
Opacity from Observers with a Bounded Memory

Andrew Wintenberg, Stéphane Lafortune, and Necmiye Ozay

Abstract— Opacity is an information-flow property capturing
privacy from observers that are aware of a system’s dynamics.
The potential for an observer with perfect recall to reason
about long histories of the system poses a challenge for
opacity verification. In this paper, we address this challenge
by proposing a new notion of opacity over automata, called
bounded memory opacity, with respect to an observer with a
bounded memory. We show that verifying this weaker notion
of opacity has reduced computational complexity compared to
general opacity (co-NP vs. PSPACE). Furthermore, we present
a corresponding verification algorithm using an encoding to
the Boolean satisfiability problem (SAT). We demonstrate this
approach on randomly generated automata as well as a web
server load-hiding example.

I. INTRODUCTION

Recently, we have become increasingly reliant upon cyber-
physical systems (CPS) which integrate physical processes
across cyber-networks. Many of these systems, from the
smart grid to medical devices, communicate sensitive in-
formation which is vulnerable to eavesdropping. As leaking
this information can lead to serious harm to both the system
and its users, such systems are subject to strict privacy and
security requirements. Particularly in the areas of CPS and
discrete event systems (DES), such privacy requirements
have been modeled using the information-flow property of
opacity. Opacity captures the inability of a passive eaves-
dropper or observer to deduce some secret behavior using
their knowledge of the system’s dynamics.

To model the diverse privacy requirements encountered in
practice, many notions of opacity have been proposed. These
notions are characterized by the type of secret behaviors
considered and the capabilities of the observer. For example,
the secrets considered in current-state opacity [1] and initial-
state opacity [2] are the current and initial state, respectively.
Likewise language-based opacity (LBO) [3] considers be-
havior within a given language to be secret. These notions
along with many others assume that the observer has partial
observation of the system but impose no other constraints.
In particular, it is implicitly assumed that observers have
perfect recall, always deducing a secret correctly if possible.
While this approach provides strong theoretical guarantees
of privacy, it presents a number of challenges in practice.
First, an observer may have limited computational resources
to perform deduction, especially in an embedded setting.

This work was supported by US National Science Foundation awards
CNS-1837680 and ECCS-2144416, as well as a sponsored research award
from Cisco Research.

The authors are at the University of Michigan, Ann Arbor, USA.
<awintenb,stephane,necmiye>@umich.edu

Second, the computational resources required to verify these
privacy guarantees may be prohibitive as we must consider
every possible way information may leak. Indeed, the afore-
mentioned notions of opacity over automata are all readily
transformed into one another [4]–[6], and the common
verification problem is known to be PSPACE-complete [7].
This high complexity is observed in the poor exponential
scalability of verification algorithms in practice.

In this work, we address these challenges by proposing
a new notion of opacity reflecting an additional constraint
on the observer: the amount of memory available to them.
We characterize opacity from the observer’s point of view,
modeling their deductions with a nondeterministic automaton
that marks observations deemed secret. In this form, we can
impose a bound k ∈ N on the size of this automaton, repre-
senting the memory available to the observer. Our proposed
notion of k-bounded memory opacity (k-BMO) requires that
no such automaton exists. We establish basic properties of
this notion, including that the verification problem is co-
NP-complete, reduced from the PSPACE-completeness for
LBO. In addition to these results, we develop a verification
approach using an encoding into the Boolean satisfiability
problem (SAT) and demonstrate it on a number of examples.

II. PRELIMINARIES

A. Automata

In this work, we model systems with nondeterministic fi-
nite automata (NFA). For a detailed introduction to automata
in the context of DES, see [8]. The set of strings over a finite
set of events Σ is denoted by Σ∗, including the empty string
ϵ. For a string t, |t| denotes its length while for a set Q, |Q|
denotes its cardinality. A nondeterministic finite automaton
(NFA) over Σ is a tuple G = (Q,Σ, δ, q0, Qm) with a finite
set of states Q, transition relation δ ⊆ Q × Σ × Q, initial
state q0 ∈ Q, and a set of marked states Qm ⊆ Q. The
transition relation can be extended inductively to the domain
Q × Σ∗ × Q. The language of G reaching states Q′ is the
set LQ′(G) = {t ∈ Σ∗ | ∃q ∈ Q′. (q0, t, q) ∈ δ}. The
language generated by G is the set L(G) = LQ(G) while
the language marked by G is the set Lm(G) = LQm(G).
We say an NFA G is a deterministic finite automaton (DFA)
if |{q′ | (q, σ, q′) ∈ δ}| ≤ 1 for each state q and event σ.

Given a subset of observable events Σo ⊆ Σ, the natural
projection P : Σ∗ → Σ∗

o is defined recursively for strings
t by P(t) = ϵ if t = ϵ, P(tσ) = P(t)σ for σ ∈ Σo, and
P(tσ) = P(t) for σ ∈ Σ \ Σo. We denote the preimage
of this map, called the inverse projection, by P−1. The
observer of G is a DFA Gobs over Σo with states in 2Q

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 6905

such that Lm(Gobs) = P(Lm(G)). This is also referred to
as the powerset construction or determinization. Given NFAs
G = (Q,Σ, δ, q0, Qm) and A = (QA,Σo, δA, qA,0, QA,m),
their parallel composition is an automaton A||G with states
QA × QG such that Lm(A||G) = P−1(Lm(A)) ∩ Lm(G).
Given NFAs G and A, we can also construct automata
marking the complement language Σ∗\Lm(G) and the union
language Lm(G) ∪ Lm(A).

B. Complexity Theory

We now briefly review concepts from the study of com-
plexity theory needed to characterize our results. For more
information, consult a standard reference such as [9]. A
decision problem relates the inputs of an algorithm to a
corresponding yes or no answer as output. Complexity theory
classifies these problems according to the time or space
needed to solve them in a given model of computation, such
as Turing machines. For example, the classes P and PSPACE
denote problems that can be solved by a deterministic
machine in polynomial time and space, respectively, as a
function of the input size. Likewise NP denotes problems
solved by nondeterministic machines in polynomial time,
i.e., problems for which there exist certificates proving the
correctness of yes answers in polynomial time. Similarly, co-
NP denotes the complement of NP, i.e., problems for which
there exist certificates proving the correctness of no answers
in polynomial time. While it is known that NP, co − NP ⊆
PSPACE, it is unknown if this inclusion is strict. A problem
in NP is said to be NP-complete if it is as hard as any other
problem in NP, i.e., there is a polynomial time algorithm
reducing any NP problem to it. A similar definition is made
for PSPACE-completeness.

For example, the Boolean satisfiability problem (SAT),
which asks if a given Boolean formula can be satisfied, is
known to be NP-complete. Indeed a satisfying assignment is
a certificate for satisfiability. Similarly, the complement prob-
lem asking if a formula is unsatisfiable is co-NP-complete.
In addition the MAX-SAT problem of maximizing the sum
of weights assigned to satisfied clauses of the formula is NP-
complete as well. While these problems cannot be solved in
polynomial time (unless P = NP), advanced heuristics have
resulted in solvers for SAT and MAX-SAT that are sufficient
to solve many problems in practice.

III. OPACITY FORMULATION

In this section, we present an alternative characterization
of opacity from the viewpoint of the observer which we
use to propose a new notion of opacity against observers
with bounded memory. We consider a system modeled by
an NFA G = (Q,Σ, δ, q0, Qm) generating the system’s
behavior L(G), which is divided into two classes, secret and
nonsecret. We assume the automaton G marks the nonsecret
behavior Lm(G). In addition we assume the system’s be-
havior is observed through the projection P of observable
events Σo ⊆ Σ. Then, opacity requires that an observer
of this system cannot deduce when a secret behavior has
occurred. Importantly, we assume the observer knows the

model of the system G and thus deduces a secret if their
observations are not consistent with nonsecret behavior. We
call such observations t ∈ P(L(G)) violating i.e., if P(t) ̸∈
P(Lm(G)). This motivates the following definition.

Definition 1 (Language-Based Opacity (LBO)). An NFA G
is said to be opaque or simply LBO for Σo if

P(L(G)) ⊆ P(Lm(G)) . (1)

Many existing notions of opacity may be formulated in
this way as shown in [4], [5]. For example, current-state
opacity requires visits to so-called secret states to be hidden.
Given an automaton G = (Q,Σ, δ, q0, Qm) with secret states
QS ⊆ Q, if Qm = Q \QS, the current-state opacity of G is
equivalent to the opacity of G as in Definition 1.

An observer of the system trying to deduce if an ob-
servation t was violating considers a version of the regu-
lar language acceptance problem, i.e., is t an element of
P(Lm(G))? We will formulate a new notion of opacity
capturing a restriction on the algorithms the observer uses to
solve this problem, namely the amount of available memory
states. As noted in [10], these algorithms can be viewed as
passive attacks on the system which do not alter the system’s
behavior. We adopt this terminology, and model these attacks
with an NFA A = (QA,Σo, δA, qA,0, QA,m) which tracks
observations of the system G and marks some which are
violating. We can use this notion of attacks to provide an
alternative characterization of opacity.

Proposition 1. The system NFA G is not LBO if and only if
there exists an attack NFA A with the following properties
1) Correctness: The attack marks only violating observations

Lm(A) ∩ P(Lm(G)) = ∅ . (2)

2) Nontriviality: The attack marks some observation

Lm(A) ∩ P(L(G)) ̸= ∅ . (3)

Proof. If there exists a correct and nontrivial attack A, then
there exists a string t ∈ Lm(A) contained by P(L(G)) but
not by P(Lm(G)). Hence t is violating and thus G is not
LBO. Conversely if G is not LBO, then there exists such a
string that is violating. Thus the attack A marking this single
string is necessarily correct and nontrivial.

Note that we do not require attacks to deduce all violating
observations, just one. Indeed, due to nondeterminism an
attack can be correct and nontrivial even if it rejects a
violating observation on one run but accepts it on another.
Because of this, the proposed memory bound is not directly
related to the standard notion of space complexity for the reg-
ular language acceptance problem. Alternatively, the smallest
attack which deduces every violating observation can be
computed by applying state minimization to the complement
of the observer of G. The number of states in an attack
automaton A represents the number of memory states utilized
by a corresponding nondeterministic deduction algorithm.
We can then define a notion of opacity capturing a restriction
on the memory available to an observer as a bound on the
number of such states.

6906

q1 · · · qM−1 qM qM+1
a a a b

1 2
b

a

1 · · · M−1 M
a a a

Fig. 1. A system NFA G (top) and corresponding attack NFAs A (bottom
left) and A′ (bottom right). States qM and qM+1 act as secret states in G
as in Example 1.

Definition 2. Given k ∈ N and Σo ⊆ Σ, we say the system
NFA G is k-bounded memory opaque (or k-BMO) if there
is no correct and nontrivial attack with k states.

A. Properties of Bounded Memory Opacity

We now observe a number of simple properties about this
notion of opacity.

Proposition 2. Consider an NFA G and bound k ∈ N.
1) If G is (k + 1)-BMO, then G is k-BMO.
2) If G is LBO, then G is k-BMO.
3) If G is 2|Q|-BMO, then G is LBO.

Proof.
1) We can add unreachable states to an attack without

altering its correctness or nontriviality.
2) If G is LBO, i.e., P(L(G)) = P(Lm(G)), then any

correct attack cannot be nontrivial.
3) If G is not LBO, then its observer with marked and

unmarked states swapped is a correct and nontrivial
attack with size at most 2|Q|.

In general, we are interested in the smallest bound k
for which a system is k-BMO or equivalently, the size
of minimal attacks. While we can always construct attacks
recognizing the smallest violating observation or attacks that
are deterministic, the following examples show that such
attacks may not be minimal.

Example 1. Consider the DFA G depicted in Figure 1 with
M + 1 states and all events observable. The only violating
strings are t1 = aM−1 and t2 = aM−1b. The attack A
depicted in Figure 1 is minimal, marking the string t2 in
composition with G. Furthermore, it is clear that any correct
attack marking t1, such as the one depicted in Figure 1, must
have at least M states, counting the occurrences of a. So the
shortest violation of opacity may not always correspond to
a minimal attack.

Example 2. Consider the nondeterministic attack A with 4
states depicted in Figure 2. We will construct a system G for
which this attack is minimal. Let G′ denote the complement
of the observer of A with all unmarked states removed. As a
result Lm(G′) = L(G′) contains strings whose prefixes are
not in Lm(A), i.e., L(G′) ∩ Lm(A) = ∅. Let G denote the
union NFA construction for G′ and an automaton generating
the secret string abaadac ∈ Lm(A) and marking its strict
prefixes. We do not depict G here due to space constraints.
By construction, we see A is correct and nontrivial, yet

1 2 3 3
a

a, b

a

d

c

Fig. 2. A nondeterministic attack A from which we construct the system
G in Example 2.

applying the verification method developed later in Section
IV, we can determine that there is no deterministic attack
with size 4. So in general there may be no minimal attack
that is deterministic.

IV. VERIFICATION AND FALSIFICATION

In this section, we discuss the problem of verifying k-
BMO. We show this problem is co-NP-complete, or equiv-
alently, that falsifying k-BMO by synthesizing an attack is
NP-complete. In addition we present a verification approach
based upon an encoding into SAT. Formally, we state the
problem of verifying k-BMO as follows.
Problem 1. Determine if a system modeled by an NFA G is
k-BMO for a given k ∈ N and observable events Σo.

A. Verifying k-BMO is co-NP

It is well-known that the complexity of verifying opacity
in general is PSPACE-complete [7]. By relaxing the require-
ment that an observer never deduces a secret, i.e., LBO, to
the proposed notion of k-BMO, we reduce the complexity
of the verification problem.

Theorem 3. Verifying k-BMO is co-NP.

Proof. Let G be the system NFA, Σo a set of observable
events, and k ∈ N a bound represented in unary which
all serve as input to the problem. Let n and m denote the
number of states and events of G, respectively. To show the
problem is co-NP, it suffices to show that we can check if
an attack A with size k (serving as a certificate) is correct
and nontrivial in polynomial time. Using properties of the
parallel composition, A is correct if the following equivalent
conditions hold

Lm(A)∩P(Lm(G)) = ∅ ⇔ LQA,m×Qm
(A||G) = ∅ . (4)

Likewise, A is nontrivial if the following equivalent condi-
tions hold

Lm(A) ∩ P(L(G)) ̸= ∅ ⇔ LQA,m×Q(A||G) ̸= ∅ . (5)

The language of an NFA is nonempty if and only if its
marked states are reachable from initial ones, which can
be checked using breadth-first search in linear time in the
number of edges. So both of these conditions can be checked
over A||G with time O(|QA|2 · |Q|2 · |Σ|) = O(k2n2m).

While we show next that this problem is co-NP-complete,
the result of Theorem 3 is significant as such problems can
often be solved in practice with SAT solvers. To demonstrate
this, we develop a SAT encoding for verification in Section
IV-C whose performance is evaluated in Section V.

6907

Remark 1. While we have proposed a bound on the memory
of a potential attacker, one may instead consider verifying
opacity over strings with a bounded length, similar to the
concept of bounded-model checking [11]. While such meth-
ods can be very efficient using symbolic techniques [12],
it is not immediately clear how long the strings considered
must be in order to achieve some privacy requirement. As
demonstrated in Figure 1, there may a simple attack to
deduce a secret occurred while the shortest violating string
is arbitrarily long (bounded by the number of states in the
system). However, we can note for any attack A on the
system G, a minimal string marked by the attack will only
visit the states of the composition A||G at most once. Hence
with k = |A| and n = |G|, if there are no strings violating
opacity with length kn− 1, the system is k-BMO.

B. Verifying k-BMO is co-NP-Complete

To show that verifying k-BMO is co-NP-complete, we
adapt the proof of PSPACE-completeness for verifying LBO
[7]. This proof constructs a reduction from the universality
problem which asks if an NFA G marks every string, i.e.,
Σ∗ ⊆ Lm(G)? Without loss of generality, we may assume
that L(G) = Σ∗ and all events are observable in which case,
G is LBO if and only if it is not universal. This completes
the reduction to the universality problem which is known to
be PSPACE-complete [13]. To show the NP-completeness
of our problem, we consider a variant of the universality
problem over bounded strings. The bounded nonuniversality
problem asks for an NFA G and bound n ∈ N, does G not
mark all strings of length at most n, i.e. Σ≤n ̸⊆ Lm(G)?
We now present a reduction from falsifying k-BMO to the
bounded nonuniversality problem which is known to be NP-
complete [14].

Theorem 4. Verifying k-BMO is co-NP-complete.

Proof. Consider an NFA G′ and bound n ∈ N represented
in unary which serve as inputs to the problem. Let G≤n

denote an automaton with n+1 states generating all strings
with length at most n and marking none of them. Let G be
the union automaton of G′ and G≤n restricted to strings of
length n so L(G) = Σ≤n and Lm(G) = L(G′) ∩ Σ≤n. By
construction, G is nonuniversal with bound n if and only
if there exists a string t ∈ L(G) but t ̸∈ Lm(G), i.e., t is
violating. As we can construct an attack with n + 1 states
that only marks t, we see G′ is nonuniversal with bound
n if and only if G is k-BMO for k = n + 1. As G may
be constructed in polynomial time, this procedure describes
a reduction from the bounded nonuniversality problem to
falsifying bounded memory opacity.

C. Verification using SAT

In order to verify k-BMO effectively, we can express
it as a Boolean satisfiability problem. That is we can en-
code an attack A with propositional variables and develop
constraints modeling correctness and nontriviality. Formally
given the fixed system NFA G, we consider an attack A
with states QA = {0, · · · , k−1}. Without loss of generality,

we assume the initial state is 0 and that the attack has
a single marked state given by k−1. We introduce the
variables τA(qA, σ, q′A) meaning the corresponding transition
is present in A, i.e., (qA, σ, q′A) ∈ δA. From equations (4)-
(5), correctness and nontriviality of A correspond to language
emptiness/nonemptiness in the composition A||G. In order
to encode this composition, we encode the observability of
an event σ ∈ Σ with a formula O(σ). Then the presence
of a transition in the composition from (qA, q) to (q′A, q

′)
over event σ where (q, σ, q′) ∈ δ is given by the formula
τ(qA, q, σ, q

′
A, q

′) defined by

(¬O(σ) ∧ (qA = q′A)) ∨ (O(σ) ∧ τA(qA, σ, q
′
A)) . (6)

To encode language emptiness, we recall that the language
marked by an automaton is empty if and only if its marked
states are not reachable from the initial state in the underlying
graph. We can represent reachability in the composition with
the variables R(qA, q), whose truth indicates that (qA, q) ∈
QA × Q is reachable from the initial state (qA,0, q0). To
encode reachability in SAT, we use constraints similar to
[15] based upon acyclicity over auxiliary variables T . These
constraints require the initial state to be reachable, i.e.,
R(qA,0, q0), and for all other states (qA, q) that

R(q′A, q
′)←

∨
σ∈Σ,qA∈QA

(q,σ,q′)∈δ

R(qA) ∧ τ(qA, q, σ, q
′
A, q

′) (7)

R(q′A, q
′)→

∨
σ∈Σ,qA∈QA

(q,σ,q′)∈δ

R(qA) ∧ τ(qA, q, σ, q
′
A, q

′)

∧ T (qA, q, q
′
A, q

′)

(8)

Acyclic(T) . (9)

Constraint (7) ensures R is true for reachable states while
constraints (8)-(9) ensure R is true only for reachable states.
Here, the constraint Acyclic(T) denotes a formula that is
satisfied when the graph over nodes QA × Q with edges
encoded by T is acyclic. We can think of this graph as
a spanning tree of the reachable set rooted at the initial
state. Critically, this formulation for reachability results in
a total number of constraints that is linear in the number of
transitions in the composed automaton (viewing acyclicity as
a single constraint which is natively supported by solvers like
[15]). From equations (4)-(5), we see the encoded attack is
correct and nontrivial if the following constraint is satisfied

φQm
=

∧
q∈Qm

¬R(k−1, q) ∧
∨

q∈Q\Qm

R(k−1, q), (10)

where k−1 is the marked state of A. Then there exists
an attack A encoded by these variables that is correct and
nontrivial, i.e., G is not k-BMO, if and only the constraints
(6)-(10) are satisfiable. Furthermore, the total number of
constraints is O(k2n2m) where n = |Q| and m = |Σ|.
This formulation of verification as a constraint satisfaction
problem has many advantages. In particular, it is easy to
incorporate extensions or additional constraints on the attacks
as demonstrated in the following section.

6908

V. EXPERIMENTS AND EXAMPLES

In this section, we investigate the performance of the
proposed SAT encoding for verifying k-BMO. We first
demonstrate its superior scalability in comparison to a stan-
dard approach for verifying LBO on randomly generated
automata. We then present an example showing how the
SAT encoding can be easily extended to solve more general
problems. This example system models server load-balancing
with quantitative constraints on observations available to an
attacker.

A. Comparing Opacity Verification Methods

We compare an implementation1 of the proposed SAT
encoding for verifying k-BMO with a standard method for
verifying LBO based upon constructing the observer (the
NFA G is LBO if all states in its observer are marked). In
particular we encode the constraints for verifying k-BMO
developed in Section IV-C into the solver GraphSAT [15]
which natively supports the acyclicity constraint (9). We
evaluate the runtime of both implementations on randomly
generated automata. For a given number of states n and a
fixed number of events m = 10, transitions are included
in the automata independently with a fixed probability. The
probability is selected such that the expected number of
transitions is 2nm where the exponential blowup of the
observer construction is encountered [16]. We do this to
demonstrate for a fixed bound k that the proposed method
performs well in the worst-case scenario for verifying LBO.

The resulting runtimes for verification were averaged
over 30 instances2 for each size n ranging from 5 to 17.
As the absolute runtimes are sensitive to details of each
implementation, we depict the verification runtimes as a
percentage of the time to verify LBO in Figure 3. We
observe that for a fixed k, this ratio for verifying k-BMO
decreases steadily indicating that the proposed method, while
exponential itself, scales exponentially slower with automata
size than the observer construction for LBO. While there are
more efficient approaches to verify LBO such as modular
[17] or antichain-based methods [18], it is likely similar
trends will exist in comparison to verifying k-BMO due to
the different complexity classes.

B. Server Load Hiding

Many cyber-physical systems operate, in part, over the
public Internet, using remote servers to offer critical services.
Security for these critical services is often based on location
hiding, e.g., hiding the true address of a server behind a
network of proxies [19]. While this can provide protec-
tion against distributed denial of service (DDoS) attacks,
resourceful attackers can learn the structure of simple, static
networks to bypass these measures [20], [21]. When the

1Implementation available at https://gitlab.eecs.umich.
edu/M-DES-tools/bounded-opacity

2The SAT solver failed to terminate on 11 out of the 1170 of instances
within a five minute timeout which are not included in our analysis. We note
that the unpredictability of the runtime of SAT solvers presents a limitation
to our approach in practice.

Fig. 3. The runtimes to verify different notions of opacity as a percentage
of the runtime to verify LBO.

server location cannot be hidden, it may be desirable to
instead hide which servers are under a heavy load as such
servers are attractive targets for DDoS attacks.

We consider the problem of verifying that these loads are
hidden in the simplified load-balancing system depicted in
Figure 4 in which users send requests to the balancer which
then assigns these requests to servers . We model the load
balancer with a DFA GL that arbitrarily assigns requests
to available servers. The overall system G is given by the
parallel composition of the load balancer GL with nU users
and nS servers with a capacity C ∈ N modeled by the DFAs
GU,i and GS,j depicted in Figure 5

G = GU,1|| · · · ||GU,nU
||GS,1|| · · · ||GS,nS

||GL . (11)

We will extend the SAT constraints developed in Section
IV-C to encode opacity against attackers that can compro-
mise user devices with a k-bounded memory. Formally, if
the attacker has compromised user i, the events reqi and
resi become observable. We can incorporate this choice of
observability for event σ by viewing O(σ) from constraint
(6) as a decision variable. The attacker then aims to solve a
kind of optimal sensor placement problem, choosing users i
to observe with uniform cost ci = 1. By incorporating the
constraints for k-BMO in the MAX-SAT framework, we can
model these costs with soft clauses ¬(O(reqi) ∨ O(resi))
with weight ci. We require that the attacker cannot deduce
that a specific server is heavily loaded, i.e., at secret state
C. To model this, we let Qm,j denote states of G where
server j does not pass through state C. Then, we can encode
opacity with respect to all of the server secrets by replacing
the constraint φQm

from (10) in the SAT encoding with the
constraint φ =

∧nS

j=1 φQm,j
.

By solving the resulting instance of MAX-SAT, we can
determine the minimum cost of an attack with size k (if one
exists) as the total weight of the solution clauses. This corre-
sponds to the number of users that must be compromised to
deduce when a server is heavily loaded. We report the results
for solving this problem over a variety of parameters in Table
I. As we would expect, there must be sufficiently many users
for an attack to exist, i.e. nU ≥ CnS . Interestingly, the size

6909

Load Balancer

User 1

User nU

Server 1

Server nS

Proxy Network

res1

resnU

load1

loadnS

req1

reqnU

unload1

unloadnS

Fig. 4. The architecture of the load-balancing system.

u1 u2

reqi

resi

0 1 · · · C

loadj loadj

unloadj

loadj

unloadj unloadj

Fig. 5. The automata GU,i (top) modeling user i and GS,j (bottom)
modeling server j.

of an attack may be smaller than the number of users that
it monitors. Similar to Example 1, the minimum cost attack
in the first system utilizes the events of all 5 users but itself
has only 4 states.

VI. CONCLUSION

In this paper, we have presented a new notion of opacity
expressing privacy from an observer with a bounded memory.
We derived a number of its basic properties, including
the co-NP-completeness of its verification problem. We
demonstrated the applicability of this notion on a number
of experiments utilizing a SAT encoding for verification.
There are several directions for future work utilizing this
notion of opacity. Beyond verification, it may desirable to
design supervisors to enforce k-BMO. In particular, it may
be possible to use the SAT constraints we have developed
with a quantified Boolean formula solver to perform bounded
synthesis of supervisors as in [10]. Furthermore, while we
have considered non-stochastic system models in this work,
stochastic models may be more appropriate in many settings.
For example, we may wish to relax our notion of opacity
to prevent an observer from deducing a secret with high
probability as in [22].

nU nS C |Q| k Time(s) #Clauses Opaque Cost
5 1 5 248 4 20.3 3.5×106 No 5
5 1 6 248 5 29.4 6.9×106 Yes n/a
4 2 2 419 3 22.3 3.9×106 Yes n/a
4 2 2 419 4 55.5 9.7×106 No 3

TABLE I
VERIFICATION RESULTS FOR THE SERVER LOAD-HIDING SYSTEM.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge helpful discussions
with Jiřı́ Balun on complexity theory. They would also like to
acknowledge Ashish Kundu and Jayanth Srinivasa of Cisco
Research in motivating the server load-hiding problem.

REFERENCES

[1] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity in
discrete event systems,” in 2007 46th IEEE Conference on Decision
and Control, Dec. 2007, pp. 5056–5061.

[2] ——, “Verification of initial-state opacity in security applications of
discrete event systems,” Information Sciences, vol. 246, pp. 115–132,
Oct. 2013.

[3] F. Lin, “Opacity of discrete event systems and its applications,”
Automatica, vol. 47, no. 3, pp. 496–503, Mar. 2011.

[4] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions
of opacity in centralized and coordinated architectures,” Discrete Event
Dynamic Systems, vol. 23, no. 3, pp. 307–339, Sep. 2013.

[5] A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay, “A general
language-based framework for specifying and verifying notions of
opacity,” Discrete Event Dynamic Systems, vol. 32, no. 2, pp. 253–
289, Jun. 2022.

[6] J. Balun and T. Masopust, “Comparing the notions of opacity for
discrete-event systems,” Discrete Event Dynamic Systems, vol. 31,
no. 4, pp. 553–582, Dec. 2021.

[7] F. Cassez, J. Dubreil, and H. Marchand, “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods in System Design,
vol. 40, no. 1, pp. 88–115, Feb. 2012.

[8] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 3rd ed. Springer Nature, 2021.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.

[10] L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of resilient
supervisors,” in 2019 IEEE 58th CDC, 2019, pp. 7659–7664.

[11] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” Formal Methods in System Design,
vol. 19, no. 1, pp. 7–34, Jul. 2001.

[12] A. Mȩski, W. Penczek, M. Szreter, B. Woźna-Szcześniak, and
A. Zbrzezny, “BDD-versus SAT-based bounded model checking for
the existential fragment of linear temporal logic,” Autonomous Agents
and Multi-Agent Systems, vol. 28, no. 4, pp. 558–604, Jul. 2014.

[13] L. J. Stockmeyer and A. R. Meyer, “Word problems requiring expo-
nential time(Preliminary Report),” in Proc. of the Fifth Annual ACM
Symposium on Theory of Computing, ser. STOC ’73. New York, NY,
USA: Association for Computing Machinery, Apr. 1973, pp. 1–9.

[14] S. Cho and D. T. Huynh, “The parallel complexity of finite-state
automata problems,” Information and Computation, vol. 97, no. 1,
pp. 1–22, Mar. 1992.

[15] B. Pandey and J. Rintanen, “Planning for Partial Observability by SAT
and Graph Constraints,” Proc. of the Intl. Conference on Automated
Planning and Scheduling, vol. 28, pp. 190–198, Jun. 2018.

[16] G. van Noord, “Treatment of Epsilon Moves in Subset Construction,”
Computational Linguistics, vol. 26, no. 1, pp. 61–76, Mar. 2000.

[17] B. Lennartson, M. Noori-Hosseini, and C. N. Hadjicostis, “State-
labeled safety analysis of modular observers for opacity verification,”
IEEE Control Systems Letters, vol. 6, pp. 2936–2941, 2022.

[18] L. Doyen and J.-F. Raskin, “Antichain algorithms for finite automata,”
in Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2010, pp. 2–22.

[19] A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure overlay
services,” ACM SIGCOMM Computer Communication Review, vol. 32,
no. 4, pp. 61–72, Aug. 2002.

[20] V. Kambhampati, C. Papadopolous, and D. Massey, “Epiphany: A
location hiding architecture for protecting critical services from DDoS
attacks,” in IEEE/IFIP Intl. Conference on Dependable Systems and
Networks (DSN 2012), Jun. 2012, pp. 1–12.

[21] J. Wang and A. A. Chien, “Understanding when location-hiding using
overlay networks is feasible,” Computer Networks, vol. 50, no. 6, pp.
763–780, Apr. 2006.

[22] A. Saboori and C. N. Hadjicostis, “Current-State Opacity Formulations
in Probabilistic Finite Automata,” IEEE Transactions on Automatic
Control, vol. 59, no. 1, pp. 120–133, Jan. 2014.

6910

