
2
2 z̄32

Fig. 3. Visualization of the Macaulay matrix that generates the coefficient
matrices of the MEP in (18). The row-labels denote the shifted polynomials
z̄δipi(z, z̄), while the column-labels denote the associated monomials
z̄α. Every colored dot corresponds to one of the (non-zero) polynomial
coefficients p

(α)
i (z) of the polynomials. For example, the green dot ( )

corresponds to p
(20)
1 (z), which is shifted throughout the Macaulay matrix

after multiplying p1(z, z̄) by 1 (i.e., the original polynomial), z̄1, and z̄2.

where p
(α)
1 (z) contains the polynomial that is associated with

z̄α in (16). For example, p(2)1 (z) = 3jz2+2z−1.25j, because
that are the monomials of p1(z, z̄) that are associated with
z̄2. Subsequently, we create the coefficient matrices of the
PEP from the Sylvester matrix by extracting the coefficients
that belong to a power of zβ :(

M0 +M1z +M2z
2
)
q = 0. (17)

Taking again p
(2)
1 (z) = 3jz2 + 2z − 1.25j, this leads to the

coefficients −1.25j in M0, 2 in M1, and 3j in M2 at the
positions of p(2)1 (z) in M(z). For clarity, we show M2:

M2 =


0 −3.75 3j 3 0
0 0 −3.75 3j 3

1.25j 2 −3j 0 0
0 1.25j 2 −3j 0
0 0 1.25j 2 −3j

.
Solving the resulting PEP, or the system (16) directly, yields
13 affine solutions: 3 minimizers, 2 saddle points, and 8 ghost
solutions. Fig. 2 visualizes the minimizers and saddle points
on top of the contour lines of the real-valued polynomial cost
function. We discuss the reason for the emergence of these
ghost solutions in Section V.

Example 3: We consider the problem where we try to fit
a rank-1 matrix to a given complex 2× 2 matrix A ∈ C2×2:

min
z

∥∥∥∥[a11 a12
a21 a22

]
−

[
z21 z1z2
z1z2 z22

]∥∥∥∥2
F
,

which is an example of a nonlinear least-squares optimiza-
tion problem (3). The corresponding system of first-order
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necessary conditions for optimality is

p1(z, z̄) = −2ā11z1 + 2z1z̄
2
1 − (ā12 + ā21)z2

+ 2z2z̄1z̄2 = 0,

p2(z, z̄) = −2ā22z2 + 2z2z̄
2
2 − (ā12 + ā21)z1

+ 2z1z̄1z̄2 = 0,

p3(z, z̄) = −2a11z̄1 + 2z21 z̄1 − (a12 + a21)z̄2

+ 2z1z2z̄2 = 0,

p4(z, z̄) = −2a22z̄2 + 2z22 z̄2 − (a12 + a21)z̄1

+ 2z1z2z̄1 = 0,

with complex variables z =
[
z1 z2

]T
and their complex

conjugates z̄ =
[
z̄1 z̄2

]T
. Fig. 3 visualizes the Macaulay

matrix M(z) with respect to the complex conjugate vari-
ables of degree d = 3 in z̄ for these polynomials. Each
coefficient of M(z) is a polynomial coefficient p

(α)
i (z)

associated with a complex conjugate monomial z̄α. For
example, the green dot ( ) corresponds to p

(20)
1 (z) = 2z1

and is associated with z̄21 . This leads to a quadratic two-
parameter eigenvalue problem,(

M00 +M10z1 +M01z2 +M20z
2
1

+M11z1z2+M02z
2
2

)
q = 0,

(18)

which we can solve, for example, via a block Macaulay
matrix approach [22]. If we consider the given matrix

A =

[
a11 a12
a21 a22

]
=

[
1 1j
1j −2

]
,

then we obtain nine stationary points after solving (18).
The global minimizer is (0.8507, 1.3764j), which also corre-
sponds to the first triplet obtained via the complex singular
value decomposition of A.

V. ABOUT GHOST SOLUTIONS

In the context of complex optimization, ghost solutions
(sometimes called spurious solutions) arise due to the fact
that numerical optimization algorithms can not properly deal
with complex conjugate variables. Ghost solutions can also
arise in our proposed optimization approach, cf. Example 2.
They emerge when solving the MEP in (15), or the system of
multivariate polynomial equations (9) directly, via numerical
linear algebra algorithms that can not impose that z̄ is the
complex conjugate of z. In that case, we essentially tackle
the problem as if z and z̄ (let us call them u and v here) are
independent variables, which results in the candidate solution
set (instead of the desired solution set of (10))

VC̃ =
{
(u0,v0) ∈ C2n : pi(u0,v0) = 0,∀i = 1, . . . , 2n

}
.

Of course, we only want the subset for which (u0,v0) =
(z0, z̄0), i.e., the true stationary points of (1), and need to
remove these ghost solutions. Luckily, this is not a difficult
task, even if we only compute the eigentuples u (v is then
part of the eigenvector): we can (i) substitute the obtained
eigentuples and their complex conjugates in (9) and check if
(u0,v0) is indeed a stationary point of (1) or (ii) construct an

TABLE I
NUMERICAL VALUES OF THE CANDIDATE SOLUTIONS (u0, v0) OF (16).

A CLASSIFICATION FOR EVERY CANDIDATE SOLUTION IS GIVEN.

u0 v0 classification

1.0000 + 0.5000j 1.0000− 0.5000j minimizer
−1.0000 + 0.5000j −1.0000− 0.5000j minimizer
0.0000 + 0.0000j 0.0000 + 0.0000j minimizer
0.5528 + 0.3333j 0.5528− 0.3333j saddle point

−0.5528 + 0.3333j −0.5528− 0.3333j saddle point
1.0000 + 0.5000j −1.0000− 0.5000j ghost solution
1.0000 + 0.5000j 0.0000 + 0.0000j ghost solution

−1.0000 + 0.5000j 1.0000− 0.5000j ghost solution
−1.0000 + 0.5000j 0.0000 + 0.0000j ghost solution
0.0000 + 0.0000j 1.0000− 0.5000j ghost solution
0.0000 + 0.0000j −1.0000− 0.5000j ghost solution

−0.5528 + 0.3333j 0.5528− 0.3333j ghost solution
0.5528 + 0.3333j −0.5528− 0.3333j ghost solution

eigenvector q0 from the complex conjugate of u0 and check
if q0 is indeed an eigenvector of M(u0). An alternative
heuristic technique to filter out ghost solutions (and to
prune wrong solutions due to rounding errors) based on the
well-known Newton–Raphson method was proposed in [7].
However, this technique is known to fail in some cases [7].

Remark 3: Note that using the standard approach for
complex optimization, using derivatives with respect to x and
y and solving the resulting system of first-order necessary
conditions for optimality, also can result in ghost solutions.
In this approach, ghost solutions are candidate solutions that
are complex-valued, while x0 and y0 have to be real-valued.
These ghost solutions emerge because systems of multivari-
ate polynomial equations and MEPs, without additional con-
straints, can also have complex solutions. When considering
a specific problem with both approaches, it is possible to
show that every ghost solution (x0,y0) corresponds to a
ghost solution (u0,v0), via (4), and vice versa, via (5).

Example 4: When solving the PEP in (17) or the system
of multivariate polynomial equations in (16) with numerical
linear algebra algorithms, we obtain 13 affine solutions (Ta-
ble I): 3 minimizers, 2 saddle points, and 8 ghost solutions.
The ghost solutions can be deflated from the candidate
solution set by checking for every candidate solution u0 if
the candidate solution u0 and its complex conjugate ū0 are
indeed a solution of (16) or by checking if the eigenvector q0

constructed from the complex conjugate ū0 of u0 is indeed
an eigenvector of the PEP evaluated in u0.

VI. OPEN RESEARCH QUESTIONS

Since this reformulation provides an alternative view on
multivariate polynomial optimization in complex variables,
it invokes new research challenges. We highlight some of
these interesting open research questions below.

• A first question is about the efficiency of this new
approach. “What is the computational complexity of this
approach and how does it compare to current state-of-
the-art polynomial optimization solvers?” Upper bounds
on the computational complexity would be useful for
this comparison.
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• Closely related with the previous question is the fact that
it is not know a priori whether the Macaulay matrix is
of a sufficient degree to provide the minimizers. “Do
there exist necessary and sufficient conditions on the
degree of the Macaulay matrix?”

• Given that the coefficient matrices are constructed via
the Macaulay matrix, they exhibit a lot of structure
and sparsity: “Is it possible to exploit the structure and
sparsity of the coefficient matrices in the MEP?”

• Furthermore, the solution set of the MEP is also linked
to the specific coefficient matrices: “Can we enforce that
the MEP has a zero-dimensional solution set?”

• An interesting property of the block Macaulay matrix
algorithms to solve MEPs is that a user-defined shift
polynomial can be used, as explained in [23]. “Could
this property be exploited when the cost function is
chosen as shift polynomial?”

• Finally, it is well known that a polynomial’s roots can
be very sensitive to small changes in the polynomial’s
coefficients [24]. “Does the MEP approach have better
numerical properties than directly solving (9)?”

While Sorber et al. [7], [8] have only covered univariate
problems, the multivariate extension in this paper provides
the next step into exploring this alternative optimization
approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended the relation between univariate
polynomial optimization in one complex variable and PEPs
to the multivariate case. We showed that optimizing a real-
valued multivariate polynomial cost function leads to an
MEP, (some of) the eigentuples of which correspond to the
stationary points of the optimization problem. Combining
Wirtinger derivatives and the block Macaulay matrix pro-
vided a novel approach to solve multivariate polynomial
optimization problems in complex variables. Furthermore,
we also explained how to remove ghost solutions from the
candidate solution set.

The perspective of this contribution was meant to be didac-
tic; hence, we focussed on the implications of this alternative
formulation and highlighted some interesting open research
questions created by this novel optimization approach. We
will tackle (some of) these research challenges in the (near)
future. In particular, we want to look at the unavoidable
structure in the coefficient matrices of the resulting MEP:
since the Macaulay matrix consists of cogradients and con-
jugate cogradients, the coefficient matrices of the MEP are
structured and exhibit significant sparsity, which could be
exploited with improved solution algorithms. Our ambition
is to use this method to tackle applications within the systems
and control community, e.g., to identify the optimal complex
poles of linear time-invariant models [6].
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