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Abstract— This paper studies formation control using
bearing-only measurements for elevation angle rigid configu-
rations in the presence of time-varying bounded disturbances.
Elevation angle rigidity-based control laws ensure bearing-
only formation control in agents’ local frame of reference
sans any orientation synchronization or orientation estimation
algorithms. However, existing control laws do not account for
bounded disturbances in the agents’ dynamics. Motivated by
this, we design bearing-only control laws for single integrators
in agents’ frame of reference and prove local finite-time
convergence to the desired formation. Then control laws for
double integrators are proposed, and local asymptotic stability
is proved when agents’ accelerations are affected by bounded
disturbances. Simulations are provided to validate the claims.

Index terms: Bearing-only, double integrators, unknown
disturbances

I. INTRODUCTION

Formation control is an important research area due to
its applicability to several domains such as source seeking,
surveillance, etc. [1], [2]. Depending on the sensing abilities
of the agents and constraints specifying the desired forma-
tion, we have distance-based, displacement-based, bearing-
based, or bearing-only [3], [4] formation control. Rigidity
theory helps in characterizing unique formation shapes from
a set of constraints [2]. For instance, distance rigidity theory
[2], [5], [6] resulted in unique distance-based formations.
However, the control laws for distance and displacement-
based formation require distance and displacement measure-
ments, which are noisier than relative bearing measurements.
Bearing measurements are obtained using vision only sensors
like cameras, and hence require simpler sensory arrange-
ments, thereby reducing payload. This is desirable for small
UAV applications [4]. Due to these appealing properties,
bearing-only formation control has garnered much attention.

To uniquely characterize a formation shape from bearing
constraints, bearing rigidity theory was proposed in [7],
and then formation stabilization was achieved for single-
integrators. Bearing-only formation tracking for single in-
tegrators, double integrators, and unicycles for constant ve-
locity leaders was studied in [8]. A finite time bearing-only
control law for single integrators was proposed in [9], which
used a leader-first-follower interaction topology. Persistence
of excitation was exploited in [10] for studying time vary-
ing formation control using only inter-agent bearing and
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velocity measurements. In all of these bearing-only control
strategies, the desired formation was specified in terms of
bearing constraints. But bearing is co-ordinate dependent.
Hence, in all of these bearing-only control strategies, agents
either need knowledge of a global reference frame, or some
orientation synchronization or orientation estimation algo-
rithms need to be employed in cascade with the formation
control law [11]–[13]. Motivated by the above limitations, in
[14] an angle-based formation control was studied. In [15]
the desired formation was specified in terms of inter-agent
angle constraints, which are co-ordinate free, and formation
control laws were derived using bearing-only measurements.
However, only planar formations were considered. In [16]
each agent was attached with a circular disc and only bearing
measurements were used for planar formations. A recent
paper, [17], proposed an elevation angle-based formation
control law, in which desired formation was specified by
elevation angle constraints which are co-ordinate free. Each
agent was attached with a rod in 2-D and a ball in 3-D.
A gradient based formation control law was then proposed
for single integrators using elevation angle rigidity. In [18]
sign-elevation angle rigidity based bearing-only control law
was proposed for single integrators. External bounded dis-
turbances might affect the agents’ dynamics adversely, and
deteriorate the performance of formation control algorithms.
In [19], although bearing-only control was considered in
presence of time-varying disturbances, it required knowledge
of a global reference frame.

Motivated by this, we consider bounded time-varying
disturbances affecting the dynamics of the agents and derive
bearing-only control laws in agents’ local frames considering
elevation angle rigid configurations. The important contribu-
tions of this letter are highlighted below:
Firstly, for single integrators, bearing-only formation control
laws are designed, and local finite-time stability is proved
in the presence of bounded time-varying disturbances. Sec-
ondly, for double integrators, bearing-only formation control
laws are designed to obtain local asymptotic stability in the
presence of bounded time-varying disturbances. Thirdly, only
local bearing measurements are used in the control design,
and no other orientation synchronization or estimation algo-
rithms are used. Finally, the exact upper bound for the time-
varying disturbances need not be known for control design.

Remark 1: In [5], [19], [20], formation control with
bounded disturbance was reported. However, [5] considered
distance-based formation control which required inter-agent
displacements and distances. In [20], a bearing-based ap-
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proach was adopted where the formation control law required
inter-agent distances along with bearings. In [19] also a
bearing-only control law was reported, albeit with knowledge
of a global frame by the agents. In contrast, our laws require
only bearing measurements in agents’ local frames. While
[5] too, like our proposed laws, can only guarantee local
stability, [19], [20] do guarantee global stability. However,
the laws in [19], [20] require knowledge of a global frame
by the agents. In contrast, our approach does not require
global orientation information, but this comes at the cost of
lacking guaranteed global stability.

Remark 2: Unlike [17], where single integrators were
considered, we consider both single and double integrators.
Further, [17] did not consider disturbances and local expo-
nential stability was ensured. We guarantee local finite-time
stability in the presence of disturbances for similar agents.

Notations: ||.||p denotes the standard p-norm for a vector,
or induced p-norm for a matrix. For 2-norm ||.|| is used.
⊗ denotes the Kronecker product. ℓ∞ is the space of all
bounded functions, while ℓp is the space of functions with
bounded p-norm. For x ∈ R, sigβ(x) := sign(x)|x|β ,
where | · | is the absolute value, and sign(x) = 0,−1, 1
for x = 0, x < 0 and x > 0, respectively. For x =
[x1 . . . xn]

T ∈ Rn, sign(x) := [sign(x1) . . . sign(xn)]T ,
sigβ(x) := [sigβ(x1) . . . sigβ(xn)]T , and |x|[p] :=∑n
i=1 |xi|p, where p > 0. For x1, . . . , xn ∈ Rd,

vec(x1, . . . , xn) := [xT1 . . . x
T
n ]
T ∈ Rdn. For A1, . . . , An ∈

Rd×d, diag(A1 . . . An) ∈ Rnd×nd is block diagonal with
A1, . . . , An as diagonal blocks. Ik ∈ Rk×k denotes identity.

II. PROBLEM FORMULATION

A. Preliminaries

Consider n agents in Rd, with d = 2 or 3. An undirected
graph, G(V, E), is used to model the interaction among the
agents, where V is the vertex set (representing agents) and
E is the edge set. The set of neighbours of vertex/agent i
is defined by Ni = {j|(i, j) ∈ E}, and ni = |Ni|. Further
details about algebraic graph theory are available in [21].

Let Qi be the orientation of i-th agent with respect to
a global frame. The position of the i-th agent, the relative
displacement between agents i and j, and the bearing of
agent j measured by agent i in its local frame are given by
pii, z

i
ij := pij − pii, and biij =

ziij
||ziij ||

∈ Rd, respectively.

We have pi = Qip
i
i, zij = Qiz

i
ij , and bij = Qib

i
ij ,

where pi, zij , bij are in global reference frame. The distance
between agents i and j is dij = ||ziij || = ||zij ||. We have
p := [pT1 . . . pTn ]

T ∈ Rnd, the positions of n agents, and
p∗ := [(p∗1)

T . . . (p∗n)
T ]T as the desired positions.

1) Elevation angles: These are defined in [17].
a) 2-D case: In 2-D, for obtaining the elevation angles,

each agent is attached with a rod of height hc. Hence,
the coordinates of the end point of a rod are p

′

i = pi +
[0 0 hc]

T . The elevation angle measured by agent i toward
agent j is given by αij := ∠jij

′
= arccos(bTijbij′ ) =

arccos((biij)
T (bi

ij′
)) = arccot(dij/hc) ∈ (0, π2 ). The eleva-

tion angles from agent 1 to 2, i.e., α12, and from agent 1 to 3,
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Fig. 1. (a) Elevation angle measurements in 2-D, (b) and in 3-D

i.e., α13 are shown in Fig. 1 (a). The elevation constraints in

2-D are fij = cot(αij) =
dij
hc

=
cos(αij)
sin(αij)

=
bTijbij′√

1−(bTijbij′ )
2
=

(biij)
T (bi

ij
′ )√

1−((biij)
T (bi

ij
′ ))

2
, and the desired formation is specified by

fij = f∗ij , implying cot(αij) = cot(α∗
ij), ∀(i, j) ∈ E .

b) 3-D case: In 3-D each agent is attached with a ball
of radius rc. The elevation angle is then defined as αij :=
∠j

′
ij

′′
= arccos(bT

ij′
bij′′ ) = 2∠j

′
ij = 2arcsin( rcdij ) ∈

(0, π/3), where j, j
′
, j

′′
, i are coplanar points with j and j

′′

being on the surface of agent j’s ball, and bij′ and bij′′ are
perpendicular to bjj′ and bjj′′ , respectively. The elevation
angles measured by agents 3 to 1, 3 to 2, and 3 to 4 are
shown in Fig. 1(b). The elevation constraints are defined
by fij := cosec(αij) =

dij
rc

= 1

sin(
αij
2 )

= 1√
(1−cos(αij))/2

= 1√
(1−bT

ij
′ bij′′ )/2

= 1√
(1−(bi

ij
′ )

T (bi
ij

′′ )/2
.

Remark 3: Note that these constraints, fij , can be evalu-
ated using only bearing measurements in local frames.

2) Elevation Angle Rigidity: Elevation angle function is
constructed by clubbing all the elevation angle constraints,
i.e., fE := [f1 . . . fm]T , where fk := (i, j)-th edge and
k := (i, j) ∈ E . The derivative of the elevation angle function
fE with respect to time is dfE

dt = ∂fE
∂p ṗ = Re(p)ṗ, where

Re(p) is the elevation angle rigidity matrix [17] defined as
Re(p) :=

∂fE
∂p . When we take derivative of (i, j)-th element

of fE (say fij) we obtain:

dfij
dt

=
∂fk
∂pi

ṗi +
∂fk
∂pj

ṗj = ρ−1 d||zk||
dt

= ρ−1bTij(ṗj − ṗi),

where ρ := hc or rc for 2-D and 3-D, respectively. We refer
the reader to [17] for details on the notions of rigidity.

Lemma 1: [17, Theorem 1] A framework F(G, p) is
infinitesimal elevation angle rigid if and only if the rank of
its elevation angle rigidity matrix, Re(p), is nd−(d+1)d/2,
where d is the dimension of ambient space.

Definition 1: ( [17]) A framework, F(G, p), is called mini-
mally rigid if Lemma 1 is satisfied and |E| = nd−d(d+1)/2,
where d is the dimension of the ambient space.

3) Agent dynamics: Consider single integrators and dou-
ble integrators with bounded disturbances. Single integrators
with disturbances in local frames are given by:

ṗii = uii + δii(t) i ∈ V, (1)

where uii ∈ Rd is control input in agents’ local co-ordinate
system, and δii(t) ∈ Rd is the bounded disturbance such that
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||δii(t)|| ≤ α,∀t, where α > 0 is some unknown constant.
The double integrator dynamics is given by:

ṗii = vii ; v̇
i
i = uii + δii(t) i ∈ V, (2)

where vii is agent i’s velocity in its local frame, ui ∈ Rd the
control input, δii(t) ∈ Rd is the bounded disturbance such
that ||δii(t)|| ≤ α,∀t, where α > 0 is an unknown constant.

B. Problem statements

The following assumption is made in our set-up.
Assumption 1: The framework F(G, p∗), where G is the

sensing graph and p∗ is the desired realization, is minimally
infinitesimally elevation-angle rigid.
Problem 1: Consider n single integrators (1) with Assump-
tion 1 satisfied. Design control laws, uii, for i ∈ V, so
that the agents converge to the desired formation shape, i.e.,
fij → f∗ij ∀(i, j) ∈ E in finite time.
Problem 2: Consider n double integrators in (2), with
Assumption 1 satisfied. Design control laws, uii, for i ∈ V,
so that the agents converge to the desired formation shape,
i.e., fij → f∗ij ∀(i, j) ∈ E and ||vi|| → 0 as t→ ∞.

The notion of stability refers to eij(t) := (fij − f∗ij) →
0,∀(i, j) ∈ E , i.e., stability implies the errors go to zero.

III. MAIN RESULTS

In this section, we present the control laws to solve the
two formation control problems and analyze their stability.

A. Single integrators:

The control law proposed for single integrators is:

uii = k̄
∑
j∈Ni

sigβ(eij)biij + γ̂isign(γ̂i
∑
j∈Ni

sigβ(eij)biij) (3)

˙̂γi = Proj(Xi, γ̂i), with Xi := ||
∑
j∈Ni

sigβ(eij)biij ||1, (4)

where eij := fij − f∗ij ,∀j ∈ Ni, are the elevation angle
error, β ∈ [ 12 , 1), k̄ > 0 is the control gain, and γ̂i is
the adaptive gain whose update rule is given by (4). The
projection operator ( [22]) is defined as Proj(Xi, γ̂i) :=
(1 − ψ(γ̂i))Xi when ψ(γ̂i) > 0 and ψ

′
(γ̂i)Xi > 0, and

Proj(Xi, γ̂i) := Xi otherwise. Here, ψ(γ̂i) :=
γ̂2
i −η

2

ε2+2εη ,
ψ

′
(γ̂i) :=

∂ψ(γ̂i)
∂γ̂i

, and η, ε are positive reals. The formation
control law (3) has two components, the first of which aids
in stabilizing the formation in finite time, whereas the second
addresses unknown bounded disturbances. Adaptive gain, γ̂i,
is used to suppress disturbances. In global frame (3) is:

ui = k̄
∑
j∈Ni

sigβ(eij)bij + γ̂iQisign(γ̂iQTi
∑
j∈Ni

sigβ(eij)bij)

Defining Q := diag(Q1 . . . Qn), we have QT =
diag(QT1 . . . QTn ), and QQT = Idn. Define Γ :=
diag(Γ̂1 . . . Γ̂n) ∈ Rnd×nd, where Γ̂i := Id ⊗ γ̂i ∈ Rd×d.
As Γ is a diagonal matrix, we have Γ = ΓT . The following
control law, u, results for n agents,

u = −kRTe sigβ(e)− ΓQsign(QTΓTRTe sigβ(e)), (5)

where k = k̄ρ. As ρ > 0 here, we have sign(ρv) = sign(v),
for any v ∈ Rnd. The disturbance vector and velocity vector
for n agents in the global frame is given by:

δ = Qvec(δ11 , . . . , δ
n
n), ṗ = Qvec(ṗ11, . . . , ṗ

n
n). (6)

We have the following result on the single integrators.
Theorem 1: For the single integrators in (1) driven by the

control law (3), under Assumption 1, the formation tracking
error eij , ∀(i, j) ∈ E is bounded globally, and converges to
zero locally in finite-time.

Proof: We club the elevation constraints to get e :=
[e1 . . . em]T ∈ Rmd. Consider the Lyapunov candidate:

L(e) = 1

1 + β
|e|[β+1]︸ ︷︷ ︸
L1

+
ρ
√
d

2

n∑
i=1

γ̃2i︸ ︷︷ ︸
L2

, (7)

where γ̃i := γ̂iρ
−1

√
d

− α (α being the unknown bound on
the disturbance). Here, L1 is motivated by the Lyapunov
candidate in [6], and L2 helps in the Lyapunov analysis
to take care for unknown upper bound for the time-varying
disturbances. As we have a non-smooth Lyapunov function
and a control law containing discontinuous signum function,
we use non-smooth analysis in [23, Th. 2.2] to calculate the
derivative of L1(e), which is given by

L̇1 ∈a.e. ˙̃L1 =
⋂
ζ∈∂L

ζTK[ṗ] = ∇LT1K[ṗ], (8)

where K[·] is the set valued map defined in [23], and a.e
stands for almost everywhere. We have

∂L1

∂p
=
∂L1

∂e

∂e

∂p
= sigβ(e)TRe. (9)

We take the time derivative of L1 next, and use (9) with (5),
(6), (8) to get:

L̇1 ∈a.e. ˙̃L1 = −k||RTe sigβ(e)||2 + sigβ(e)TReδ

− sigβ(e)TReΓQK[sign(QTΓTRTe sigβ(e))].

As ∀x ∈ R we have xK[sign(x)] = {|x|}, which is a
singleton set, we get

L̇1 ≤ −k||RTe sigβ(e)||2 + ||sigβ(e)TReδ||
− ||QTΓTRTe sigβ(e)||1. (10)

Also, we have ||δii || ≤ α, and ||Qi|| = 1 ∀i ∈ V leading to

||δ||∞ = max
i

||Qiδii ||∞ ≤ max
i

||Qiδii || ≤ α. (11)

Using (11) with Hölder’s inequality [24], we get:

|sigβ(e)TReδ| ≤ ||RTe sigβ(e)||1||δ||∞ ≤ α||RTe sigβ(e)||1.
(12)

Note that ||QTΓTRTe sigβ(e)||1 ≥ ||QTΓTRTe sigβ(e)|| =
||ΓTRTe sigβ(e)||. Let RTe sigβ(e) = [ψT1 . . . ψTn ]

T , which
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implies ΓTRTe sgnβ(e) = [ψT1 Γ̂1 . . . ψTn Γ̂n]
T . Hence,

||QTΓTRTe sigβ(e)||1 ≥ ||ΓTRTe sigβ(e)|| =
n∑
i=1

γ̂i||ψi||

≥ 1√
d

n∑
i=1

γ̂i||ψi||1 =
1√
d
||ΓTRTe sigβ(e)||1 (13)

Now, using inequalities (12), (13), and (10), we get

L̇1 ≤ −k||RTe sigβ(e)||2 − 1√
d
||ΓTRTe sigβ(e)||1

+ α||RTe sigβ(e)||1

≤ −k||RTe sigβ(e)||2 −
n∑
i=1

γ̂iρ
−1

√
d

||
∑
j∈Ni

sigβ(eij)biij ||1

+ α

n∑
i=1

||
∑
j∈Ni

sigβ(eij)biij ||1

≤ −k||RTe sigβ(e)||2 −
n∑
i=1

γ̃i||
∑
j∈Ni

sigβ(eij)biij ||1. (14)

We have L̇ = L̇1 + L̇2, and L̇2 :=
∑n
i=1 γ̃i

˙̂γi. Using the
expression of ˙̂γi from (4) and L̇1 from (14) we get:

L̇ = L̇1 + L̇2 ≤ −k||RTe sigβ(e)||2−
n∑
i=1

γ̃i(Xi − Proj(Xi, γ̂i)).

Now, from [22], we have γ̃i(Xi − Proj(Xi, γ̂i)) ≥ 0,
and hence L̇ is negative semi-definite. Hence, the system
is Lyapunov stable, and all the signals are bounded, i.e.,
eij , γ̂i,L, u ∈ ℓ∞. Moreover, from Assumption 1 and
Lemma 1, we have a compact neighborhood, S around e = 0,
so that ReRTe is positive definite in S. So, for e ∈ S initially,

L̇ ≤ −k||RTe sigβ(e)||2 ≤ −λ||sigβ(e)||2 = −λ|e|[2β], (15)

where λ = kλ̄ and λ̄ > 0 is the smallest eigenvalue of ReRTe
inside S. Integrating both sides of (15) we get

L
∣∣
t→∞ − L

∣∣
t=0

≤ −λ
∫ ∞

0

|e|[2β]dt. (16)

We have |e|[2β] ∈ ℓ1 since
∫∞
0

|e|[2β]dt is upper bounded
(from (16)). As e ∈ ℓ∞, we have |e|[2β] ∈ ℓ∞. Hence,
|e|[2β] ∈ ℓ1 ∩ ℓ∞. Differentiating |e|[2β], we get d|e|

[2β]

dt ∈a.e.
2βsig2β−1(e)TReK[ṗ] ∈ ℓ∞. As 2β ∈ [1, 2), we have
2β − 1 ∈ [0, 1). So e[2β] is uniformly continuous. Using
Barbalat’s lemma [25, Lemma 8.2], |e|[2β] → 0 as t → ∞,
which implies e → 0 as t → ∞. Hence, local asymptotic
convergence results. As boundedness of all signals and local
asymptotic convergence are established, consider the Lya-
punov candidate L1. As γ̂i ∈ ℓ∞, let κ := maxt>0 ||γ̃||∞,
where γ̃ := [γ̃1 . . . γ̃n]

T . Hence, from (14), we have:

L̇1 ≤ −k||RTe sigβ(e)||2 + κ

n∑
i=1

||
∑
j∈Ni

sigβ(eij)biij ||1

≤ −λ|e|[2β] + κ||RTe sigβ(e)||1 (17)

≤ −λ|e|[2β] + κ
√
d||RTe sigβ(e)|| ≤ −λ|e|[2β] + κ1|e|[β],

where κ1 := κ
√
dλm and λm > 0 is the largest eigenvalue

of ReRTe inside S. Now, there exist a set S1 near e = 0,
and 0 < λ1 < λ, such that |e|[2β] ≥ κ1

λ1
|e|[β] holds in S1.

Such an S1 must exist because 2β > β, and as e is in the
neighborhood of the origin, we can choose sufficiently small
e, i.e., |ek| ≤ ε < 1, ∀k ∈ E . Hence, inside S1,

L̇1 ≤ −(λ− λ1)|e|[2β] = −λ2|e|[2β], (18)

where λ2 = (λ − λ1) > 0. Due to [6, Lemma 4], |e|[2β] =
|sigβ+1(e)|[

2β
1+β ] ≥ (|sigβ+1(e)|[1])

2β
β+1 = (|e|β+1)

2β
1+β .

Hence, L̇1 ≤ −λ2(β + 1)
2β

1+β L
2β

1+β

1 = −β1Lβ2

1 , with β1 =

λ2(β+1)
2β

1+β and β2 = 2β
1+β ∈ (0, 1). From [13, Lemma 2],

we have finite time convergence within S1. Starting within
S, due to asymptotic convergence, e enters set S1 after finite
time, say τ, and thereafter reaches 0 in time T = L1−β2 (τ)

β1(1−β2)
.

Hence, time to reach origin is T1 = τ + T <∞.
Remark 4: The expression for convergence time is T1 =

τ+T = τ+ L
1−β
1+β (τ)

(k̄ρλ̄−λ1)(1+β)
1−β
1+β (1−β)

. So, increasing k̄ reduces

T , but it may saturate actuators due to increased gain.
Remark 5: Instead of the controller in (3) and (4), contain-

ing a sig(·) and sign(·) functions, we may use the controller
uii = k̄sign(

∑
j∈Ni

eijb
i
ij) + γ̂isign(γ̂i

∑
j∈Ni

eijb
i
ij), with

˙̂γi = Proj(||
∑
j∈Ni

eijb
i
ij ||1, γ̂i) containing only sign(·)

functions, and prove similar result as in Theorem 1. The
Lyapunov candidate may be chosen as L := 1

2e
T e + L2.

However, in either case chattering may result due to the
presence of discontinuous sign(·) function in the control law.

B. Double integrators:

Next, we propose control laws for double integrators ((2)).

ṙii = kpρ
−1

∑
j∈Ni

eijb
i
ij − kvv

i
i

uii = 2kpρ
−1

∑
j∈Ni

eijb
i
ij − 2kvv

i
i + γ̂isign(γ̂i(rii − vii))

(19)
˙̂γi = Proj(Xi, γ̂i), with Xi := ||rii − vii ||1, (20)

Here, kp > 0 and kv > 0 are the control gains, and ρ := hc
or rc for 2-D and 3-D, respectively. The projection operator
is as defined in Section III A. By adjusting the control gains
kp and kv we can improve transient response, i.e., to increase
the damping, we may choose a higher value of kv than kp. By
increasing the ratio of kv to kp we may reduce oscillations,
and even eliminate them, though very high values of kv
may lead to higher amplitude of control signal. However,
we should not choose kp to be very small either, as it will
increase convergence time for the error. Since the system is
nonlinear, analytical quantification of damping with variation
of kv to kp is intractable. Using the orthogonal matrices, Qi,
we write (19) in global frame of reference as:

ṙi = ρ−1kp
∑
j∈Ni

eijbij − kvvi

ui = 2kpρ
−1

∑
j∈Ni

eijbij − 2kvvi + γ̂iQisign(QTi γ̂i(ri − vi)).
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The dynamics of all the agents in compact form is:

ṙ = −kpRTe e− kvv

u = −2kpR
T
e e− 2kvv + ΓQsign(QTΓT (r − v)), (21)

where r = [rT1 . . . rTn ]
T , v = [vT1 . . . vTn ]

T and u =
[uT1 . . . uTn ]

T ∈ Rnd. Let γ̂ := [γ̂1 . . . γ̂n]
T .

Theorem 2: For double integrators in (2) driven by (19),
subject to Assumption 1, the formation tracking errors
eij , ∀(i, j) ∈ E , and agent velocities vi, i ∈ V are bounded
globally, and converge to zero locally asymptotically.

Proof: Consider the following Lyapunov candidate:

L =
kp
2
||e||2 + 1

2
||r||2 + 1

2
||r − v||2 +

√
d

2
||γ̃||2 (22)

where γ̃i := ( γ̂i√
d
−α−1) and γ̃ = [γ̃1 . . . γ̃n]

T . Thereafter,

L̇ ∈a.e. ˜̇L = kpe
T ė+ rT ṙ + (r − v)T (ṙ −K[u]− δ) + γ̃T ˙̂γ

=⇒ L̇ ∈a.e. ˜̇L = kpe
TRev−kprTRTe e− kvr

T v + γ̃T ˙̂γ

+ (r − v)T (kpR
T
e e+ kvv + ΓQK[sign(QTΓT (r − v))]− δ)

=⇒ L̇ = −kv||v||2 − ||QTΓ(r − v)||1 − δT (r − v) + γ̃T ˙̂γ.

We have, ||δ||∞ = maxi ||Qiδii ||∞ ≤ α. Also,

||QTΓ(r − v)||1 ≥ ||QTΓ(r − v)|| = ||Γ(r − v)||

≥ 1√
d
||Γ(r − v)||1 =

1√
d

n∑
i=1

γ̂i||(ri − vi)||1.

Also, |δT (r − v)| ≤ ||r − v||1||δ||∞ ≤ α||(r − v)||1. Hence,

L̇ ≤ −kv||v||2 − ||QTΓ(r − v)||1 + |δT (r − v)|+ γ̃T ˙̂γ

≤ −kv||v||2 −
1√
d
||Γ(r − v)||1 + α||(r − v)||1 + γ̃T ˙̂γ

≤ −kv||v||2 −
n∑
i=1

||ri − vi||1 −
n∑
i=1

γ̃i||ri − vi||1 +
n∑
i=1

γ̃i ˙̂γi

≤ −kv||v||2 − ||r − v||1−
n∑
i=1

γ̃i(Xi − Proj(Xi, γ̂i)) (23)

From (23) and using the fact γ̃i(Xi−Proj(Xi, γ̂i)) ≥ 0 [22],

L̇ ≤ −kv||v||2 − ||r − v||1, (24)

which is negative semi-definite. Hence, all the signals are
bounded, i.e., eij , γ̂i, vi,L, ui ∈ ℓ∞. It readily follows that

L
∣∣
t→∞ − L

∣∣
t=0

≤ −
∫ ∞

0

kv||v||2dt−
∫ ∞

0

||r − v||1dt.

(25)

As the L.H.S. of (25) is bounded, the R.H.S. is also bounded.
Hence,

∫∞
0

||v||2dt <∞ and
∫∞
0

||r−v||1dt <∞, implying
||v|| ∈ ℓ2 and ||r − v|| ∈ ℓ1. Also, v̇ = u + δ ≤ ||u||∞ +
||δ||∞ ∈ ℓ∞, and ṙ − v̇ ∈ ℓ∞, implies ||v|| and ||r − v||
are uniformly continuous. Together with ||v|| ∈ ℓ2 ∩ ℓ∞
and ||v − r|| ∈ ℓ1 ∩ ℓ∞, using Barbalat’s lemma [25], we
have ||v|| → 0 and ||r − v|| → 0 as t → ∞. Hence,
r → 0, as t → ∞, implying RTe e → 0, as t → ∞.
However, due to minimally infinitesimal rigidity, there exists

a neighbourhood, S, of e = 0 where RTe e ≡ 0, implies e ≡ 0,
because inside S, rank(Re)= rank(RTe )= nd−d(d+1)/2. So
RTe has full row rank, and null space of RTe is trivial. Hence,
starting inside S, e converges to zero asymptotically.

Remark 6: Introduce a parameter ϵ in the control laws
and redefine the elevation constraint error as eij := fij −
ϵf∗ij . Then the desired equilibrium corresponds to fij = ϵf∗ij ,

implying dij
ρ =

ϵdij
ρ , i.e., dij = ϵd∗ij . Hence, for ϵ > 1, the

formation scales up and for 0 < ϵ < 1 it scales down.
Remark 7: Projection-based update rule ensures γ̂i is al-

ways bounded [22]. Instead we can also use ˙̂γi = Xi in (4)
and (20). However, due to the discrete implementation and
chattering around the origin, the adaptive gains might slowly
increase. Define the set Ωζ := {e : |e| =

∑m
k=1 |e|k < ζ}

with ζ > 0 being a small positive number. We can stop
updating γ̂i ∀i ∈ V when e ∈ Ωζ , i.e., ˙̂γi = 0 ∀i ∈ V , else
we use ˙̂γi = Xi. Then e will be bounded below ζ. We may
thus observe the expression above (24) , i.e., L̇ ≤ −kv||v||2−∑n
i=1 ||ri − vi||1 −

∑n
i=1 γ̃i||ri − vi||1 +

∑n
i=1 γ̃i

˙̂γi. When
e ∈ Ωζ we have ˙̂γi = 0 ∀i ∈ V , hence we have
L̇ ≤ −kv||v||2−

∑n
i=1 ||ri−vi||1−

∑n
i=1 γ̃i||ri−vi||1. Now,

if the term −kv||v||2−
∑n
i=1 ||ri−vi||1−

∑n
i=1 γ̃i||ri−vi||1

is negative, we have e ∈ Ωζ , and if it is positive the error
may start to increase and as soon as it leaves the set Ωζ ,
the update law ˙̂γi = Xi becomes active. We then have
L̇ ≤ −kv||v||2 −

∑n
i=1 ||ri − vi||1, and hence ei decreases.

IV. ILLUSTRATIVE EXAMPLE
A. Single integrators

For single integrators we have 4 agents in 2-D, and
E = {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3)}. The desired eleva-
tion constraints are f∗12 = f∗34 = 20, f∗14 = f∗23 = 10, f∗13 =
10

√
5. The initial positions of the agents are p1(0) =

[0.1 0.2]T , p2(0) = [1.2 − 0.3]T , p3(0) = [1.1 − 2.1]T ,
and p4(0) = [0.1 − 2.2]T . The disturbances are δ1 =
[0.2sin(2πt) e−3t]T , δ2 = [0.3sin(2πt) 0.4cos(πt)]T , δ3 =
[0.5sin(3πt) cos(2πt)]T , δ4 = [e−3t 0.3cos(πt)]T . The local
frame of the i-th agent has (i−1)π

4 rotation about the global
frame of reference.The control parameters are k̄ = 10, β =
0.5. Also, hc = 0.1m. Fig. 2(a) shows the trajectories of the
agents converging to the desired shape in finite time. Fig.
2(b) shows the plot of elevation constraint errors for different
agents which go to zero around 0.017 sec. In Fig. 2(c) the
sum of all edge errors are plotted for different parameter
values (i.e. k̄ and β). Fig. 2(d) shows persistent oscillations
in error when control law in [17] is used instead.

B. Double integrators

For double integrators we have 5 agents in 3-D, and E =
{(1, 2), (2, 3), (3, 1), (1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)}.
The desired elevation constraints are f∗ij = 10, ∀(i, j) ∈ E .
The initial positions of the agents are p1(0) =
[0.1 − 0.2 0.1]T , p2(0) = [0.8 − 0.1 0.1]T , p3(0) =
[1.2 − 1.2 − 0.1]T , p4(0) = [0.2 − 1.15 − 0.2]T ,
and p5(0) = [0.5 − 0.5 1.1]T , and the corresponding
disturbances are δ1 = [0.3sin(2πt) e−5t 0.2cos(πt)]T , δ2 =
[0.4cos(2πt) e−4t 0.3sin(2πt)]T , δ3 =
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Fig. 2. (a) Single integrators achieving formation in finite time, (b)
Elevation errors

∑
j∈Ni

eij , i ∈ V , (c) Elevation error (
∑

k∈E |ek|)) for
different parameters, (d) Elevation error (

∑
k∈E |ek|) with [17].
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Fig. 3. (a) Double integrators achieving the formation, (b) Elevation errors∑
j∈Ni

eij of different agents i ∈ V with kp = 20, kv = 30.

[e−5t 0 0.4sin(πt)]T , δ4 = [0.5cos(πt) e−5t 0]T , δ5 =
[0.3sin(2πt) 0.2cos(πt) e−5t]T . The local frame of the i-th
agent has a rotation of iπ

6 , and the axis of rotation for 1-st
and 2-nd agent is x-axis, i.e., [1 0 0]T , the agent 3 and 4
is y-axis, i.e., [0 1 0]T , and the 5-th agent is z-axis, i.e.,
[0 0 1]T . Also, rc = 0.1m. Fig. 3(a) shows the trajectories
of the agents converging to the desired shape, and Fig. 3(b)
shows the elevation errors of the agents converging to zero.

V. CONCLUSIONS
In this paper, formation control for single and double inte-

grators was studied in presence of bounded disturbances. The
control laws used only bearing measurements in agents’ local
frame, and an adaptive gain was used to address time-varying
disturbances with unknown upper bounds. A minimally
elevation-angle rigid graph modeled the interaction among
the agents. Local finite time stability result was obtained for
single integrators, and local asymptotic stability was obtained
for double integrators. Obtaining global stability results in
this setup, as well as finite time convergent laws for double
integrators are future research goals.
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