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Abstract— We consider a stage-varying nonlinear model predic-
tive control (NMPC) formulation and provide a stability result
for the corresponding closed-loop system under the assumption
that cost and constraints are progressively tightening. We illus-
trate the generality of the stage-varying formulation pointing
out various approaches proposed in the literature that can
be cast as stage-varying and progressively tightening optimal
control problems.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) is an
optimization-based approach to nonlinear control and
relies on the solution of parametric nonlinear programs
(NLP) in order to evaluate an implicit feedback policy [1].
In this paper, we consider a rather general stage-varying opti-
mal control problem formulation which allows for additional
auxiliary dynamics as well as stage costs and constraints
that vary for each stage. The auxiliary system might be
leveraged to pass information – in terms of the auxiliary
state – along the horizon, which might in turn affect costs
or constraints on the system state. We provide a proof of
asymptotic stability of the origin for the associated closed-
loop system assuming the stage-varying costs and constraints
satisfy a progressive tightening condition. A stability proof
for the stage-varying formulation has first been given in [2],
though many important special cases have been analyzed in
the literature since the 1980s [3], [4] and are summarized in
the survey by Mayne [5].
The contribution of this work is twofold: (1) We provide
a generalization of the proof in [2] to additionally include
formulations with an auxiliary dynamical system; (2) We
illustrate the generality of the stability result by a survey of
control approaches that have been proposed in the literature
and that can be cast in terms of a stage-varying and progres-
sively tightening formulation with auxiliary dynamics.

A. Outline
The paper is structured as follows: Section II introduces
the stage-varying optimal control problem with auxiliary
dynamics. In Section III, we derive the main stability result.
In Section IV, we review existing approaches that are covered
by our formulation and illustrate how they can be cast as a
stage-varying and progressively tightening optimal control
problem. Section V summarizes our results.
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B. Notation

We denote the set of positive extended real numbers by
R̄≥0 := R≥0 ∪ {∞}. A continuous function V is positive
definite if V (0) = 0 and V (x) > 0 for all x ̸= 0. A function
α : R≥0 → R≥0 belongs to class K∞ if it is continuous,
zero at zero, strictly increasing and unbounded, α(s)→∞ as
s→∞. For two functions V : Rn→ R̄≥0, V ′ : Rn→ R̄≥0, we
define the relation: V ≤V ′⇔V (x)≤V ′(x) for all x ∈ Rn,
where we allow for a comparison with ∞.

II. STAGE-VARYING OCP FORMULATION

We regard a discrete-time nonlinear system x+ = fx(x, u)
where x ∈ Rnx and x+ ∈ Rnx is the current and subsequent
state of the system. Our aim is to choose inputs u ∈ Rnu

that steer the system to the origin in an optimal way while
respecting state and input constraints. In order to allow for
rather general optimal control problem formulations, that for
instance include couplings of costs and constraints between
stages, we introduce a virtual auxiliary system of the form

z+ = f z(x, z, u, w). (1)

Based on these two systems, we formulate the following
stage-varying optimal control problem (OCP):

min
X,Z,U,W

N−1∑
i=0

li(xi, zi, ui, wi) + VN (xN , zN ) (2a)

s.t. x0 = x, (2b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (2c)
zi+1 = f z(xi, zi, ui, wi), i = 0, . . . , N − 1, (2d)

0 ≥ hi(xi, zi, ui, wi), i = 0, . . . , N − 1, (2e)
0 = gi(xi, zi, ui, wi), i = 0, . . . , N − 1, (2f)
0 ≥ hN (xN , zN ), (2g)
0 = gN (xN , zN ), (2h)

with system states X = (x0, . . . , xN ), xi ∈ Rnx , auxiliary
states Z = (z0, . . . , zN ), zi ∈ Rnz , control inputs U =
(u0, . . . , uN−1), ui ∈ Rnu , auxiliary control inputs W =
(w0, . . . , wN−1), wi ∈ Rnw and a given initial state x ∈
Rnx .
The functions li : Rnx × Rnz × Rnu × Rnw → R≥0 and
VN : Rnx×Rnz → R≥0 denote the stage and terminal costs.
The constraints are defined by

hi : Rnx× Rnz× Rnu× Rnw → Rnhi , (3)
gi : Rnx× Rnz× Rnu× Rnw → Rngi , (4)

and hN : Rnx× Rnz → RnhN , gN : Rnx× Rnz → RngN .
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We can formulate an unconstrained OCP that is equivalent
to (2) by assigning infinite costs to infeasible points. To this
end, we define l̄i : Rnx× Rnz× Rnu× Rnw → R̄≥0 with

l̄i(x, z, u, w) :={
li(x, z, u, w) if hi(x, z, u, w) ≤ 0, gi(x, z, u, w) = 0,

∞ otherwise,

for i = 0, . . . , N − 1, and V̄ s
N : Rnx× Rnz → R̄≥0 with

V̄N (x, z) :=

{
VN (x, z) if hN (x, z) ≤ 0, gN (x, z) = 0,

∞ otherwise.

To simplify the notation, we introduce

si :=

[
xi
zi

]
, ai :=

[
ui
wi

]
, f s(si, ai) :=

[
fx(xi, ui)

f z(xi, zi, ui, wi)

]
,

as well as

lsi(si, ai) := li(xi, zi, ui, wi), V s
N (sN ) := VN (xN , zN ),

l̄si(si, ai) := l̄i(xi, zi, ui, wi), V̄ s
N (sN ) := V̄N (xN , zN ).

Assumption 1. We assume that the origin is a feasible steady
state with f s(0, 0) = 0, l̄si(0, 0) = 0, and V̄ s

N (0) = 0.
Furthermore, we assume that f s, lsi , i = 0, . . . , N − 1, and
V s
N are continuous.

Next, we introduce the progressive tightening criterion,
which is a crucial requirement for the stability result. It is
illustrated in Figure 1.

Assumption 2 (Progressive tightening.). We assume that the
modified stage costs satisfy l̄si(s, a) ≤ l̄si+1(s, a) for all states
s ∈ Rns and all inputs a ∈ Rna and i = 0, . . . , N − 2.

Remark 1. Assumption 2 is equivalent to the assumption on
epigraph inclusion, in [2], Assumption 5.1.3., if there are no
auxiliary dynamics. The epigraph inclusion is illustrated in
Fig. 1, where clearly epi l̄i+1 ⊆ epi l̄i.

III. ASYMPTOTIC STABILITY OF STAGE-VARYING NMPC

In the following, we derive the main result of this paper:
asymptotic stability of the origin for the closed-loop control
system assuming that cost and constraints are progressively
tightening along the horizon. To this end, we define the sets

Yi := {(x, z, u, w) : hi(x, z, u, w) ≤ 0, gi(x, z, u, w) = 0},

i = 0, . . . , N − 1, as well as

U0(x) := {u ∈ Rnu : (x, z, u, w) ∈ Y0 for some z, w},
Q0(x) := {(z, u, w) ∈ Rnz× Rnu× Rnw : (x, z, u, w) ∈ Y0},

and X̂0 := {x ∈ Rnx : U0(x) ̸= ∅}. Note that all of the
above sets contain the origin due to Assumption 1.
We now introduce the value functions V̄ s

i (s) and V̄ x
0 (x).

For stage N , the value function is equivalent to the modified
terminal cost V̄ s

N (s). For all other stages, the value functions
are recursively defined via the Bellman equation.

Fig. 1. Progressive tightening condition: As a simple example, we consider
a stage cost, which depends only on the state x. The modified stage costs l̄i
summarize both costs and path constraints, which in this example are lower
and upper bounds on x. The shaded areas denote the epigraphs epi l̄i.

Assumption 3 (Existence of solutions). For i =N−1, . . . , 1,
we define the value function V̄ s

i : Rns → R̄≥0 associated
with stages i recursively via

V̄ s
i (s) := min

a
l̄si(s, a) + V̄ s

i+1(f
s(s, a)), (5)

where we assume that for each s the problem is either
infeasible, i.e. V̄ s

i (s) = ∞, or there is a∗ minimizing (5).
The value function V̄ x

0 : Rnx → R̄≥0 associated with stage 0
is given by

V̄ x
0 (x) :=

min
z,u,w

l̄0(x, z, u, w) + V̄ x,z
1 (fx(x, u), f z(x, z, u, w)). (6)

again assuming that a minimizer (z∗, u∗, w∗) exists when-
ever the problem is feasible.

Note that for stage 0, both the auxiliary state z and the
auxiliary control w act as inputs. For stages i = 1, . . . , N−1,
only w is free and z is defined via the auxiliary dynamics.
We furthermore introduce the shorthand V̄ x,z

i (x, z) = V̄ s
i (s),

i = 1, . . . , N−1, as well as the sets X0 and Si, i = 1, . . . , N ,
that contain all states for which the corresponding value
function takes finite values,

X0 :=
{
x ∈ Rnx : V̄ x

0 (x) <∞
}
, (7)

Si :=
{
s ∈ Rns : V̄ s

i (s) <∞
}
. (8)

Definition 1 (NMPC policy). We defineπz
0(x)
πu
0 (x)
πw
0 (x)

∈ arg min
z,u,w

l0(x, z, u, w)

+V̄ x,z
1 (fx(x, u), f z(x, z, u, w)), (9)

where we assume that – in case of multiple minimizers –
an appropriate minimum norm selection criterion is used to
uniquely define πz

0, π
u
0 , and πw

0 . The NMPC policy is given
by the map πu

0 (x). We furthermore define πs
0 : X0 → Rns

and πa
0 : X0 → Rna ,

πs
0(x) =

[
x

πz
0(x)

]
, πa

0(x) =

[
πu
0 (x)
πw
0 (x)

]
. (10)
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Assumption 4. We assume that the policy πu
0 : X0 → Rnu

is locally bounded.

Remark 2. Note that Assumption 4 is satisfied if the policy
πu
0 (x) is continuous, which is for instance the case for the

LQR. Local boundedness of the policy is also guaranteed if
the set U0(x) is uniformly bounded for all x ∈ X̂0.

Before proceeding to the stability proof, we state three
additional assumptions, which are standard requirements
in stability theory for nonlinear model predictive control,
compare e.g. [1].

Assumption 5 (Lower bound on l0). Assume that there is a
K∞ function αl such that l0(x, z, u, w) ≥ αl(∥x∥), for all
(x, z, u, w) ∈ Y0.

Assumption 6 (Weak controllability). Assume there exists a
K∞ function α2 such that V̄ x

0 (x) ≤ α2 (∥x∥) for all x ∈ X0.

Assumption 7 (Terminal stability condition). We assume
that the terminal cost satisfies V̄ s

N−1 ≤ V̄ s
N .

Remark 3. In practice, Assumption 5 can always be satis-
fied by including a small regularization term, i.e. the cost
l0(x, z, u, w) = l̂0(x, z, u, w) + ϵ∥x∥2Q with l̂0 nonnegative,
Q ≻ 0 and ϵ > 0 satisfies Assumption 5.

Next, we show monotonicity of the value functions as well as
positive invariance of the set X0 with respect to the closed-
loop system, which are the two main results required for
asymptotic stability.

Lemma 1. Suppose Assumptions 1, 2, 3, and 7 are satisfied.
It then holds that V̄ s

1 ≤ . . . ≤ V̄ s
N−1 ≤ V̄ s

N .

Proof. From Assumption 7, we have V̄ s
N−1 ≤ V̄ s

N . Now
suppose V̄ s

i ≤ V̄ s
i+1 and consider any s ∈ Rns . From

Assumption 3, we either have V̄ s
i (s) = ∞, which implies

that V̄ s
i−1(s) ≤ V̄ s

i (s) is trivially satisfied, or there exists a∗

minimizing

V̄ s
i (s) = min

a
l̄si(s, a) + V̄ s

i+1(f
s(s, a)). (11)

From V̄ s
i ≤ V̄ s

i+1, we conclude that

V̄ s
i (s) = l̄si(s, a

∗) + V̄ s
i+1(f

s(s, a∗)) (12)
≥ l̄si(s, a

∗) + V̄ s
i (f

s(s, a∗)) (13)
≥ l̄si−1(s, a

∗) + V̄ s
i (f

s(s, a∗)) (14)
≥ min

a
l̄si−1(s, a) + V̄ s

i (f
s(s, a)) = V̄ s

i−1(s), (15)

where l̄si(s, a
∗) ≥ l̄si−1(s, a

∗) due to Assumption 2. By
induction, we conclude that V̄ s

1 ≤ . . . ≤ V̄ s
N .

Lemma 2. Suppose Assumptions 1, 2, 3, 4, and 7 are
satisfied. It then holds that V̄ x

0 (x) ≤ V̄ x,z
1 (x, z) for all

x ∈ Rnx , z ∈ Rnz .

Proof. Consider any s = (x, z) ∈ Rnx×Rnz . If V̄ x,z
1 (x, z)=

V̄ s
1 (s) = ∞, the inequality is trivially satisfied. Otherwise,

there is a∗ such that

V̄ s
1 (s) = l1(s, a

∗) + V̄ s
2 (f

s(s, a∗)). (16)

Together with Assumption 2 and Lemma 1, we obtain

V̄ s
1 (s) = ls1(s, a

∗) + V̄ s
2 (f

s(s, a∗))

≥ ls0(s, a
∗) + V̄ s

1 (f
s(s, a∗))

≥ min
z,u,w

l0(x, z, u, w) + V̄ x,z
1 (fx(x, u), f z(x, z, u, w))

= V̄ x
0 (x),

which concludes the proof.

Lemma 3 (Positive invariance of X0). Suppose Assumptions
1, 2, 3, 4, 7 are satisfied. The set X0 is positive invariant for
the closed-loop system x+ = fx(x, πu

0 (x)) with MPC policy
πu
0 (x) as defined in (9).

Proof. For any x ∈ X0, we have

V̄ x
0 (x) = ls0(π

s
0(x), π

a
0(x)) + V̄ s

1 (f s(πs
0(x), π

a
0(x)) <∞,

which implies that V̄ s
1 (f s(πs

0(x), π
a
0(x)) must be finite.

Together with Lemma 2, we conclude that

∞ > V̄ s
1 (f s(πs

0(x), π
a
0(x)) ≥ V̄ x

0 (f
x(x, πu

0 (x))), (17)

which implies that x+ = fx(x, πu
0 (x)) ∈ X0.

We now derive the main stability result. In particular, we
show that V̄ x

0 (x) is a Lyapunov function for the closed-loop
system obtained by controlling the dynamic system with the
optimal policy πu

0 (x).

Definition 2 (Lyapunov function). Suppose that X ⊆ Rnx

is positive invariant for the system x+ = ψ(x) with ψ
locally bounded. Furthermore assume that the origin is an
equilibrium point, ψ(0) = 0, and 0 ∈ X̄.
A function V : X → R≥0 is a Lyapunov function in X for
the system x+ = ψ(x) if there exist functions α1, α2 ∈ K∞,
and a continuous, positive definite function α3 such that for
any x ∈ X,

α1 (∥x∥) ≤ V (x) ≤ α2 (∥x∥) , (18)
V (ψ(x))− V (x) ≤ −α3 (∥x∥) . (19)

We make use of the following classical result from Lyapunov
stability theory. A proof is given e.g. in [1], Theorem B.13.

Theorem 1. Suppose that X ⊆ Rnx is positive invariant for
the system x+ = ψ(x) with ψ locally bounded. Furthermore
assume that the origin is an equilibrium point, ψ(0) = 0, and
0 ∈ X. If V is a Lyapunov function in X for x+ = ψ(x),
then the origin is globally asymptotically stable in X for the
system x+ = ψ(x).

Theorem 2 (Asymptotic stability of stage-varying NMPC).
Suppose Assumptions 1, 2, 3, 4, 5, 6 and 7 are satisfied. Let
πu
0 be the MPC policy as defined in (9).

Then the following hold.
1) The value function V̄ x

0 is a Lyapunov function in X0

for the closed-loop system x+ = fx(x, πu
0 (x)).

2) The origin x = 0 is an asymptotically stable equilib-
rium with region of attraction X0 for the closed-loop
system

x+ = fx(x, πu
0 (x)). (20)
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Fig. 2. Partial Tightening: As a simple example, we consider here stage
costs on controls only. The stage cost l̄(u) in the first part of the horizon,
i = 0, . . . ,M − 1, is quadratic and there is a lower and an upper bound
on the control, umin ≤ u ≤ umax with umax = −umin = 5. In the
tightened part of the horizon, i = M, . . . , N − 1, the stage cost ¯̃

l(u)
includes the additional barrier terms. Note that the progressive tightening
condition, l̄ ≤ ¯̃

l, i = 0, . . . , N − 2, is satisfied.

Proof. First, note that fx(·, πu
0 (·)) is locally bounded due

to continuity of fx and the assumption that πu
0 (·) is locally

bounded, cf. Assumption 1 and 4. Furthermore, X0 is positive
invariant for x+ = fx(x, πu

0 (x)) due to Lemma 3 and
contains the origin due to Assumption 4.
We first show that the value function V̄ x

0 is a Lyapunov
function in X0 for x+ = fx(x, πu

0 (x)). Due to Assumption 6,
there exists a K∞ function α2 such that V̄ x

0 (x) ≤ α2 (∥x∥)
for all x ∈ X0. From Assumption 5 and 6, we have

αl(∥x∥) ≤ l0(x, z, u, w) ≤ V̄ x
0 (x) ≤ α2 (∥x∥) (21)

for any x ∈ X0 and corresponding (z, u, w) ∈ Q0(x)
and with K∞ functions αl, α2, which implies that (18) is
satisfied.
For any x ∈ X0, we furthermore have

V̄ x
0 (x) = ls0(π

s
0(x), π

a
0(x)) + V̄ s

1 (f
s(πs

0(x), π
a
0(x)))

≥ ls0(π
s
0(x), π

a
0(x)) + V̄ x

0 (f
x(x, πu

0 (x))) (22)

where the inequality follows from Lemma 2. Together with
Assumption 5, we obtain

V̄ x
0 (f

x(x, πu
0 (x)))− V̄ x

0 (x) ≤ −ls0(πs
0(x), π

a
0(x))

≤ −αl (∥x∥) , (23)

which shows that the decrease property (19) is satisfied with
α3(·) = αl(·).
The second part – asymptotic stability of the origin for the
closed-loop system – follows directly from Theorem 1 with
the value function V̄ x

0 as Lyapunov function in the set X0.

Remark 4 (Inexact NMPC). Within the real-time iteration
(RTI) framework [6], [7], the optimal control problem (2)
is only solved approximately resulting in an inexact MPC
policy. The main stability results, Theorem 2 together with
the analysis in [8] directly implies asymptotic stability of
the closed-loop system-optimizer dynamics arising from the
inexact RTI approach under the assumption that the sampling
time is sufficiently small.

IV. STAGE-VARYING APPROACHES IN THE LITERATURE

In the following, we give a survey of NMPC approaches that
have been proposed in the literature and that can be cast in
terms of a progressively tightening optimal control problem.

A. Partial tightening
With partially tightened NMPC formulations as introduced
in [9] and applied in [10], the inequality constraints in
the later part of the optimization horizon are replaced by
corresponding logarithmic barriers in order to reduce the
computational complexity. This yields an OCP of the form:

min
X,U

M−1∑
i=0

l(xi, ui) +

N−1∑
i=M

l̃(xi, ui) + ṼN (xN ) (24a)

s.t. x0 = x, (24b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (24c)

0 ≥ h(xi, ui), i = 0, . . . ,M − 1, (24d)

where we introduced ṼN (x) = VN (x) + BN (hN (x)) and
l̃(x, u) = l(x, u) +B(h(x, u)) with barrier functions B and
BN . For the stability result to apply, the modified stage
costs l̃i(x, u), as well as the terminal cost ṼN (x) need to
be continuous and positive definite, which typically requires
recentered barriers [11], [12], [13].
If the barriers Bi are positive definite, then l(x, u) ≤ l̃(x, u)
and Assumption 2 is satisfied, which is illustrated in Figure 2.

B. Progressive barrier tightening
Similarly to partial tightening, progressive barrier tighten-
ing formulations replace inequality constraints with corre-
sponding barrier terms. Besides, progressive barrier tighten-
ing approaches employ increasing barrier parameters along
the horizon, i.e. l̃i(x, u) = l(x, u) + τiB(h(x, u)), i =
M, . . . , N − 1, with 0 < τi < τi+1 for all i. Progressive
barrier tightening has been used in [14], [2], [15].

C. Approximate infinite horizon closed-loop costing
With approximate infinite horizon closed-loop costing [16],
[17], the horizon is split into two parts. In the second part,
the inputs are given by a fixed policy π(x), which is typically
chosen as the LQR policy obtained by linearization at a
steady state. This yields an OCP of the form:

min
X,U

N−1∑
i=0

l(xi, ui) + lN (xN ) (25a)

s.t. x0 = x, (25b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (25c)

0 ≥ h(xi, ui), i = 0, . . . , N − 1, (25d)
0 ≥ hN (xN ), (25e)
ui = π(xi), i =M, . . . , N − 1. (25f)

Obviously, the additional constraint ui = π(xi) is a form of
tightening and Assumption 2 is satisfied. If π(x) satisfies

V̄ x
N−1(x) ≤ l̄N−1(x, π(x)) + V̄ x

N (fx(x, π(x)) (26)

for all x ∈ Rnx , the terminal stability condition, Assump-
tion 7, is satisfied.
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D. Stochastic linear MPC with chance constraints
For linear systems subject to additive disturbances, the
stochastic MPC formulation minimizing expected cost and
employing chance constraints yields a stage-varying OCP
formulation satisfying the progressive tightening condition
as the back-off terms, which in the linear case can be
precomputed, are typically increasing along the horizon [18].

E. Time-optimal point-to-point motion
The NMPC formulation for time-optimal point-to-point mo-
tions which has been introduced in [19] fits perfectly into
the class of progressively tightening NMPC formulations. A
similar formulation is used in [20].

F. Move blocking
An approach for reducing the computational complexity of
NMPC approaches is to introduce move blocking, which
corresponds to constraining the inputs to be constant over
a certain number of time steps [21], [22], [23].
In the following, we consider a very particular variant of
move blocking where the horizon is split into two parts: a
control horizon, where the control input is allowed to change
in every time step, and a simulation horizon, where the
control input is fixed, i.e. ui = uM−1 for i =M, . . . , N−1.
Introducing the auxiliary dynamics f z(u) = u, we obtain the
move blocking formulation:

min
X,Z,U

N−1∑
i=0

li(xi, ui) + VN (xN ) (27a)

s.t. x0 = x, (27b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (27c)
zi+1 = f z(ui), i = 0, . . . , N − 1, (27d)

ui − zi = 0, i =M, . . . , N, (27e)

zN ∈ Ũ, (27f)
0 ≥ hN (xN ), (27g)
0 = gN (xN ), (27h)

where Ũ is the set of controls that might be applied in the
second part of the horizon. The set Ũ needs to be chosen
such that the following assumption is satisfied:

Assumption 8. Suppose that

lN−1(x, u) + VN (fx(x, u)) ≤ VN (x) (28)

for all u ∈ Ũ and all x satisfying hN (x) ≤ 0, gN (x) = 0.

Proposition 1. Suppose Assumptions 1, 3, 8 are satisfied for
some set Ũ. Then, the terminal stability condition, Assump-
tion 7, is satisfied.

Proof. If V̄ x,z
N (x, z) = ∞, the inequality is trivially satisfied.

If V̄ x,z
N (x, z) <∞, we conclude that z ∈ Ũ and obtain

V̄ x,z
N−1(x, z) = min

u
l̄N−1(x, z, u) + V̄ x,z

N (fx(x, u), f z(u))

= lN−1(x, z) + VN (fx(x, z))

≤ VN (x), (29)

where the last inequality follows from Assumption 8.

G. Low-dimensional parameterized NMPC

Similar to move blocking, the computational complexity
might be reduced by choosing a non-constant, but still low-
dimensional parametrization of the control trajectory. An
example is the exponential parametrization as introduced in
[24]. Introducing the auxiliary dynamics f z(z) = Az, where
A ∈ Rnz×nz is a constant matrix with spectral radius ρ(A) <
1, an OCP with an exponential control parametrization is:

min
X,Z,U

N−1∑
i=0

li(xi, ui) + VN (xN ) (30a)

s.t. x0 = x, (30b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (30c)
zi+1 = f z(zi), i = 0, . . . , N − 1, (30d)

ui − Czi = 0, i = 0, . . . , N, (30e)

zN ∈ Ũ, (30f)

where C ∈ Rnu×nz . This parametrization limits the degrees
of freedom to z0 whereas the controls u0, . . . , uN−1 are
determined by the state of the auxiliary dynamic system.
It is easy to check that the progressive tightening criterion,
Assumption 2, is fulfilled. For the terminal stability condi-
tion, Assumption 7, to be satisfied we need to assume that
the set Ũ is chosen such that Assumption 8 holds.

H. Rate-regularized NMPC

Rate-regularized NMPC formulations, where the initial con-
trol u0 is free but there are additional constraints and/or costs
on the difference ui+1 − ui, can be expressed in terms of a
progressively tightening OCP by making use of the auxiliary
dynamics. With f z(u) = u, a rate-regularized formulation is:

min
X,Z,U

l0(x0, u0) +

N−1∑
i=1

l(xi, zi, ui) + VN (xN ) (31a)

s.t. x0 = x, (31b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (31c)
zi+1 = f z(ui), i = 0, . . . , N − 1, (31d)
−c ≤ ui − zi ≤ c, i = 1, . . . , N − 1. (31e)

In addition to rate constraints, we might introduce a penalty
p : R → R≥0 on the difference between subsequent inputs,

l(x, z, u) = l0(x, u) + p(∥u− z∥) (32)

in (31a). Given that Assumptions 1, 3, 4, 5, 6 and 7
are satisfied, it remains to check whether the costs satisfy
l0(x, u) ≤ l(x, z, u) for all x, u, z satisfying |u − z| ≤ c,
which is the case if l(x, z, u) is of the form given in (32).

I. Tunnel-following NMPC

With tunnel-following NMPC, a robot or agent is controlled
to follow a tunnel or tube around a prescribed path [25],
[26]. This is achieved by an NMPC formulation that aims
at maximizing progress along the path while keeping the
distance of the robot to the reference point on the path
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below some prescribed value. While the robot dynamics are
given by fx(x, u), the progress along the reference path is
described by the auxiliary system f z(z, w) = z − w where
z ∈ [0, 1] denotes the normalized distance along the path to
the goal position ztarget = 0. Let p(x) denote the position
associated with the robot state x and ρ(z) denote the position
associated with the normalized path distance z and assume
p(0) = ρ(0). The tunnel-following formulation is:

min
X,Z,U,W

N−1∑
i=0

l(x, z) + V z
N (z) (33a)

s.t. x0 = x, (33b)
xi+1 = fx(xi, ui), i = 0, . . . , N − 1, (33c)
zi+1 = f z(zi, wi), i = 0, . . . , N − 1, (33d)

ui ∈ Ũ, xi ∈ X̃, i = 0, . . . , N − 1, (33e)
zi ∈ [0, 1], i = 0, . . . , N, (33f)
0 ≤ wi ≤ wmax, i = 0, . . . , N − 1, (33g)
r ≥ ∥p(xi)−ρ(zi)∥, i = 0, . . . , N − 1, (33h)

p(xN ) = ρ(zN ), (33i)

xN ∈ X̃N (z), (33j)

with l(x, z) = lp(p(x)−ρ(z))+lz(z) penalizing the deviation
of the robot position to the corresponding reference position
on the path, as well as the normalized distance to the target
position. The terminal stability condition is fulfilled if V z

N (z)
and X̃N (z) satisfy the following assumption:

Assumption 9. Let X∗(z) = {x ∈ X̃N (z) : p(x) = ρ(z)}.
Suppose that for all z ∈ [0, 1] and all x ∈ X∗(z) there is u ∈
Ũ and w ∈ [0, wmax] such that x+ = fx(x, u) ∈ X∗(z

+)
and lz(z) + V z

N (z+) ≤ V z
N (z) where z+ = f z(z, w).

V. CONCLUSIONS

We considered a stage-varying optimal control problem
formulation including an auxiliary dynamic system and pro-
vided a stability proof for the corresponding closed-loop
system controlled with the NMPC policy. In addition to
standard assumptions, we require the stage-varying costs and
constraints to satisfy a progressive tightening condition.
In the second part, we showed that progressively tightening
problem formulations arise in various contexts illustrating the
generality of the problem formulation and the corresponding
stability result.
Our analysis does not cover formulations with discounted
cost, as is commonly used in reinforcement learning, as
well as formulations with zero terminal costs as analyzed
in [27]. Future work might aim at extending the progressive
tightening concept to continuous-time control systems.
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“Varying-radius tunnel-following NMPC for robot manipulators us-
ing sequential convex quadratic programming,” IFAC-PapersOnLine,
vol. 55, no. 37, pp. 345–352, 2022.
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