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Abstract— To develop better wind farm controllers that
can meet more complex objectives, methods of modeling the
wind turbine wakes at low computational expense are needed.
Gaussian process (GP) regression offers a computationally
inexpensive framework for learning complex functions from
noisy measurements with very few datapoints. In this work,
an online learning approach is presented to learn the rotor-
averaged wind velocity at downstream wind turbines with GPs,
using the available datastream of wind field measurements and
wind turbine control set-points. This framework can readily
be integrated into model-based controls methods because the
model a) is updated online at low computational expense, b)
assumes a mathematically favorable Gaussian form, and c)
explicitly quantifies the stochastic nature of the wake field so
that the trade-off between exploration and exploitation, and the
uncertainty in the prediction, can be utilized. We show that a
GP-learned model can match true values with errors within
0.5% on average, with as few as 5 training data points.

I. INTRODUCTION
Wind energy offers enormous potential for renewable

energy generation as part of the clean energy transition
necessary to reduce the production of damaging carbon
emissions, while fulfilling demand for increasing quantities
of affordable and reliable energy. Typically, the purpose of
wind farm control is to maximize the total power output
of a collection of wind turbines, while minimizing their
peak mechanical loads. As wakes from upstream turbines
propagate downstream, they cause lower wind speeds and
higher turbulence at downstream turbines, reducing power
production and increasing mechanical loads. Given a suf-
ficiently accurate model of the wakes within a wind farm,
we can employ yaw misalignment or axial-induction factor
control to affect the wake position and shape, and improve
farm-level power production [1], [2].

Model-based methods for wind farm control rely on
predicting wakes with sufficient accuracy. To date, most
wind farm controllers have utilized low-fidelity steady-
state flow models, such as FLORIS [3], in an open-loop
fashion [2]. Wind farm wake effects are time-varying and
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stochastic, and improved performance may be achievable
using models that account for dynamics and uncertainty in
closed-loop control architectures. However, in the context of
adaptive model-based controllers, high-fidelity models that
can resolve dynamics and turbulence, such as large-eddy
simulations (LESs), are too computationally expensive for
online use.

An alternative to analytical wake models is to use learning-
based surrogate models. Surrogate models are quick to
evaluate and can be trained to capture the important dy-
namic effects. Ashwin et al. train a machine learning (ML)
pipeline consisting of deep autoencoders, a neural network
(NN) and variational Gaussian processes (GPs) to reconstruct
the wake field velocity from measurements [4]. Ti et al.
present a NN that learns the wake velocity deficit and
added turbulence kinetic energy [5]. The functions learned
describe characteristics of the full wake-field structure behind
a turbine. Zhang and Zhao develop a controls-oriented, NN-
based reduced-order modeling method to predict the future
state of unsteady wake fields in wind farms with time-varying
turbine yaw angles [6]. Purohit et al. compare the accuracy
of three ML algorithms, namely Support Vector Regression,
NNs and Extreme Gradient Boosting, in predicting wake
characteristics behind a wind turbine relative to analytical
models [7].

The large datasets and long training time required, as
well as the high fidelity of the full wake-field structure
generated by the NN approaches described in [4]–[7], may
not be suitable for online control purposes which can rely on
only the rotor-averaged wind velocity (henceforth velocity)
at each downstream turbine. Additionally, given that the
values of the control actions, yaw angles, and axial induction
factors significantly influence the wake field, it is critical that
variation in these values is allowed for in a controls context.
In [4], [5], both sets of variables are static, and variation in
yaw angles is not considered in [7].

Gaussian process regression, or GPR, [8] is a model-free
approach to learning unknown functions that is particularly
conducive to online learning because of its low computa-
tional complexity and good performance with small training
datasets. Given a training dataset, it employs Bayesian infer-
ence to predict the mean and variance of the target value for
a given vector of test inputs. It relies on very few tuning
parameters, which can be optimized using the Maximum
Likelihood Estimation (MLE) procedure [8].

GPR has been deployed for wind field prediction for
control purposes in several previous studies. Nai-Zhi et al.
propose a method to find the optimal parameters of an
analytical Gaussian wake model for a given wind farm
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and range of turbine yaw angles and power outputs, and
subsequently train a Random Forest model to predict the
optimal parameters of any analytical wake model in real-time
[9]. However, it assumes that the analytical model chosen can
represent the wake field for some set of parameters. Van der
Hoek et al. use a GP to predict the wind direction at each
turbine in a farm to improve yaw control, but suggest that
online performance could be improved by a more complex
approach to data resampling [10]. Moreover, their method
does not model the effects of control actions on turbine
wakes. In the study that we believe is most similar to the
present work, Andersson and Imsland consider updating
a low-fidelity analytical model using a GP and using the
combined model to acquire optimal control actions [11].
However, the authors point out that wake propagation is not
modeled, and the combined model only represents steady-
state behavior.

In this work, we learn the correction to a low-fidelity
dynamical model to improve on wind speed estimates. This
approach is robust to unreliability in the GP model in a
controls context because, if we cannot depend on the GP
error prediction, we can revert to the analytical model. We
develop a controls-oriented framework to learn the rotor-
averaged wind velocity and its associated uncertainty at
downstream wind turbines in a wind farm. This lightweight,
online trained model can then be integrated into a model-
based controls method, e.g. model predictive control [12].

Our contributions are as follows:
• Implementing a set of GPs that can predict both the

mean and variance values of a simplified set of targets
(velocity at downstream wind turbines) online from a
minimal set of noisy measurements that are available in
real wind farm environments.

• Considering the dynamic nature of wake fields by
training the model with an auto-regressive input space
that includes current and delayed measurements. We
dynamically select the time-interval between delayed
measurements based on the freestream wind speed so
that the input vector size remains constant.

• Employing a probabilistic online data selection proce-
dure that uses a replay buffer to maintain a training
dataset of limited size that tends to explore regions of
high uncertainty.

The remainder of this paper is organized as follows: Sec. II
describes the fundamentals of GPR, the analytical wake
models employed as the ‘base’ model from which the GPs
learn the model error, our online data collection method,
and our performance evaluation metrics. Sec. III describes
the case study used to validate the method and evaluates
the performance of the learned models for a 3 × 3 wind
farm. Finally, Sec. IV summarizes the concluding remarks
and suggestions for further work.

II. METHODOLOGY
A. Gaussian Process Regression

Let f(·) be an unknown function we wish to learn, T ..=
(X,y) be a training dataset, X ∈ RNtr×n be a matrix of

training inputs, and y ∈ RNtr be a vector of noisy function
evaluations, or measurements, corresponding to each of those
inputs. Let X∗ ∈ RNts×n be the matrix of test inputs
for which we desire function predictions, f∗. A GP [8] is
a nonparametric model that is completely specified by its
mean function µ and covariance function or kernel K(·, ·).
It assumes a joint Gaussian distribution between the set of
noisy function measurements, y, and predictions, f∗:

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

nI K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
(1)

where we assume that the mean value of the modeled
function distribution is 0, and that the function evaluations
y have been corrupted by a Gaussian noise with mean 0 and
variance σ2

n.

The covariance kernel determines the correlation between
training outputs y and test predictions f∗ as a function of the
input matrices, X and X∗, and can be tuned with a set of
hyperparameters θ. We implement the Squared-Exponential
kernel (Eqn. (2a)) and the Matérn kernel (Eqn. (2b)):

K(xi,xj) = σ2
f exp

(
−
d2i,j
2l2

)
+ σ2

nδi,j (2a)

K(xi,xj) = σ2
f

21−ν

Γ(ν)

(√
2νdi,j
l

)ν

Kν

(√
2νdi,j
l

)
+ σ2

nδi,j

(2b)

where di,j = ||xi − xj|| is the Euclidean distance between
the ith and jth input points, σ2

f is the signal variance, l is the
length-scale parameter, ν is the smoothness parameter, δi,j
is the dirac-delta function, Kν is a modified Bessel function,
and Γ(ν) is the gamma function. The hyperparameters of
each covariance kernel, θ, are [σ2

f , σ
2
n, l] in the case of (2a)

and [σ2
f , σ

2
n, l, ν] in the case of (2b). These hyperparameters

must be tuned so that they do not overfit the training inputs
and do generalize well on the test inputs. To this end, we
employ the commonly used MLE procedure to optimize θ
for a given training dataset T [8].

Let the notation f∗ ∼ GP(X∗) be a distribution of function
predictions, f∗, at test inputs X∗, determined by a GP. We
can generate the posterior mean (3a) and variance (3b) of
this GP-learned distribution, f∗:

µ[f∗] = K(X∗,X)K(X,X)−1y (3a)

var[f∗] = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗)
(3b)

In this work, our objective is to train a GP regressor, GPd,
for each of D downstream wind turbines of indices d ∈ D,
to predict the error distribution in the velocity, δUd∗(k),
between the value generated by a base model, U b

d(k), and
the true value at time-step k for test inputs Xd∗(k). Each
error distribution is characterized by the predicted mean,
µ[δUd∗(k))], and variance, var[δUd∗(k)], as computed by
Eqns. (3). The resulting GPd-learned distribution of the
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velocity is then given by:

Ûd(k) = U b
d(k) + δUd∗(k) (4)

with predicted mean, µ[Ûd(k)] = U b
d(k) + µ[δUd∗(k)], and

variance, var[Ûd(k)] = var[δUd∗(k)].
Let Ud ⊆ D \ d be the set of indices corresponding

to the upstream turbines relative to turbine d, xud
(kj) =

[aud
(kj) γud

(kj)Uud
(kj)]

T be the vector of axial induction
factor, yaw angle, and velocity at turbine ud ∈ Ud, and
ϕ∞(kj) be the freestream wind direction at time-step kj ,
at which a set of measurements is received ∀ud ∈ Ud. To
allow for the wake propagation delay, the corresponding jth
training input for GPd, Xd(kj), consists of those current and
delayed inputs relative to the time-step of measurement kj :

Xd(kj) =



⋃
ud∈Ud


xud

(kj − kdelay)
xud

(kj − kdelay + 1)
...

xud
(kj)


ϕ∞(kj − kdelay)

ϕ∞(kj − kdelay + 1)
...

ϕ∞(kj)


Xd =

 Xd(k1)
T

...
Xd(kNtr)

T

 , X̃d
..=

Xd − x

x− x

(5)

where Xd is the full training input dataset for GPd, including
Ntr datapoints corresponding to (not necessarily sequential)
time-steps k1, k2, . . . , kNtr ; X̃d is the normalized equivalent
of Xd (which helps with conditioning); and x and x are the
expected minimum and maximum values of each dimension
in the input space, respectively. Test inputs used for predic-
tions, X̃d∗, are similarly generated. Note that our approach
bypasses the assumption of independence between inputs in
the GPR, because the rotor-averaged velocity measurements
of multiple turbines at different streamwise locations are
correlated.

To account for the wake propagation time-delay, we in-
clude upstream measurements at previous time-steps in the
training dataset. Taylor’s frozen hypothesis [13], [14] implies
that the wake generated by an upstream wind turbine will
propagate downstream at the freestream wind velocity. We
estimate the maximum influential delay time as double this
propagation time from the most upstream turbine in Ud to
downstream turbine d as:

∆kd =
2

∆tl

maxud∈Ud
|xd − xud

|
U∞(k)

(6)

where ∆tl [s] is the learning sampling time interval, |xd −
xud

| [m] is the absolute downstream distance between down-
stream turbine d and upstream turbine ud, and U∞(k) [m/s]
is the current freestream wind speed. We then divide the
delayed time-horizon, [k−∆kd, k], into kdelay equal segments
and include the delayed measurements at their boundaries. In
this way, the input vector has a constant size while including

the most influential previous measurements, regardless of the
freestream wind speed.

The jth training output for GPd is the error between that
turbine’s velocity at the time-step kj and the value generated
by the base model:

yd(kj) = Um
d (kj)− U b

d(kj), yd =

 yd(k1)
...

yd(kNtr)

 (7)

where Um
d (kj) is the measured velocity at downstream

turbine d at time-step kj , U b
d(kj) is the corresponding value

generated by the base model, and yd is the full training
output dataset for GPd. See Fig. 1 for a visual representation
of this modeling structure.

Fig. 1: Computation of GP-predicted rotor-averaged velocity
at downstream wind turbines d ∈ D

B. Base Wake Model
As outlined above, we train GPs to learn the error in the

predictions of a ‘base’ analytical model for the velocity at
each downstream turbine d ∈ D. Typically, analytical models
are a function, g, of the current values of the freestream wind
speed and direction, and the yaw angles and axial induction
factors of all upstream wind turbines relative to turbine d:

U b
d(k + τ) = g(U∞(k), ϕ∞(k), {γud

(k), aud
(k)}ud∈Ud

)
(8)

where τ is the propagation time as per Taylor’s hypothesis.
In this work, we employ a base model that assumes the

Jensen velocity deficit model [15], the Gauss wake deflection
model [16], [17], the sum-of-squares wake combination
model [18], and a propagation time modeled by Taylor’s
hypothesis [13], [14]. This model is implemented in FLORIS
[3]. For brevity, we do not provide the full equations and
refer the reader to the relevant citations.

C. Online Data Collection and Learning
At each learning sampling time (separated by ∆tl) we

select data generated from measurements collected during
operation of the wind farm to add to, and existing ones to
remove from, the training dataset. The goal is to reduce the
variance in the model predictions over the input space.

Let q be the batch size of datapoints added to each GP
training dataset for each refitting (tuning of the covariance
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kernel hyperparameters and subsequent inversion of the co-
variance matrix for the purposes of generating predictions as
per Eqn. (3)). A batch size of q > 1 is chosen to reduce how
often the covariance matrix is inverted. We maintain two col-
lections of training inputs: the potential inputs are contained
in the replay buffer, Rd, and the actual inputs are contained
in the training dataset, Td. Every ∆tl seconds, we check for
new data measurements. From these new measurements, we
generate potential new training inputs from measurements
corresponding to time-steps for which sufficient historic data
exists to formulate auto-regressive vectors. We then discard
any inputs that are approximate duplicates of points already
contained in Rd or Td. If q such unique and novel training
inputs are available, they are added to Rd. We randomly
select q inputs to transfer from Td to Rd, to make space
for q potentially different inputs. GPd is then refitted with
the reduced training dataset T −

d to generate a temporary
GP−

d for the purposes of computing the predicted variance,
var[Ûd(k)](x)∀x ∈ Rd, for each of the training inputs in
Rd. Finally, we select q new inputs from Rd from regions of
high prediction variance (as approximated by GP−

d ), where
the probability of the ith point being selected is based on
the softmax function of its variance, exp var[Ûd(k)](xi)∑

x∈Rd

exp var[Ûd(k)](x)
, to

add to T −
d and make the updated training dataset Td of size

Ntr. Rd is then shuffled and truncated to a size of 10Ntr.
The desired effect of choosing new training inputs based on
the predicted variance like this is to promote exploration of
regions of high uncertainty in a probabilistic sense.

D. Evaluating Prediction Quality

We test our algorithm for several parameters: the kernel
function, K(·, ·), the training dataset size, Ntr, the variance
of the Gaussian noise added to the true rotor-averaged wind
velocities, σ2

n, the value of kdelay, and the batch size, q.

We quantify the performance of the GPs for different
sets of these parameters by computing the Root Mean
Squared Error, RMSEd, and the coefficient of determina-
tion, R2

d, between the true, {Ud(k)}Tk=1, and predicted mean,
{µ[Ûd(k)]}Tk=1, values over a given time horizon:

RMSEd
..=

√√√√ 1

T

T∑
k′=1

(
U t
d(k

′)− µ[Ûd(k′)]
)2

(9a)

R2
d

..= 1−

∑T
k′=1

(
U t
d(k

′)− µ[Ûd(k
′)]
)2

∑T
k′=1

(
U t
d(k

′)− Ū t
d

)2 (9b)

where Ū t
d is the mean of the true values over time.

We define the relative error at time-step k, ϵd(k), as the
relative difference between the GP-predicted mean and true
values:

ϵd(k) ..=
µ[Ûd(k)]− U t

d(k)

U t
d(k)

× 100% (10)

III. CASE STUDY

To evaluate the method presented, we consider a 3 × 3
wind farm of NREL 5MW 3-bladed turbines with rotor radii
of R = 63 m, hub-height of 90 m, and rated rotor speed
of 12.1 rpm [19], where the rotor hubs are separated by
14R in the streamwise direction and 12R in the cross-stream
direction (see Fig. 2). A GP is trained for each downstream
turbine d ∈ D ..= {T3, . . . , T8}, where we consider the set
of upstream turbines, Ud, to be those closest in the cross-
stream direction(s) in the immediate upstream row.

Fig. 2: A 3× 3 wind farm layout with wake field for steady
freestream wind speed U∞ = 10 m/s and yawed turbines

We generate 500 1-hour wind farm simulations using
FLORIS [3], with wake propagation according to Taylor’s
hypothesis to serve as the “true” data. For the wake, we
consider a Gaussian velocity deficit [16], Gauss wake de-
flection model [16], [17] with the same parameterization as
the base model, and the sum-of-squares wake combination
model [18]. Note that we are using the GPs to learn the
error resulting from the difference in velocity deficit models,
because the velocity deflection and wake combination models
are equivalent. Gaussian noise of zero mean and standard
deviation σn (varied for different parameterized cases, see
Table I) is added to the velocity measurements. The yaw
angles and axial induction factors of the upstream turbines
are varied in steps of 5◦ (between −20◦ and 20◦) and steps
of 0.05 (between 0.1 and 0.3), respectively. The freestream
wind speed and direction are held constant over each simula-
tion at 8, 10, or 12 m/s and 250◦, 260◦, or 270◦, respectively.

Ten parameterization cases are tested and the resulting
median RMSE and R2 scores over all downstream turbines
and all 500 simulations computed (see Table I). The param-
eterization that results in the least median RMSE value,
Case 8, is then selected for the ensuing analysis.

Table I depicts the effect of different learning parameters,
where Case 1 corresponds to the baseline set of learning
parameters. Lower values of RMSE and values of R2 closer
to 1 correspond to better model fits. We see that increasing
the batch size q dramatically reduced the quality of the
model fit. It is not clear how higher or lower values of kdelay
influence the model fit, because increasing it to 8 results in
a higher RMSE but also a higher R2. The choice of σn

doesn’t have a significant effect on the model fit. Reducing
Ntr improves the model fit, whereas increasing Ntr has the
opposite effect. Finally, the Matérn kernel results in a better
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TABLE I: Scores of the GP-predicted vs. true rotor-averaged
wind velocities for different learning parameters

Case Ntr K(·, ·) σn kdelay q RMSE R2

1 10 Matérn 0.010 4 1 0.062 0.890
2 10 Matérn 0.010 4 2 0.173 -0.533
3 10 Matérn 0.010 4 4 0.229 -0.934
4 10 Matérn 0.010 2 1 0.061 0.864
5 10 Matérn 0.010 8 1 0.068 0.922
6 10 Matérn 0.001 4 1 0.061 0.895
7 10 Matérn 0.100 4 1 0.063 0.903
8 5 Matérn 0.010 4 1 0.052 0.913
9 20 Matérn 0.010 4 1 0.065 0.884

10 10 SE 0.010 4 1 0.066 0.883

fit than the SE kernel. Overall, the choice of batch size, q, and
training dataset size, Ntr, are the most influential parameters.

Fig. 3 shows the velocity measurements and GP-predicted
mean and variance values for two simulations, A and B, and
for the two turbines that experience the greatest wake effect
for a southwesterly wind direction, T7 and T8. The predicted
standard deviation is significant in some regions. However,
since the prior mean is assumed to be zero, in these areas
of high uncertainty the GP models revert to the base model,
which is unlikely to deviate drastically from the true values.
We can see some abrupt deviations between the predicted
and measured values where the green line fluctuates from
the red, but relative to the measured values these deviations
are small. It is also worth noting that the predicted mean
values, which tend to deviate immediately following a step
change in the true velocity, seem to converge to the true value
while the target value remains constant. It appears that the
model generates overestimates following a step increase in
the velocity, and generates underestimates following a step
decrease. This suggests that the learned error is positive for
smaller target values and vice-versa.

Fig. 3: Rotor-averaged wind velocity time series for sim-
ulations A (top row) and B (bottom row) for turbines T7
(left column) and T8 (right column): True (red line), base
model (blue line), GP-predicted mean (dark green line), GP-
predicted standard deviation (light green fill)

Fig. 4 illustrates the distribution of the RMSEd (top) and
ϵd (bottom) values over all 500 simulations for each down-
stream turbine in the form of box plots. As can be expected,
turbines T3 and T6 have low RMSEd and ϵd median and
inter-quartile range (IQR) values. This is because these tur-
bines are at the lowest cross-stream locations and the further

cross-stream the turbine is, the more it will experience the
wake effect in southwesterly wind conditions. For the same
reason, the RMSEd median value tends to increase with
cross-stream distance. Considering that the units of RMSEd

are in m/s, the median and even the whiskers (which extend
from the box by 1.5IQR) are exceptionally low relative to
the mean freestream wind speeds under consideration (8−12
m/s). In the worst case, the T8 predictions have a maximum
RMSEd of 0.09, but with a median of only 0.03 over all
simulations. Looking at the IQR of the RMSEd, we see that
it is within 0.05 m/s for all turbines, which is only 0.5% of
the average of the wind speeds under investigation (10 m/s).

The bottom row of Fig. 4 shows the box-plot distribution
of the relative error, ϵd(k), between the velocity mean values
predicted by the GPs and the true values over all simulations
for each turbine. Note that the outliers extend above and
below the limits of the plot, and we limit the range so that
the boxes are visible. The maximum absolute value of ϵd
over all simulations and turbines is 12% for T7 (not visible
in Fig. 4), although the median relative error for the same
turbine is negligible.

Fig. 4: Median (blue line), IQR = Q3 − Q1 (orange box),
Q1 − 1.5IQR and Q3 + 1.5IQR (green whiskers), outliers
(green dots above/below whiskers) of the RMSEd and ϵd
score over all simulations for each turbine

IV. CONCLUSIONS
In conclusion, we have succeeded in modeling the error

between a base wake model and real-time measurements
using very few datapoints and computing an associated
uncertainty, which can be readily integrated into a stochastic
model-based controls algorithm. Of those tested, the best-
performing learning parameterization includes a minimal
batch size, the Matérn kernel function, and only 5 training
inputs. Considering the relative errors over all simulations
for this parameterization, the maximum error is greatest
for those turbines that experience the greatest wake effect,
although the median error is very low. This suggests that if
the peak deviations are filtered out of the GP predictions,
the model can reliably match the true values for different
locations in the wind farm. Refitting the GP for each turbine
took approximately 0.04 seconds for this parameterization,
which is much less than the typical sampling time of minutes
required by a model-based wind farm controller.

Improvements on this study can thus be achieved by

1573



post-processing the GP predictions with smoothing or peak-
removal algorithms to attenuate the “noise” in our predic-
tions. The GP predictions tend to deteriorate immediately
following a change in the target value, suggesting that the
replay buffer is not retaining data that span the full input
space. Analysis and comparison with alternative methods
for choosing data to increase exploration may improve
performance during abrupt changes in effective wind speed.
Such changes are, however, unlikely to occur in real wind
farms. Other covariance kernel functions, such as those
which exploit periodicity in data, may also improve results.

To reduce the size of the input vector and thereby more
efficiently refit the GPs, it is desirable to seek a) the mini-
mum number of delayed measurements, kdelay, b) the optimal
delayed time-horizon, [k−∆kd, k], from which to take these
measurements, and c) the minimum set of upstream turbine
control actions to consider. It is likely that less frequent
delayed yaw angle measurements are necessary as compared
with axial induction factor measurements, since the former
changes at a significantly slower rate.

In this work we employ GPR as the statistical learn-
ing framework, but there are other methods for modeling
dynamics and prediction uncertainty in an online fashion
worth investigating, e.g. Sparse Identification of Nonlinear
Dynamics with Control [20], which is a form of regularized
linear regression with nonlinear terms.

In order to better validate our approach, more realistic
training data is needed. These tests could consider turbulent
wind fields, variation in freestream wind speeds/directions
and learn from higher-fidelity data, e.g. LESs.

Extensions to this work include a) integration of the GP-
learned wake dynamics with a model-based control algo-
rithm, such as stochastic model-predictive control, and b)
learning different characteristics of wake fields relevant to
controls, e.g. turbulence intensity, wake propagation direc-
tion, downstream propagation time, and wake meandering.
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