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Abstract— In this paper we treat optimal trajectory planning
for an autonomous vehicle (AV) operating in dense traffic,
where vehicles closely interact with each other. To tackle
this problem, we present a novel framework that couples
trajectory prediction and planning in multi-agent environments,
using distributed model predictive control. A demonstration
of our framework is presented in simulation, employing a
trajectory planner using non-linear model predictive control.
We analyze performance and convergence of our framework,
subject to different prediction errors. The results indicate that
the obtained locally optimal solutions are improved, compared
with decoupled prediction and planning.

I. INTRODUCTION

Considering the vast amount of existing traffic situations,
trajectory planning in safety-critical traffic scenarios remains
an active research topic. In this paper we consider one
such scenario: highway driving maneuvers in dense traffic,
where inter-vehicle distances can be smaller than the vehicles
length. These maneuvers depend on complex driver-to-driver
interactions, which pose challenges as the possibility for
communication between vehicles is limited in practice [1].
Most commonly, drivers utilize the turn signal and adjust
the relative distances to show intention. Further, maneuvers
become additionally challenging when including heavy vehi-
cle combinations (HVCs), due to e.g., limited visibility, and
larger vehicle dimensions [2] (see, e.g., a forced lane change
in Fig. 1).

Navigating in traffic can be considered as path plan-
ning with moving obstacles. Prior work has addressed this
problem with Model Predictive Control (MPC), grid/tree-
searching methods, and learning-based methods, see [3] and
sources therein for a detailed review. The MPC approaches
[4]–[6] have received attention due to the ability to enforce
rigorous constraints on the dynamics of the own vehicle
(henceforth referred to as the ego-vehicle) and safety with
respect to avoiding collisions with other vehicles. In this
context, MPC iteratively solves a constrained optimization
problem based on current measurements of the environment
and computes control actions for a finite time/space win-
dow, referred to as the horizon. However, without vehicle-
to-vehicle communication, MPC requires a prediction of
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Fig. 1: Forced lane-change scenario for an HVC (blue) approaching an exit
ramp on a multi-lane highway.

the surrounding traffic over the horizon [3]. Since humans
(drivers) do not abide by Newtonian laws, predicting their
trajectories is non-trivial and especially challenging when
considering crowded environments with many interpersonal
dependencies. The prediction of such trajectories has recently
been addressed by learning-based predictors [7], which may
also account for interactions among surrounding vehicles.
The predicted trajectories can then be used to formulate
collision avoidance constraints for an MPC-based trajectory
planner, showing promising results in simulations of dense
traffic scenarios [5]. In such interactive scenarios, there exists
an inherent dependence between the planned MPC trajectory
and the predicted trajectories of other road users. Hence,
by decoupling the predictor and the planner, the predictions
become less accurate and the MPC is not able to account
for interactions with other vehicles. In current practical
applications, interactive lane change maneuvers for AVs can
become excessively defensive or even be avoided [2], [8].

To address this problem, we propose to couple the pre-
dictor with the planning controller. To the best of our
knowledge, we propose a novel method based on Distributed
Model Predictive Control (DMPC) and demonstrate the
possibilities with a highway-autopilot controller for an HVC
that considers interactions. The proposed method can in
principle be combined with any predictor, possibly non-
differentiable, that can be conditioned on a given trajectory,
such as that proposed in [7]. Hence, our main contributions
are as follows:

1) We propose a novel method for combining trajectory
prediction and planning by utilizing DMPC.

2) We demonstrate our approach for a novel problem,
employing non-linear MPC for an HVC in dense, and
interaction-dependant traffic.

3) We provide an empirical analysis of the effect of
prediction errors on the MPC performance and the
convergence of our proposed method.

A simulation environment together with a model-based pre-
dictor was developed for the purpose of this paper.
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II. DISTRIBUTED OPTIMAL CONTROL

MPC has been used in a wide array of multi-agent
scenarios to optimize performance metrics and ensure safety-
critical constraints. One implementation of MPC is a cen-
tralized approach, which considers a single controller that
optimizes the combined objective of all agents over the
horizon with respect to all states x and control variables u,
most often subject to some constraints. In network control
problems, agents with local objectives, local constraints, and
coupled inequality constraints, are often encountered. Such
problems can be solved centrally, but their computational
complexity typically scales poorly with an increasing number
of agents [9]. One approach to address this is to decompose
the central problem using DMPC. The network control
problem can instead be expressed for each agent i over a
discrete horizon k = 0, . . . , N as,

min
xi,ui

ff,i(xi(N)) +

N−1∑
k=0

fi(xi(k),ui(k))

s.t. xi(k + 1) = gi(xi(k),ui(k)), k = 0, . . . , N − 1

hi(x(k),u(k)) ≤ 0, k = 0, . . . , N − 1

xi(0) = x0,i

(1)

where ff,i and fi describe the target and running cost
of each agent, respectively, gi describes the dynamics, hi

describes the coupled constraints, xi and ui are states and
control inputs, respectively, and x0,i are initial states. The
coupling among the agents occurs in the inequality constraint
hi, which is a function of the states and control inputs
of all the agents. A solution for the central problem is
then obtained by overhead communication between all M
agents. Rawlings et. al. [10] describes “Non-cooperative”
DMPC, where communication is restricted to the solution of
each agent’s respective optimization problem. In this setting,
agents aim to minimize their own objective, treating other
agents predicted trajectories (xi,ui)

p as known disturbances.
Each agent’s beliefs of the other agents’ trajectories are
updated using a convex combination of their current optimal
solution (xi,ui)

⋆ and the current iterate (xi,ui)
p as,

xp+1
i ← wix

⋆
i + (1− wi)x

p
i

up+1
i ← wiu

⋆
i + (1− wi)u

p
i .

(2)

The step size wi represents each agent’s belief in their
own current optimal solution where 0 < wi < 1. In practice,
the convex step is iterated until convergence within a certain
tolerance.

Do however note that for our problem we only control the
ego-vehicle, while the trajectories of surrounding vehicles
are estimated by a predictor. Considering non-Newtonian
human drivers, the learned control policies of the surrounding
vehicles could be non-differentiable, or even obtained by
black-box approaches, and closed-form expression for their
fi, gi or hi functions may not be available. Yet we show in
this paper that it may still be possible to implement a DMPC
strategy using a gradient-based method for the ego-vehicle
controller.

III. VEHICLE MODELLING

This section provides a model of the ego vehicle and the
surrounding traffic used in simulations.

A. Ego-Vehicle Model

The ego-vehicle motion is modeled using a kinematic
bicycle model, extended with a trailer, as

ẋe =


ṗx
ṗy
v̇x
θ̇1
θ̇2

 =


vx

vx tan θ1
av cos θ1
vx

tan δ
ℓ1 cos θ1

vx
sin (θ1−θ2)
ℓ2 cos θ1

 , ue =

[
δ
av

]
. (3)

Here, xe are states that include x- and y-position at the
tractor-trailer joint in the inertial frame px, py , longitudinal
velocity at the tractor-trailer joint in the inertial frame vx
and the tractor and trailer angles with respect to the inertial
frame θ1, θ2. The vehicle states are controlled by the steering
angle δ and the longitudinal acceleration av at the tractor-
trailer joint expressed in the body frame. The wheelbase of
the tractor and trailer are represented by ℓ1, ℓ2, respectively.
For simulation and optimization, the model is discretized as,

xe(k + 1) = ge(xe(k),ue(k)). (4)

B. Traffic Model

The surrounding vehicles are modeled using a kinematic
bicycle model. The state xi and control vector ui of a vehicle
i are described as for the ego-vehicle but excluding the trailer
state θ2. The longitudinal acceleration of each vehicle ai
is calculated based on tracking its own reference velocity
and maintaining a safe distance to leading vehicles in the
same lane. Additionally, vehicles can consider accelerating or
decelerating to allow a vehicle in an adjacent lane to merge
into their own, the extent of which is determined by how
cooperative the vehicle is [11]. Such a traffic model can be
described with a general function as,

xi(k + 1) = gi(x(k), ai(k),ϕ) (5)

where ϕ are model parameters and x are the states of all
surrounding vehicles. The steering angle δ of surrounding
vehicles has been considered zero in the studied traffic
scenarios, as focus is placed on whether surrounding vehicles
can yield a sufficient gap for the ego vehicle to fit into by
accelerating or decelerating. However, it is straightforward to
apply the proposed method to scenarios where surrounding
vehicle may also change lanes.

IV. EGO-VEHICLE PROBLEM FORMULATION

The trajectory planning problem, even for a single vehicle,
is a mixed-integer program due to the need of choosing a
target lane which is inherently an integer decision. Instead
of solving a single mixed-integer problem, it was proposed in
[4], [6] to solve three MPCs, each with a different target lane,
i.e., keep current lane (no lane change), change to the left
lane, and change to the right lane, noted as j ∈ {nc, lc, rc},
respectively. A decision manager compares the costs of the
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optimal MPC solutions and returns the safe optimal choice,
e.g., driving forward, and a desired optimal choice, e.g., a
forced lane change.

Compared to [4], [6], we additionally consider a scenario
with blocking traffic where the ego-vehicle is not able to
immediately initiate a lane change, but it instead cautiously
approaches adjacent vehicles to gauge their cooperativeness.

A. Collision Avoidance Constraints

As the collision avoidance constraints are based on es-
timations of trajectories (x̂j

i , û
j
i ) of surrounding vehicle i

for each controller j, deviations from the true trajectories
can yield infeasible problems in edge cases. Hence, we
introduce slack variables λj

e ∈ RN×Mj
c to relax the collision

avoidance constraints, where Mj
v represents a subset of

the surrounding vehicles, with size M j
c . These receive a

substantial penalty in the objective to remove the possibility
of collisions in a practical sense but persistent feasibility is
no longer rigorously established.

For the lane keeping controller j = nc, avoiding collisions
amounts to maintaining a longitudinal distance to a leading
vehicle i, while remaining in the current lane. The minimum
allowed longitudinal distance has to satisfy

cnce (xnc
e , x̂nc

i ) = pncx,e − p̂ncx,i + ℓ1 + ds + Tsv
nc
x,e + λnc

e,i < 0 (6)

where ds represents a distance margin, ℓ1 is the tractor
length, Ts represents the time-headway and λnc

e,i is the slack
variable. To avoid collisions with vehicles in adjacent lanes,
the lateral position is constrained to the current lane margins,
accounting for the maximum lateral span of the ego-vehicle
dw,e. A visualization of the constraints with the referenced
parameters is displayed in Fig. 2a.

In the lane changing case, j ∈ {lc, rc}, we aim to constrain
both the longitudinal and lateral distance to some vehicle i.
This yields a possibly non-differentiable constraint which can
be formulated as a mixed integer problem (MIP). However,
as MIPs are significantly more computationally intensive
to solve, we employ a smooth approximation ỹji of the
constraint boundaries using tanh-functions, as

ỹj
i (x

j
e, x̂

j
i ) =

αj
0,i(p̂

j
y,i)

2

(
tanh

(
pjx,e − p̂jx,i + αj

1,i

)
+ tanh

(
p̂jx,i − pjx,e + αj

2,i

))
+ αj

3,i(p
j
y,e, p̂

j
y,i).

(7)

Here, αj
0,i and αj

1,i scale the constraint in lateral and longitu-
dinal distance, respectively, and incorporate the surrounding
vehicle position, width and length, together with those of
the ego-vehicle, plus a safety margin. Lastly, αj

3,i shifts the
constraint in lateral distance based on the current lateral
position of the surrounding and ego-vehicle. A visualization
of the constraints for both left and right lane changes are
displayed in Fig. 2b and Fig. 2c. Hence, the collision
avoidance constraints can be formulated as,

cje(x
j
e, x̂

j
i ) = βj

i

(
ỹj
i (x

j
e, x̂

j
i ) + dw,e − pjy,e + λj

e,i

)
< 0 (8)

where βj
i ∈ {−1, 1} converts between an upper and lower

constraint on lateral position, depending on the vehicle i and

controller j. This constraint is repeated for all surrounding
vehicles i ∈Mj

v.
Finally, constraints (6) and (8) together with the physical

limitations on the ego-vehicle states and control input form
the general constraints for each controller j,

hj
e(x

j
e(k),u

j
e(k),λ

j
e(k), x̂

j(k), ûj(k)) ≤ 0, (9)

where x̂j(k) and ûj(k) gather the estimated/predicted states
and control inputs of all surrounding vehicles.

B. Optimal Control Problem Formulation
Each MPC j of the ego-vehicle aims to track a reference

in longitudinal velocity and lateral position while minimizing
the control input. The objective also addresses driver comfort
by minimizing the change in acceleration and steering angle.
Expressing the objective over the horizon for each controller
j, including slack variables, yields,

f j
e (X

j
e,U

j
e,Λ

j
e) = ||xj

e(N)− xj
e,r(N)||2P + ||λj

e(N)||2Qs
(10a)

+

N−1∑
k=0

||xj
e(k)− xj

e,r(k)||2Q + ||λj
e(k)||2Qs

(10b)

+

N−1∑
k=0

||uj
e(k)− uj

e,r(k)||2R (10c)

+

N−2∑
k=0

||uj
e(k + 1)− uj

e(k)||2Rd
(10d)

where Qs = qsIMc , R = diag(qa, qδ), Rd = diag(qda, qdδ)
and Q = diag(0, qy, qv, 0, 0) are positive semi-definite ma-
trices and xj

e,r = [0, pjy,r, vx,r, 0, 0]
T , uj

e,r = [0, 0]T represent
the state and input reference for each controller. The ego
vehicle states over the horizon are gathered in

Xj
e = {xj

e(0),x
j
e(1), . . . ,x

j
e(N)}, j ∈ {nc, lc, rc} (11)

and similarly are the control inputs and slack variables in
Uj

e and Λj
e. The positive definite terminal cost matrix P is

determined using an infinite horizon linear quadratic regu-
lator (LQR) by solving the discrete time Riccati differential
equation for linearized dynamics (3) around xe,r and ue,r,
see [10] for more details.

We can now express the optimal control problem for the
ego-vehicle and each respective controller j ∈ {nc, lc, rc},

min
Xj

e,U
j
e,Λ

j
e

f j
e (X

j
e,U

j
e,Λ

j
e) (12a)

s.t. xj
e(k + 1) = ge(x

j
e(k),u

j
e(k)) (12b)

hj
e(x

j
e(k),u

j
e(k),λ

j
e(k), x̂

j(k), ûj(k)) ≤ 0 (12c)

λj
e(k) ≤ 0 (12d)

xj
e(0) = x0,e (12e)

(X̂j , Ûj) = Π(·,Xj
e,U

j
e) (12f)

where (12b)–(12d) are imposed ∀k = 0, . . . , N − 1 and
(X̂j , Ûj) are estimated/predicted trajectories of surrounding
vehicles over the horizon, gathering x̂j(k) and ûj(k), ∀k
similarly as in (11). The predictor Π will be described in
more details in Section V. It is important to note here that
sensitivities (derivatives) of the predictor Π may not be
available and problem (12) may not be possible to directly
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(a) Collision avoidance constraints for the lane keeping
controller.

(b) Collision avoidance constraints for the left lane
change controller.

(c) Collision avoidance constraints for the right lane
change controller.

Fig. 2: Collision avoidance constraints for each controller. Red vehicles are explicitly included in constraints, indicated metrics refer to the opaque vehicles
and constraints. The constrained point on the ego-vehicle is indicated with a red dot, (b) and (c) additionally display the approximated discontinuous
constraint.

cast to a standard nonlinear program (NLP). Indeed, the goal
of this paper is to decouple (12f) such that the subproblem
in (12) can be cast as a standard NLP.

After each of the three MPCs are finished computing, the
decision manager selects the control signals from the MPC
that optimizes,

argmin
Xj

e,U
j
e

qef
j
e (·) + qcf

j
c + qsf

j
s (x0,e), j ∈ {nc, lc, rc} (13)

where qe, qc, qs are positive scaling parameters and f j
e is

current cost of the jth MPC. The function f j
c introduces a

cost on switching j based on m previous decisions as,

f j
c =

m∑
i=1

I (H(i)− j) (14)

where H is the history of previous choices of j and I is an
indicator function. The function f j

s introduces a cost on the
distance to a highway exit as,

f j
s (x0,e) =

(
1−

(
dexit − p0,x

dmax

)γ)
I(j⋆ − j) (15)

where dexit is the distance to the exit, dmax > dexit, γ ∈
[0, 1] are considered tuning parameters and j⋆ is the decision
that guides the ego-vehicle towards the highway exit [6].

V. PREDICTING AND PLANNING USING DMPC

As outlined in Section IV, a trajectory planner in highway
traffic can be designed using MPC with local objectives and
constraints, combined with coupled inequality constraints.
Without vehicle-to-vehicle communication, the coupled con-
straints require a prediction of the surrounding vehicles
trajectories, which in turn depend on the planned ego-vehicle
trajectories. Consider a general predictor Π as in [7], that re-
turns trajectories (X̂, Û) over a future horizon. The predictor
utilizes past observations of all vehicles Xobs,Uobs together
with the planned trajectory of the ego-vehicle Xe,Ue over
the future horizon as,

(X̂, Û) = Π(Xobs,Uobs,Xe,Ue). (16)

In the DMPC formalism, the predicted variables can be
treated as an approximation of the local solution of each
agent’s optimal control problem (1). Hence, if the prediction
(X̂p, Ûp) at some iterate p can be used to express the cou-
pled constraints, it is possible to apply the method presented

in Section II to formulate an iterative algorithm that attempts
to solve the centralized problem by distributing the ego-
vehicle planner from its predictor. Given a fixed prediction
(X̂p, Ûp), problem (12) becomes a smooth NLP as,

PMPC(X̂
p, Ûp) = argmin

Xe,Ue,Λe

fe(Xe,Ue,Λe) (17a)

s.t. (12b)− (12e) (17b)

here, and onward omitting the index j for convenience.
Predicted and planned trajectories that remain constant over
iterates p indicate that both concur. Note that the convergence
that has been guarantied for linear systems in [10] cannot be
generalized to this problem as we consider non-linear MPC
with prediction errors and a general predictor. To prevent
divergence, we propose a loss metric L, which can treat
prediction and planning jointly,

Lp+1 = ||X̂p+1 − X̂p||2 + ||Ûp+1 − Ûp||2
+ ||Xp+1

e −Xp
e ||2 + ||Up+1

e −Up
e ||2.

(18)

Our approach enforces the loss metric to decrease at each
iteration, i.e Lp+1 < Lp. If the loss metric stops decreasing,
or if it drops below a tolerance ϵ, the iteration is terminated.
This trivially means that the loss metric cannot diverge from
the closest local solution of the trajectory initialization.

Algorithm 1 displays the formulation of the coupled pre-
dicting and planning method, employing the DMPC scheme
for (17). In a proper MPC setting, we introduce an index κ
when MPC is updated, such that each variable, e.g., the ego
vehicle state, can be written as xe(κ+k|κ), or even simpler
as xe(k|κ). The predicted trajectories over the horizon, e.g.,
the states as in (11), can be written as Xp

e,κ. In line 4,
the algorithm computes an optimal MPC solution, denoted
as (Xp+1

e,κ ,Up+1
e,κ )⋆, by iterating the DMPC method over p

towards pmax at each time step κ until κend. Notice that
the ego trajectories updated in line 5 are used only for
computing the loss metric and by the predictor, while the
returned DMPC solution (X∗

e,κ,U
∗
e,κ) is from one of the

iterates in line 4, i.e., before performing the update.
To derive a good initial guess for variables at time step κ,

we define a function shift(·) that shifts the optimal variables
from time step κ − 1 and pads the last value using zero
control [10].
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Algorithm 1 Predicting and Planning using DMPC

1: for κ = 1, . . . , κend do
2: Initialize: (X0

e,κ,U
0
e,κ)=shift(X⋆

e,κ−1,U
⋆
e,κ−1)

(X̂0
κ, Û

0
κ)=Π(Xobs,κ,Uobs,κ,X

0
e,κU

0
e,κ)

L0 =∞
3: for p = 0, . . . , pmax do
4: Plan: (Xp+1

e,κ ,Up+1
e,κ )⋆ = PMPC(X̂

p
κ, Û

p
κ)

5: Update: Xp+1
e,κ ← we(X

p+1
e,κ )⋆ + (1− we)X

p
e,κ

Up+1
e,κ ← we(U

p+1
e,κ )⋆ + (1− we)U

p
e,κ

6: Predict: (X̂κ, Ûκ)=Π(Xobs,κ,Uobs,κ,X
p+1
e,κ ,Up+1

e,κ )

7: Update: X̂p+1
κ ← wX̂κ + (1− w)X̂p

κ

Ûp+1
κ ← wÛκ + (1− w)Ûp

κ

8: Compute: Lp+1 using (18)
9: if Lp < Lp+1 then

10:
(
X⋆

e,κ,U
⋆
e,κ

)
= (Xp

e,κ,U
p
e,κ)

⋆, exit the loop
11: else if Lp+1 < ϵ then
12:

(
X⋆

e,κ,U
⋆
e,κ

)
= (Xp+1

e,κ ,Up+1
e,κ )⋆, exit the loop

13: end if
14: end for
15: Apply the first control action ue(0|κ) from U⋆

e,κ

16: end for

VI. SIMULATION STUDY

This section provides a case study with the proposed
methods, investigating performance and convergence with
respect to prediction errors.

A. Simulation Setup

The simulation environment1 controls the surrounding
vehicles using the models described in Section III-B and
the ego-vehicle uses our MPC. The traffic model pa-
rameters are randomized using uniform distributions as
ϕ = ϕmean + U(ϕmin,ϕmax). The MPC problem is for-
mulated using Casadi, running the IpOpt solver [12]. We
demonstrate the approach presented in Section V using a
model-based predictor Π, utilizing the model in Section III-
B with added noise N (0, σa) to the control inputs of the
surrounding vehicles.

The predictor hence utilize a measurement of surrounding
vehicles, repeatedly applies the ground-truth model using the
planned ego-vehicle trajectory and adds normal distributed
noise to introduce a prediction error that can be scaled with
σa. Note that this predictor will be less ideal in estimating
and predicting the motion of real vehicles, which may require
learning-based methods. Yet, we deem this approach suitable
to clearly demonstrate the proposed DMPC algorithm and
investigate the impact of prediction errors.

B. Test Scenarios

The dense traffic environment is simulated by randomly
sampling M vehicles in close proximity of the ego-vehicle
located in the middle lane. Longitudinal inter-vehicle dis-
tances in adjacent lanes are kept smaller than the length of
the ego-vehicle. The simulations are initialized such that a
lane change is feasible, if properly handled by the controller.

1Code: https://github.com/BorveErik/Autonomous-Truck-Sim
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Fig. 3: Example of a generated FLC scenario. Each plot displays the state
trajectory of two vehicles in corresponding color at, iteration p.

Fig. 3 illustrates a sampled scenario. In this setting, we
consider a “Forced lane change” maneuver (FLC) where
the ego-vehicle is required to reach a highway exit at
px,exit = 250m, ahead in the rightmost lane. The desired
speed vx,r is 30 kmh−1 and a lane change is defined as
successful if the right lane’s center prcy,r is reached before the
exit. The maximum considered time frame is tmax = 30 s.
We study two separate controller architectures for the ego-
vehicle: 1.) “DC-MPC”: The ego-vehicle considers decou-
pled prediction and planning; 2.)“PP-DMPC” The ego-
vehicle couples prediction and planning using Algorithm 1.
The PP-DMPC hyperparameters are chosen as: pmax = 15,
w = we = 1/(M + 1) and ϵ = 5. Hence, both controllers
utilize the same predictive capabilities of Π and gauge
interactions with other vehicles by first approaching the
lane markers of the desired lane. The PP-DMPC controller
further considers how the ego-vehicle trajectory interacts
with the predicted trajectory of the surrounding vehicles
through Algorithm 1. Simulations are evaluated with three
different noise settings for Π: σa,1 = 0.1, σa,2 = 0.5, and
σa,3 = 1.0. Note that the acceleration of each vehicle is
confined within a defined physical limitation of ±4m s−2,
both in simulation and in the predictor.

C. MPC Performance Results

1) Qualitative Analysis: Fig. 3 highlights the key charac-
teristics of the coupled trajectory prediction and planning
proposed in our method. The top plot displays a naive,
but feasible initialization of the state trajectories for the
ego-vehicle and an adjacent vehicle. As iterations in the
distributed scheme continue, the predictor and planner reason
via coupled variables. The middle plot displays emerging in-
teractions between the planned ego-vehicle trajectory (blue)
and an adjacent vehicle (purple) at p = 5. Finally, the bottom
plot displays a converged PP-DMPC solution at p = 15,
where the adjacent vehicle in the right lane have slowed
down to let the ego vehicle make a lane change.

2) Quantitative Analysis: To evaluate the performance of
both controllers, 100 scenarios were sampled. The overall
performance is evaluated using the following: 1.) Success
Rate”: The percentage of scenarios that achieve the goal of
the respective case; 2.) “Collision rate”: The percentage of
scenarios resulting in a collision; 3.) “Time”: The average
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TABLE I: Statistic results for all 100 sampled scenarios and each predictor as (σa,1/σa,2/σa,3). Relative controller cost are presented as a percentage.

Controller Success (%) Collision (%) Time (s) Total Cost (%) Avg. Nr. of Iterations (p) Convergence Rate (%)
DC-MPC 100/99/98 0/1/2 22.1/22.1/22.1 97.3/98.1/100.0 — —
PP-DMPC 100/100/99 0/0/1 21.1/21.2/21.5 66.0/71.8/74.1 2.41/2.68/2.38 87.0/64.1/17.4
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Fig. 4: Distribution of the loss (bottom) and its gradient (top).

completion time for the successful scenarios. We further treat
“optimality” by considering: “Total Cost” as an evaluation
of the objective (10) for all simulated trajectories. These
metrics are presented in Table I where results for different
predictors are indicated as σa,1/σa,2/σa,3. The PP-DMPC
out-performs the DC-MPC in the investigated metrics, for
all different noise levels. The performance of both the DC-
MPC and the PP-DMPC decreases with an increasing σa.
The relative improvements of the PP-DMPC over the DC-
MPC also decreases with an increasing σa. This indicates
that Algorithm 1, applied for our non-linear MPC can have
benefits, however also that the extent of which is reliant on
the predictors accuracy.

D. Convergence and Prediction Errors

The average number of iterations for the PP-DMPC and
the convergence rate for each predictor is displayed in Table
I. This indicates that the convergence of Algorithm 1 is
dependent on the accuracy of the predictor. The distribution
of the loss L and its gradient Lp+1 − Lp, is displayed in
Fig. 4. On average, larger prediction errors result in a larger
loss and larger corresponding gradients. The loss gradients
are indeed never positive which empirically shows that the
algorithm does not diverge from the closest local minima.

VII. CONCLUSIONS AND FUTURE WORK

The largest challenge for our proposed method is related
to real-world applicability. Based on our simulation study,
we hope to investigate if learning-based predictors, trained
on real-world traffic data, can obtain a sufficient accuracy
for our proposed method. Another challenge relates to the
computational complexity. We hope to investigate this in
future work, for example by considering a sub-optimal MPC
formulation. Our constraint on a continual decreasing loss
is also conservative and might limit exploration of the

non-linear state space. A more rigorous study of conver-
gence might reveal more effective criteria and ideal hyper-
parameter choices, which could improve MPC performance
and the convergence rate. Lastly, as the collision avoidance
constraints need to be relaxed to aid feasibility, the planned
trajectory can result in collisions in edge cases. This could
be further mitigated by several approaches e.g., considering
robust MPC [3] with stochastic predictors [7], and identifying
and aborting dangerous maneuvers [2].
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