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Abstract— Moving horizon estimation (MHE) offers benefits
relative to other estimation approaches by its ability to explicitly
handle constraints, but suffers increased computation cost. To
help enable MHE on platforms with limited computation power,
we propose to solve the optimization problem underlying MHE
sub-optimally for a fixed number of optimization iterations per
time step. The stability of the closed-loop system is analyzed
using the small-gain theorem by considering the closed-loop
controlled system, the optimization algorithm dynamics, and the
estimation error dynamics as three interconnected subsystems.
By assuming incremental input/output-to-state stability (δ-
IOSS) of the system and imposing standard ISS conditions on
the controller, we derive conditions on the iteration number
such that the interconnected system is input-to-state stable (ISS)
w.r.t. the external disturbances. A simulation with an MHE-
MPC estimator-controller pair is used for validation.

I. INTRODUCTION

MHE is an optimization-based method that considers a
fixed window of past measurements and the system’s con-
straints in estimating the current state. Due to the inclusion of
the constraints explicitly in the problem formulation, MHE
has been shown to produce more accurate state estimates
compared to the extended Kalman Filter [1]. Assuming
detectability of the system, rather than observability, MHE
was shown to posses robust global asymptotic stability w.r.t.
bounded disturbances and the estimation error converges in
case of bounded and vanishing disturbances [2].

Although MHE offers the benefit of considering con-
straints, its application is limited by the computational
cost, particularly in platforms with limited computational
resources. To alleviate this issue, [3] introduced an auxiliary
observer to provide pre-estimation for MHE. Despite reduced
computation time, the iteration number required to solve the
MHE problem with stability guarantees cannot be determined
offline. In [4], an auxiliary observer is used to provide warm-
start solutions, which are improved for a limited amount
of iterations, to obtain sub-optimal state estimates that is
robustly stable. The proximity-MHE scheme in [5] performs
limited optimization iterations with a proximity regularizing
term to improve the prior estimate from an auxiliary observer
and guarantees the nominal stability of the MHE.

Other approaches concentrated on modifying the optimiza-
tion scheme used for solving MHE. For example, [6] pro-
posed to enforce move blocking on the disturbance sequence
in MHE to reduce the associated computation burden, which
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also guarantees the nominal stability of MHE. In [7], a real-
time iteration scheme is applied to MHE without inequality
constraints. Local convergence is guaranteed when a single
optimization iteration is performed per time step. The work
[8] combined this scheme with automatic code generation to
obtain highly efficient source code of MHE algorithms. For
noise-free systems, [9] solves the MHE problem for single or
multiple iterations with gradient-based, conjugate gradient-
based, and Newton methods and achieves local stability.

Compared to the aforementioned works, we study the
stability of the closed-loop with a sub-optimal MHE and
a feedback control law. Earlier studies often treated MHE
and the feedback controller as separate modules, with MHE
providing estimates with bounded error [10], and the con-
troller designed to ensure stability. Instead, we aim to jointly
determine conditions that guarantee stability of both MHE
and the controlled system. To achieve this, we adopt an
stability analysis framework from the sub-optimal model pre-
dictive control (MPC) literature [11], [12], which formulated
the closed-loop system as an interconnection of a controlled
system and an optimization algorithm dynamics.

In this paper, we propose a sub-optimal MHE scheme
where, at every time step, the MHE problem is warm-
started with the previous solution and then solved by an
optimization algorithm with a fixed number of iterations.
Then, the resulting sub-optimal estimate is used for feedback
control of a linear system with state and input constraints.

Our main contribution lies in the stability analysis. We
first characterize the interaction between the closed-loop
system controlled by an robustly stabilizing controller, the
sub-optimality error dynamics of the optimization process,
and the state estimation error dynamics of the sub-optimal
MHE as three interconnected subsystems, which we then
show are input-to-state stable (ISS). Next, we use the small-
gain theorem [13] to derive conditions on the optimization
iteration number for guaranteeing the interconnected system
is ISS w.r.t to external disturbances.

Notations: Let S≻0 be the set of positive definite matrices.
Let In be the identity matrix of size n. Let 0m×n be the
zero matrix of size m × n. For a vector x ∈ Rnx and a
matrix U ∈ Snx×nx

≻0 , let ∥x∥ and ∥x∥U denote the l2-norm
and the weighted l2-norm of x, respectively. Consider square
matrices U and V . Let ∥U∥ denote the spectral norm. Let
λU and λU denote the largest and smallest eigenvalues of
U , respectively. Let ΛU

V := λ(U)/λ(V ). Let I[a,b] denote
the set of integers in [a, b] ∈ R. For vt ∈ Rnv and time
steps a, b ∈ I[a,b], let v[a,b] := {va, · · · , vb} and ∥v[a,b]∥ :=
supt∈I[a,b]

∥vt∥. Our use of the class K, L, KL functions,
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follow the convention in [11].

II. CONTROLLER AND MHE FORMULATION

A. Dynamic System with State Feedback Controller

Consider a system with linear time-invariant dynamics

xt+1 = Axt +But + w1
t , yt = Cxt + w2

t , (1)

with state xt ∈ X ⊂ Rnx , input ut ∈ U ⊂ Rnu , output
measurement yt ∈ Y ⊂ Rny , external disturbance w1

t ∈
W1 ⊂ Rnx , and measurement noise w2

t ∈ W2 ⊂ Rny .
Let wt := [w1

t
⊤
, w2

t
⊤
]⊤ ∈ W ⊂ Rnx+y be the augmented

external disturbance. Let Z := X × U × Y × W be the
Cartesian product of the constraint sets.

Assumption 1 Z is convex and contains the origin.

Assumption 2 Consider system (1). There exist P,Q,R ∈
S≻0 and η ∈ [0, 1) that satisfy(

A⊤PA− ηP − C⊤RC A⊤PB̄ − C⊤RD̄
B̄⊤PA− D̄⊤RC B̄⊤PB̄ −Q− D̄⊤RD̄

)
⪯ 0,

B̄ = [Inx , 0nx×ny ], D̄ = [0ny×nx , Iny , ]. (2)

The sufficient condition in (2) was established in Corol-
lary 3 of [14] to guarantee system (1) admits a δ-IOSS
Lyapunov function, and is thus detectable. Let (x, u, y, w),
(x′, u, y′, w′) ∈ Z , where y = Cx+w2 and y′ = Cx′+w2′.
Then, satisfaction of (2) implies the system (1) admits

Wδ(x, x
′) := ∥x− x′∥2P (3)

as a δ-IOSS Lyapunov function, satisfying

Wδ(Ax+Bu+ w1, Ax′ +Bu+ w1′)

≤ ηWδ(x, x
′) + ∥w − w′∥2Q + ∥y − y′∥2R. (4)

Consider the system (1) with a state feedback controller
ut := π(x̂t) : X → U satisfying Assumptions 3 and 4,

xt+1 = Axt +Bπ(x̂t) + w1
t , (5)

with state estimate x̂t ∈ X and estimation error et := x̂t−xt.

Assumption 3 There exists a positive constant Lπ such that,
for any x, x′ ∈ X , π(·) satisfies

∥π(x)− π(x′)∥ ≤ Lπ∥x− x′∥. (6)

Assumption 4 The closed-loop controlled system in (5) is
input-to-state stable (ISS): Given an initial state x0 ∈ X ,
an input sequence u[0,t−1] generated by π(·), an estimation
error sequence e[0,t−1], and a disturbance sequence w[0,t−1],
there exist β1 ∈ (0, 1), α1, γ1,3 > 0, and γw

1 ∈ K such that,
for all t > 0, the resulting state xt ∈ X satisfies

∥xt∥ ≤ βt
1α1∥x0∥+ γ1,3∥e[0,t−1]∥+ γw

1 (∥w[0,t−1]∥). (7)

Assumption 3, 4 can be satisfied by, e.g., a MPC controller.

B. Sub-Optimal Moving Horizon Estimation

At time step t, we obtain the state estimate x̂t by solving a
MHE problem based on a prior estimation xprior

t−Mt
, past inputs

ut = u[t−Mt,t−1], and past measurements yt = y[t−Mt,t−1],
with estimation horizon Mt := min(M, t), M ∈ I>0. The

MHE problem Pt(x
prior
t−Mt

,ut,yt) is formulated as

(x̂∗
t ,ŵ

∗
t , ŷ

∗
t ) = argmin

x̂t,ŵt,ŷt

VMHE(x̂t−Mt|t, ŵt, ŷt) (8a)

s.t. x̂i+1|t = Ax̂i|t +Bui + ŵ1
i|t, i ∈ I[t−Mt,t−1], (8b)

ŷi|t = Cx̂i|t + ŵ2
i|t, i ∈ I[t−Mt,t−1], (8c)

ŵi|t ∈ W, ŷi|t ∈ Y, i ∈ I[t−Mt,t−1], (8d)
x̂i|t ∈ X , i ∈ I[t−Mt,t], (8e)

where the cost is defined as

VMHE(x̂t−Mt|t, ŵt, ŷt) := 2ηMtWδ(x̂t−Mt|t, x
prior
t−Mt

)

+

Mt∑
i=1

ηi−1
(
2
∥∥ŵt−i|t

∥∥2
Q
+

∥∥ŷt−i|t − yt−i

∥∥2
R

)
, (9)

with η, P , Q, and R satisfying (2). The decision variables
x̂t := {x̂t−Mt|t, · · · , x̂t|t}, ŵt := {ŵt−Mt|t, · · · , ŵt−1|t},
and ŷt := {ŷt−Mt|t, · · · , ŷt−1|t} denote the estimated states,
augmented disturbances, and measurements, respectively.
The cost functions (9) can be reformulated as

VMHE(x̂t−Mt|t, ŵt, ŷt) := ∥zt − z̃t∥2Ht
, (10)

where

zt :=[x̂⊤
t−Mt|t, ŵ

⊤
t−Mt|t, ŷ

⊤
t−Mt|t, · · · , ŵ

⊤
t−1|t, ŷ

⊤
t−1|t]

⊤,

z̃t :=[xprior⊤
t−Mt

,0nw⊤, y⊤t−Mt
, · · · ,0nw⊤, y⊤t−1]

⊤, (11)

Ht := blkdiag(2ηMtP, 2ηMt−1Q, ηMt−1R, · · · , 2Q,R).

Given ut, the state sequence x̂t can be constructed from
zt. Let (x̂∗

t , ŷ
∗
t , ŵ

∗
t ) and z∗t denote the optimal solution to

(8), with the cost in (9) and (10), respectively. We solve
Pt(x

prior
t−Mt

,ut,yt) with an optimization algorithm denoted
by the nonlinear mapping zKt = ΦK(z0t ,Pt), with an initial
solution z0t and iteration number K > 0. Suppose this
optimization algorithm satisfies Assumption 5.

Assumption 5 Given an initial solution z0t , the Kth-iteration
solution zKt obtained from solving Pt(x

prior
t−Mt

,ut,yt) with
ΦK(z0t ,Pt) satisfies (8b)-(8e), and

et := ∥zKt − z∗t ∥ ≤ ϕ(K)∥z0t − z∗t ∥, ϕ(K) ∈ L. (12)

Let (x̂K
t , ŷK

t , ŵK
t ) and zKt denote the sub-optimal solution

to (8) and define the sub-optimality error as ϵt := ∥zKt −z∗t ∥.
Assumption 5 can be satisfied by a general class of op-
timization algorithms, for example, the projected gradient
algorithm used in [11], where ϕ(K) := ιK , with 0 < ι < 1,
for strongly convex problems and 1/K for convex problems.

III. SUB-OPTIMAL MHE-BASED FEEDBACK CONTROL

In this section, we introduce a sub-optimal MHE scheme
combined with a given feedback control. We then character-
ize the resulting closed-loop system as three interconnected
subsystems. By showing each subsystem is ISS, we can apply
the small-gain theorem [13] to derive conditions on the opti-
mization iteration number that guarantee the interconnected
system is ISS w.r.t. external disturbances. We present the
proofs of Propositions 1-3 in the Appendix.

A. The Sub-Optimal MHE Scheme

Algorithm 1 (Alg. 1) introduces the proposed sub-optimal
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Algorithm 1 Sub-Optimal MHE in Feedback Control

Require: M , K, ΦK(·), π(·), z00 , xprior
0 , u0, y0;

For t = 0, 1, 2, · · · Do
1. Obtain x̂K

t by solving Pt(x
prior
t−Mt

,ut,yt) for K iterations
using optimization algorithm ΦK(z0t ,Pt);
2. Warm-starting: z0t+1 ← Σtz

K
t ;

3. Update the parameters: xprior
t−Mt

← x̂K
t−Mt|t, ut+1, yt+1;

4. Apply π(x̂K
t ) to the system (5);

End

MHE scheme. In Step 1, the MHE problem is solved to
obtain x̂K

t . In Step 2, the solution zKt is copied as the
next warm-start solution z0t+1, This step also allows the
optimization process to be treated as a dynamic system in
the next section. However, for t < M , the formulation in (8)
grows in size as more information is obtained. As a result,
the solution zKt has a lower dimension compared to z0t+1.
To alleviate this issue, we introduce a linear mapping matrix

Σt :=

{
blkdiag(Inzt−nx−ny ,0nx+ny ), t < M,
Inzt , t ≥M,

(13)

to map zKt to the same dimension as z0t+1. In Step 3, the
current data π(x̂K

t ) and yt are appended to the end of ut+1

and yt+1, respectively. In Step 4, the control input is applied.

B. Interconnection of Three Subsystems

The closed-loop system in (5) using Alg. 1 to estimate x̂t

can be reformulated as three interconnected subsystems:

Subsys. 1:
{

xt+1 = Axt +Bπ(xt + et) + w1
t ,

yt = Cxt + w2
t ,

(14a)

Subsys. 2: ϵt+1 = Φ̄K(ϵt, xt, yt, ut, et), (14b)
Subsys. 3: et+1 = E(et, xt, ϵt), (14c)

where ϵt := ∥zKt − z∗t ∥ and et := x̂t − xt. Subsys. 1-3 de-
scribe the closed-loop controlled system, the sub-optimality
error dynamics, and the estimation error dynamics, respec-
tively. Fig. 1 illustrates the interconnections between them.

In subsys. 1, the controller π(xt) attempts to drive xt to
the origin. However, π(xt) is perturbed to π(x̂K

t ) by et. In
subsys. 2, Pt(x

prior
t−Mt

,ut,yt) is solved for K iterations to
drive the sub-optimal solution zKt−1 to the optimal solution
z∗t (the sub-optimality error ϵt to zero.) In subsys. 3, the
MHE attempts to drive the estimation error to zero. This
process is disturbed by the change in state xt and the sub-
optimality error ϵt. The stability of the interconnected system
(14) can be analyzed via the small-gain theorem [13], which
first requires each subsystem to be ISS. Note that subsys. 1
in (14a) meets this requirement via Assumption 4.

C. ISS of the Sub-Optimality Error Dynamics (Subsys. 2)

To prove the sub-optimality error dynamics is ISS, we
first show the difference between two consecutive optimal
solutions z∗t−1 and z∗t is bounded as the problem parameters
change, which include xprior

t−Mt
,ut and yt.

Lemma 1 Suppose Assumptions 1-2 hold. Then, there exists
a Lipschitz constant LΦ > 1 such that the optimal solutions

Fig. 1: The interconnection of three subsystems.

of Pt−1(x
prior
t−1−Mt−1

,ut−1,yt−1), Pt(x
prior
t−Mt

,ut,yt) satisfy

∥Σt−1z
∗
t−1 − z∗t ∥ ≤ LΦ(∥z̃t−1 − Σ⊤

t−1z̃t∥+ ũt + σt), (15)

where ũt = ∥ut−1∥ for t ≤M and ũt =
∑M−1

i=0 ∥ut−1−i −
ut−2−i∥ for t > M , and σt = (η−1−1)∥Ht∥+∥A∥+∥B∥+
∥C∥+ 2 for t ≤M and σt = 0 for t > M .

Proof: We prove (15) by treating Pt(·) as a parametric
optimization problem with a strongly convex cost function
(due to Assumption 2), convex inequality constraints, and
affine equality constraints (due to Assumption 1). For t > M ,
from Theorem 3.1 in [15], we know the optimal solution of
Pt(·) is Lipschitz continuous w.r.t the parameters, i.e., there
exists a Lipschitz constant LΦ > 1 such that

∥Σt−1z
∗
t−1 − z∗t ∥ ≤ LΦ(∥z̃t−1 − Σ⊤

t−1z̃t∥+ ũt). (16)

For t ≤ M , we consider an equivalent expression of
Pt(x̂0,ut,yt), given by P′

t(x̂0,ut,yt, Ht, A,B, Inx , C, Iny ),
where Ht is from (10) and the last five matrices are from
the constraints (8b) and (8c), with i = t − 1, respectively.
Let P̌t := P′

t(x̂0,ut,yt, η
−1Ht,0,0,0,0,0), with optimal

solution ž∗t . From [15], there exists LΦ > 1 such that

∥ž∗t − z∗t ∥ ≤ LΦ(σt + ũt). (17)

By replacing Ht with η−1Ht and A,B, Inx , C, Iny with 0
in P̌t, we restrict x̂∗

t|t = 0, ŷ∗t−1|t = 0 in ž∗t , and enforce P̌t

and Pt−1(x̂0,ut−1,yt−1) to have the same cost. As a result,
ž∗t = Σt−1z

∗
t−1. Then, replacing ž∗t in (17) gives

∥Σt−1z
∗
t−1 − z∗t ∥ ≤ LΦ(σt + ũt). (18)

Lastly, we can combine (16) and (18) to obtain (15).

With the bound in (15), we can show subsys. 2 is ISS:

Proposition 1 Consider Pt(x
prior
t−Mt

,ut,yt) solved by an op-
timization algorithm ΦK(z0t ,Pt), with warm-start solution
z0t+1 ← Σtz

K
t . Suppose Assumptions 1-5 hold. For t > 0,

the sub-optimality error ϵt satisfies

∥ϵt∥≤β2(∥ϵ0∥, t) + γ2,1(∥x[0,t−1]∥) + γ2,3(∥e[0,t−1]∥)
+ γw

2 (∥w[0,t−1]∥) + γσ
2 (∥σ[0,t−1]∥), (19)

where β2(s, t) := ϕ(K)ts, γ2,1(s) := C1ϕ(K)/(1− ϕ(K))
s, γ2,3(s) := C2ϕ(K)/(1− ϕ(K))s, γw

2 (s) := C3

ϕ(K)/(1− ϕ(K))s, and γσ
3 (s) := ϕ(K)LΦ/(1− ϕ(K))s,

with C1, C2, C3 defined in (25)-(26).

D. ISS of the Estimation Error Dynamics (Subsys. 3)
Inspired by [14], we first construct an M -step Lyapunov

function for (14c) based on Wδ(·) defined in (3).
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Proposition 2 Suppose Assumptions 1-5 hold. For t ≥ 0,
the state estimate x̂K

t satisfies

Wδ(x̂
K
t|t, xt) ≤ 6ηMtWδ(x̂

K
t−Mt|t−Mt

, xt−Mt
)

+ 2H̄∥ϵt∥2 + 6

Mt∑
j=1

ηj−1∥wt−j∥2Q. (20)

Based on the M -step Lyapunov function in (20), we show
the estimation error dynamics is ISS.

Proposition 3 Suppose Assumptions 1-5 hold. Then, the
estimation error dynamics is ISS and et satisfies

∥et∥ ≤β3(∥e0∥, t) + γ3,1(∥x[0,t−1]∥) + γ3,2(∥ϵ[0,t−1]∥)
+ γw

3 (∥w[0,t−1]∥) + γσ
3 (∥σ[0,t−1]∥), (21)

where β3(s, t) := Ce(K)
√
ρts, γ3,1(s) :=

√
2ΛH̄

P C1ϕ(K)s,
γ3,2(s) := Cϵ(K)s, γw

3 (s) := Cw(K)s, and γσ
3 (s) :=√

2ΛH̄
P ϕ(K)LΦs, with ρ satisfying ρM = 6ηM and Ce(K),

Cw(K), and Cϵ(K) defined in (27)-(29).

Since K is computed offline, we slightly abuse the notation
and drop the K-dependence of γ-functions in (19) and (21).
E. Stability of the Interconnected System

We now apply the small-gain theorem to determine con-
ditions on the optimization iteration number K for guaran-
teeing (14) in Fig. 1 to be ISS w.r.t external disturbances.

Theorem 1 Suppose Assumptions 1-5 hold. Let T1, T2, T3

be defined in (30)-(32). The interconnected system (14) is
ISS w.r.t. the external disturbance wt, if

K ≥ ⌈ϕ−1(min(T1, T2, T3))⌉. (22)

Proof: Given Assumptions 1-5 hold, Propositions 1, 3,
and Assumption 4, show that subsys. 1-3 are ISS, admitting
(7), (21), (19), for all t ≥ 0, respectively. Since ϕ(K) ∈ L is
invertible and T1, T2, T3 > 0, choosing a K value satisfying
(22) leads to ϕ(K) < min(T1, T2, T3), which guarantees
that the small-gain condition holds for all loops in Fig. 1:

γ1,3 · γ3,1(s) < s, γ2,3 ◦ γ3,2(s) < s,

γ1,3 · γ3,2 ◦ γ2,1(s) < s, s > 0.
(23)

Note we treated the last two conditions as quadratic func-
tions and used the quadratic formula to derive T2 and T3.
Since all subsystems are ISS and the small-gain conditions
in (23) hold, we know from Remark 1 of [13] that (14) is
ISS w.r.t external disturbance wt.

IV. CASE STUDY WITH AN MHE-MPC
To demonstrate Alg. 1 and the theoretical findings, we con-

sider the discrete-time linear system and the corresponding
MPC controller in the case study of [11]. We add an output
matrix C = [0.1, 0.3, 0.8, 0.5] to the system such that the
system is observable. The state x ∈ R4 and measurement
y ∈ R are unconstrained, and the input u ∈ [−1, 1] ×
[−1, 1]. Each element of the disturbance vector wt is sampled
independently and uniformly from [−0.1, 0.1]. We found
γ1,3(s) := 28.8s, through the method used in Proposition
2 of [16], and Lπ = 2.65, through a sample-based method.

10 20 30 40

0

5

10

10 20 30 40

10-6

10-5

0 2 4

0

0.05

0.1

Fig. 2: (a) True state vs. Sub-optimal estimate; (b) Change
in sub-optimality error; (c) The estimated measurement noise
obtained from solving the MHE problem at t = 6.

The parameters of the MHE problem in (8) are M = 5,
Q = I4, R = 1, and η = 0.8, with P computed to satisfy
(2). Problem (8) is written in a condensed form and solved
using the partial gradient method [11] with convergence rate
∥zKt − z∗t ∥ ≤ 0.98K∥z0t − z∗t ∥. Accordingly, we define
ϕ(K) := 0.98K . The Lipschitz constant LΦ = 5.32 is
determined through a sample-based method. Finally, the
iteration number K = 652 is computed, which satisfies (23)
with the previously defined parameters.

Given an initial state x0 = [12,−10, 10,−10]⊤, z00 =
xprior
0 = [7,−7, 3,−5]⊤, and empty sequences y0 and u0,

Alg. 1 is applied for 40 time steps. Fig. 2(a) shows the
state x1,t converges asymptotically to a neighbourhood of 0
and the sub-optimal estimate x̂K

1,t converges asymptotically
to a neighbourhood of x1,t. Fig. 2(b) shows that the sub-
optimality error ϵt converges asymptotically to a neighbour-
hood of 0. Thus, subsystems 1-3 defined in (14a)-(14c)
are ISS. Fig. 2(c) shows the estimated measurement noise
sequence ŵ2,K

t obtained from solving (8) at time step t = 6,
which respects the constraint (in red) by the design of MHE.

V. CONCLUSION

In this work, we proposed a sub-optimal MHE scheme
applied to the control of linear systems with constraints.
By characterizing Alg. 1 as three interconnected subsystems,
we derived conditions on the optimization iteration number
for guaranteeing ISS of the interconnected system w.r.t. to
external disturbances. A possible extension is to consider the
stability of systems controlled by a sub-optimal MPC-MHE
pair in applications with limited computation resources.

VI. APPENDIX

We define some terms here for clarity:

c := 2(3ΛP
PΛ

H̄
P )1/2LΦ(2Lπ

M−1∑
i=1

√
ρ
−1−i

+ (
√
ρ
−M

+ Lπ
√
ρ
−1

) + (Lπ + 1)
√
ρ
−M−1

), (24)
C1 := 2LΦ(1 +M(∥C∥+ Lπ)), (25)
C2 := 2LΦ(1 +MLπ), C3 := 2LΦM, (26)

Ce(K) := cϕ(K) + (6ΛP
P )

1/2, (27)

Cw(K) := (2ΛH̄
P )1/2C3ϕ(K) + (6ΛQ

P )
1/2(1−√ρ)−1

+ 4(3ΛH̄
P ΛQ

P )
1/2ϕ(K)LΦ (LπM + 1) (1−√ρ)−1, (28)

Cϵ(K) := (2ΛH̄
P )1/2ϕ(K) + (2ΛH̄

P )1/2(1−
√
ρM )−1
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+ 4ΛH̄
P ϕ(K)LΦ (LπM + 1) (1−

√
ρM )−1, (29)

T1 := 1/γ1,3(C1(2Λ
H̄
P )1/2)−1, (30)

T2 := ((1 + 6C2
2Λ

P
P − 2C2(6Λ

P
P )

1/2 + 4C2c)
1/2

+C2(6Λ
P
P )

1/2 − 1)/(2C2c), (31)

T3 := (((1/γ2
1,2 + 4C1C2(2Λ

H̄
P )1/2γ−1

1,2(1))
1/2

−γ−1
1,2(1))/(2C1C2(2Λ

H̄
P )1/2). (32)

Proof of Proposition 1: We break the proof into two cases.
Case 1: For t ≤M , we have

∥z0t − z∗t ∥
Step 2
= ∥Σt−1z

K
t−1 − z∗t ∥ (33)

≤ ∥Σt−1z
K
t−1 − Σt−1z

∗
t−1∥+ ∥Σt−1z

∗
t−1 − z∗t ∥ (34)

(15)
≤ ∥zKt−1 − z∗t−1∥+ LΦ(σt + ũt), (35)

where ∥Σt−1∥ = 1 was used in (35). By multiplying ϕ(K)
on both sides of the above inequality and using (12), we have

∥ϵt∥≤ϕ(K)(∥ϵt−1∥+ LΦ(∥σ[0,t−1]∥+ ∥ut−1∥)), (36)

where ũt = ∥ut−1∥. Furthermore, ||σt|| ≤ ||σ[0,t−1]||
since ∥Ht∥ = max(2∥Q∥, ∥R∥, 2ηMt∥P∥) ≤
max(2∥Q∥, ∥R∥, 2ηMt−1∥P∥) = ∥Ht−1∥ for t ≤M .
Case 2: For t > M , we have

∥z0t − z∗t ∥
Step 2
≤ ∥zKt−1 − z∗t−1∥+ ∥z∗t−1 − z∗t ∥ (37)

(15)
≤ ∥zKt−1 − z∗t−1∥+ LΦ(∥z̃t−1 − z̃t∥+ ũt) (38)

≤ LΦ

Mt−1∑
i=0

(∥ut−1−i − ut−2−i∥+ ∥yt−1−i − yt−2−i∥)

+ LΦ∥x̂K
t−M |t−M − x̂K

t−M−1|t−M−1∥+ ∥ϵt−1∥, (39)

where we used xprior
t−M = x̂K

t−M |t−M and xprior
t−M−1 =

x̂K
t−M−1|t−M−1 in (39). Given the above inequality, we can

bound ∥x̂K
t−M |t−M − x̂K

t−M−1|t−M−1∥ with

∥x̂K
t−M |t−M − x̂K

t−M−1|t−M−1∥
=∥(xt−M + et−M )− (xt−M−1 + et−M−1)∥ (40)
≤∥xt−Mt∥+ ∥xt−Mt−1∥+ ∥et−Mt∥+ ∥et−Mt−1∥, (41)

bound ∥ut−1−i − ut−2−i∥ with

∥ut−1−i − ut−2−i∥
(6)
≤ Lπ∥x̂K

t−1−i − x̂K
t−2−i∥

≤ Lπ(∥xt−1−i∥+ ∥xt−2−i∥+ ∥et−1−i∥+ ∥et−2−i∥), (42)

and bound ∥yt−1−i − yt−2−i∥ with

∥yt−1−i − yt−2−i∥ ≤ ∥wt−1−i∥+ ∥wt−2−i∥
+ ∥C∥∥xt−1−i∥+ ∥C∥∥xt−2−i∥. (43)

Using the resulting bound to replace the term ∥z0t − z∗t ∥ on
the r.h.s. of (12), we have that

∥ϵt∥ ≤ ϕ(K)∥ϵt−1∥+ C1ϕ(K)∥x[0,t−1]∥
+ ϕ(K)LΦ (∥et−M∥+ ∥et−M−1∥) + C3ϕ(K)∥w[0,t−1]∥

+ ϕ(K)LΦ

M−1∑
i=0

(Lπ(∥et−1−i∥+ ∥et−2−i∥)) . (44)

where ∥xj∥ and ∥wj∥, j < t, are bounded with ∥x[0,t−1]∥

and ∥w[0,t−1]∥, respectively. Next, bounding ∥ej∥, j < t in
(44) with ∥e[0,t−1]∥ gives

∥ϵt∥≤ϕ(K)∥ϵt−1∥+ C1ϕ(K)∥x[0,t−1]∥
+ C2ϕ(K)∥e[0,t−1]∥+ C3ϕ(K)∥w[0,t−1]∥. (45)

Like (42), we can apply ∥ut−1∥ ≤ Lπ(∥xt−1∥+ ∥et−1∥) in
(36). Then, combining the r.h.s. of (36) and (45) gives

∥ϵt∥≤ϕ(K)∥ϵt−1∥+ C1ϕ(K)∥x[0,t−1]∥+ C2ϕ(K)∥e[0,t−1]∥
+ C3ϕ(K)∥w[0,t−1]∥+ ϕ(K)LΦ∥σ[0,t−1]∥, (46)

which holds for all t > 0. Finally, applying (46) for
t times and applying the bound

∑t−1
i=0 ϕ(K)(t−1−i) <∑∞

i=0 ϕ(K)(t−1−i) = 1/(1− ϕ(K)) give (19).

Proof of Proposition 2: We first derive an intermediate
bound on Wδ(x̂

K
t|t, xt). Due to Assumption 5, the sub-

optimal solution (x̂K
t , ŷK

t , ŵK
t ) is feasible for (8) and forms

a feasible trajectory of the system in (1). Given the actual
trajectory (x[t−M,t],y[t−M,t−1],w[t−M,t−1]), we can apply
the bound in (4) for Mt times to obtain

Wδ(x̂
K
t|t, xt) ≤ ηMtWδ(x̂

K
t−Mt|t, xt−Mt

)

+

Mt∑
j=1

ηj−1(∥ŵK
t−j|t − wt−j∥2Q + ∥ŷKt−j|t − yt−j∥2R) (47)

≤ 2ηMt∥x̂K
t−Mt|t − x̂K

t−Mt|t−Mt
∥2P

+2ηMt∥x̂K
t−Mt|t−Mt

− xt−Mt∥2P +

Mt∑
j=1

ηj−12∥wt−j∥2Q

+

Mt∑
j=1

ηj−1(∥ŷKt−j|t − yt−j∥2R + 2∥ŵK
t−j|t∥

2
Q) (48)

≤ 2ηMtWδ(x̂
K
t−Mt|t−Mt

, xt−Mt) +

Mt∑
j=1

ηj−12∥wt−j∥2Q

+VMHE(x̂
K
t−Mt|t, ŵ

K
t , ŷK

t ) (49)

where (48) is obtained by applying ∥a + b∥2 ≤ 2(∥a∥2 +
∥b∥2) to Wδ(x̂

K
t−Mt|t, xt−Mt) and ∥ŵK

t−j|t −wt−j∥2Q. Next,
we derive a bound on VMHE(x̂

K
t−Mt|t, ŵ

K
t , ŷK

t ). We know

VMHE(x̂
K
t−Mt|t, ŵ

K
t , ŷK

t ) = ∥zKt − z̃t∥2Ht
(50)

≤ 2∥zKt − z∗t ∥2Ht
+ 2∥z∗t − z̃t∥2Ht

(51)

≤ 2∥ϵt∥2Ht
+ 2VMHE(x̂

∗
t−Mt|t, ŵ

∗
t , ŷ

∗
t ) (52)

≤ 2∥ϵt∥2Ht
+ 2VMHE(xt−Mt

,w[t−Mt,t−1],y[t−Mt,t−1])

where the last inequality holds since (x[t−Mt,t],w[t−Mt,t−1],
y[t−Mt,t−1]) forms a sub-optimal solution to (8). Using the
above bound with (49) and then using (9) give

Wδ(x̂
K
t|t, xt) ≤ 2ηMtWδ(x̂

K
t−Mt|t−Mt

, xt−Mt
)

+

Mt∑
j=1

ηj−12∥wt−j∥2Q + 2∥ϵt∥2Ht

+ 2VMHE(xt−Mt
,w[t−Mt,t−1],y[t−Mt,t−1]) (53)

=

Mt∑
j=1

ηj−1(6∥wt−j∥2Q + 2 ∥yt−j − yt−j∥2R)
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+6ηMtWδ(x̂
K
t−Mt|t−Mt

, xt−Mt
) + 2∥ϵt∥2Ht

. (54)

Using ∥ϵt∥2Ht
≤ λ(Ht)∥ϵt∥2 ≤ H̄∥ϵt∥2 in (55) gives (20).

Proof of Proposition 3: Let t = cM + l, with l ∈ I[0,M−1]

and c ∈ I≥0. At time step l, plugging t = l into (20) gives

Wδ(x̂
K
l|l, xl) ≤6ηlWδ(x̂

K
0|0, x0) + 2H̄∥ϵl∥2

+ 6

l∑
j=1

ηj−1∥wl−j∥2Q. (55)

At t, using (20) for c times and ρM to replace 6ηM give

Wδ(x̂
K
t|t, xt) ≤ ρcMWδ(x̂

K
l|l, xl) + 2H̄

c−1∑
i=0

ρiM∥ϵt−iM∥2

+ 6

c−1∑
i=0

ρiM
M∑
j=1

ηj−1∥wt−iM−j∥2Q (56)

(55)
≤ ρcM6ηlWδ(x̂

K
0|0, x0) + 6ρcM

l∑
j=1

ηj−1∥wt−cM−j∥2Q

+ 6

c−1∑
i=0

ρiM
M∑
j=1

ηj−1∥wt−iM−j∥2Q + 2H̄

c∑
i=0

ρiM∥ϵt−iM∥2.

Then, using ρ = 6
1
M η > η and ρcMρl = ρt yields

Wδ(x̂
K
t|t, xt) ≤ 6ρtWδ(x̂

K
0|0, x0)

+ 2H̄

c∑
i=0

ρiM∥ϵt−iM∥2 + 6

t−1∑
j=0

ρj∥wt−j−1∥2Q. (57)

Next, using λ(P )∥et∥2 ≤ Wδ(x̂
K
t|t, xt) on the l.h.s. of (57),

and Wδ(x̂
K
0|0, x0) ≤ λ(P )∥e0∥2 and ∥wt∥2Q ≤ λ(Q)∥wt∥2

on the r.h.s. of (57), and dividing both sides by λ(P ) give

∥et∥2 ≤ 6ΛQ
P

t−1∑
j=0

ρj∥wt−j−1∥2 + 2ΛH̄
P

c∑
i=1

ρiM∥ϵt−iM∥2

+ 2ΛH̄
P ∥ϵt∥2 + 6ρtΛP

P ∥e0∥2. (58)

Using ∥wt−j−1∥ ≤ ∥w[0,t−1]∥, ∥ϵt−iM∥ ≤ ∥ϵ[0,t−1]∥, and
opening square on both sides using

√
a+ b ≤

√
a+
√
b gives

∥et∥ ≤
√
6ΛP

P

√
ρ
t∥e0∥+

√
6ΛQ

P (1−
√
ρ)−1∥w[0,t−1]∥

+

√
2ΛH̄

P (1−
√
ρM )−1∥ϵ[0,t−1]∥+

√
2ΛH̄

P ∥ϵt∥, (59)

where
∑t−1

j=0

√
ρj <

∑∞
j=0

√
ρj = (1 − √ρ)−1 and∑c

i=1

√
ρM

i
<

∑∞
i=1

√
ρM

i
= (1 −

√
ρM )−1 were used.

To eliminate ∥ϵt∥ in (59), we consider two cases:

Case 1: For t ≤M , ∥ϵt∥ can be bounded by (36) to obtain

∥et∥ ≤
√
6ΛP

P

√
ρ
t∥e0∥+

√
6ΛQ

P (1−
√
ρ)−1∥w[0,t−1]∥

+

√
2ΛH̄

P ((1−
√
ρM )−1 + ϕ(K))∥ϵ[0,t−1]∥

+

√
2ΛH̄

P ϕ(K)LΦ∥σ[0,t−1]∥. (60)

where the resulting ∥ϵ0∥ is bounded by ∥ϵ[0,t−1]]∥.

Case 2: For t > M , ∥ϵt∥ can be bounded by (44) to obtain

∥et∥ ≤
√
6ΛP

P

√
ρ
t∥e0∥+

√
2ΛH̄

P C1ϕ(K)∥x[0,t−1]∥

+ (

√
6ΛQ

P (1−
√
ρ)−1 +

√
2ΛH̄

P C3ϕ(K))∥w[0,t−1]∥

+

√
2ΛH̄

P ((1−
√
ρM )−1 + ϕ(K))∥ϵ[0,t−1]∥

+

√
2ΛH̄

P ϕ(K)LΦ

M−1∑
i=0

(Lπ(∥et−1−i∥+ ∥et−2−i∥))

+

√
2ΛH̄

P ϕ(K)LΦ (∥et−M∥+ ∥et−M−1∥) . (61)

Bounding ∥et−M∥, ∥et−M−1∥, ∥et−1−i∥, ∥et−2−i∥, i ∈
[0,M − 1] with (59) and simplifying expression give

∥et∥ ≤ Ce(K)
√
ρ
t∥e0∥+

√
2ΛH̄

P C1ϕ(K)∥x[0,t−1]∥
+ Cϵ(K)∥ϵ[0,t−1]∥+ Cw(K)∥w[0,t−1]∥. (62)

Since Ce(K) ≥
√

6ΛP
P , Cϵ(K) ≥

√
2ΛH̄

P ((1−
√

ρM )−1 +

ϕ(K)), and Cw(K) ≥
√
6ΛQ

P (1−
√
ρ)−1, we can combine

(60) and (62) to obtain (21), which holds for t ≥ 0.
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