
Symbolic-Numeric Computation of Integrals in
Successive Galerkin Approximation of

Hamilton-Jacobi-Bellman Equation

Tomoyuki Iori

Abstract— This paper proposes an efficient symbolic-numeric
method to compute integrals in the successive Galerkin approxi-
mation (SGA) of the Hamilton-Jacobi-Bellman (HJB) equation.
By approximating its solution with a linear combination of basis
functions, the HJB equation is reduced to a linear equation com-
prising integrals that include the basis functions. By choosing
the Hermite polynomials as the basis functions, their recursive
structure is inherited by the integrals. The recurrence relations
of the integrals are computed using the symbolic computation
and Mellin transform of differential operators. The integrals
can then be computed using recursive substitutions, which
are more accurate and require less computational cost than
numerical integrations. A numerical example is provided to
demonstrate the efficiency of the proposed method compared
to other numerical integration methods.

I. Introduction
For general nonlinear systems, an optimal feedback con-

troller with an infinite horizon is obtained by a solution to
the Hamilton-Jacobi-Bellman (HJB) equation [1]. For linear
systems with a quadratic cost, the HJB equation can be
reduced to a matrix equation called the Riccati equation,
which can be efficiently solved. However, for nonlinear cases,
the HJB equation is formulated as a nonlinear partial differ-
ential equation (PDE), which is difficult to solve analytically.
Hence, numerous numerical approximation techniques have
been proposed for solving the HJB equation.
One possibility is to approximate a solution to the HJB

equation using the Taylor-series approximation [2]–[4]. By
substituting a truncated Taylor-series expansion to the HJB
equation, a finite number of algebraic equations for its
coefficients can be obtained. A recursive closed form of the
coefficients is proposed in [4] under several conditions.
The stable manifold method [5] is one of the most promis-

ing techniques. In this method, a sequence of trajectories
that converges to a trajectory on the stable manifold is
iteratively computed. After a sufficient number of iterations,
the trajectory can be viewed as an approximation of the
Hamiltonian flow on the stable manifold, and thus, it ap-
proximately provides the optimal feedback controller.
Another approach is to iteratively solve a linear PDE

called the generalized HJB (GHJB) equation; this is termed
a successive approximation approach (SAA) [6]–[8]. One
of the most popular SAAs is the successive Galerkin ap-
proximation (SGA), in which the GHJB equation is reduced

This work was partly supported by JSPS KAKENHI Grant Numbers
JP21K21285 and 22K17855.
T. Iori is with the Department of Information and Physical

Sciences, Graduate School of Information Science and Technology,
Osaka University, 1-5 Yamadaoka, Suita, Osaka 565–0871, Japan
t-iori@ist.osaka-u.ac.jp

to a linear equation by approximating the solution with a
linear combination of basis functions. The solutions to the
SGA were proven to converge to a solution to the HJB
equation as the number of basis functions and iterations tend
to infinity [6].
One of the issues in the SGA is the computation of

integrals associated with the inner product of functions.
Although the integrals can be computed offline, their compu-
tational costs may not be handled with a reasonable amount
of computational resources. Moreover, as the number of basis
functions increases, the nonlinearity of the integrands usually
increases, rendering integration more difficult and inaccurate.
Therefore, an efficient method for computing the integrals in
SGA has to be developed.
In recent years, symbolic computation of differential oper-

ators has been intensively studied [9]–[12]. Its applications
can be found in statistics [13], [14], moment problems [15],
and filtering problems [16]. Furthermore, many related algo-
rithms have also been implemented in the computer algebra
systems (CASs), such as Singular [17], Macaulay2 [18],
and Risa/Asir [19]. In the symbolic computation of dif-
ferential operators, a specific type of PDEs and their so-
lutions called holonomic functions are the primary focus.
In particular, a set of PDEs satisfied by the integral of a
holonomic function can be computed from certain PDEs
satisfied by the integrand using symbolic computation. This
situation is significantly different from integrating nonlinear
functions directly because the integral of a nonlinear function
can rarely be computed symbolically. Moreover, differential
operators can be converted into difference operators via the
Mellin transform [10], [12], which is related to the multivari-
ate z-transform. This allows us to treat recurrence relations
using the symbolic computation of differential operators.
In this paper, we propose a method to compute the

recurrence relations satisfied by the integrals in the SGA.
A solution to the HJB equation is approximated by a linear
combination of Hermite polynomials, whose z-transforms
are holonomic. In addition, the plant model is assumed to
consist of holonomic functions. These problem settings allow
us to compute a set of recurrence relations satisfied by the
integrals. Once the recurrence relations are computed, any
number of integrals can be readily computed by recursive
substitutions if the first several integrals are computed nu-
merically. Moreover, in contrast to the earlier methods [7],
[8], the proposed method exactly considers the nonlinearities
of the plant model in the computation of the integrals.

Notations: Let N be the set of positive integers and
R be the field of real numbers. For discrete variables

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5969

𝑖 = (𝑖1, . . . , 𝑖𝑝) ∈ N𝑝 and continuous variables 𝑥 =

(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, a function 𝐹 of 𝑖 and 𝑥 is denoted by
𝐹 (𝑖; 𝑥). If 𝑛 = 0 or 𝑝 = 0, 𝐹 (𝑖; 𝑥) is simply written as 𝐹 (𝑖)
or 𝐹 (𝑥), respectively. The symbols S𝑖 𝑗 ,S−1𝑖 𝑗 (𝑗 ∈ {1, . . . , 𝑝}),
and 𝜕𝑥 𝑗

(𝑗 ∈ {1, . . . , 𝑛}) denote the shift operators for
𝑖 𝑗 and differential operator for 𝑥 𝑗 , respectively. That is,
S𝑖 𝑗 • 𝐹 (𝑖; 𝑥) = 𝐹 (𝑖1, . . . , 𝑖 𝑗 + 1, . . . , 𝑖𝑝; 𝑥), S−1

𝑖 𝑗
• 𝐹 (𝑖; 𝑥) =

𝐹 (𝑖1, . . . , 𝑖 𝑗 − 1, . . . , 𝑖𝑝; 𝑥), and 𝜕𝑥 𝑗
• 𝐹 (𝑖; 𝑥) = 𝜕𝐹/𝜕𝑥 𝑗 (𝑖; 𝑥),

where • denotes the action of a differential or difference
operator on a function. Let R[𝑥] be the set of all polynomials
in 𝑥1, . . . , 𝑥𝑛 with coefficients in R. The symbol R[𝑥]〈𝜕𝑥〉
denotes the noncommutative ring of differential operators
with coefficients in R[𝑥]. Similarly, R[𝑖]〈S𝑖〉 denotes the
noncommutative ring of difference operators with coefficients
in R[𝑖]. The symbols R[𝑥]〈𝜕𝑥〉 and R[𝑖]〈S𝑖〉 are also de-
noted by D𝑛 and O𝑝 , respectively, if the indeterminates 𝑥 and
𝑖 are clearly specified according to the context. If P • 𝐹 = 0
for P ∈ D𝑛, P is said to annihilate a function 𝐹 and 𝐹 is a
solution to P. If E•𝐹 = 0 for E ∈ O𝑝 , E is said to annihilate
𝐹 and 𝐹 is a solution to E.

II. Problem Setting
Consider the optimal control problem of a nonlinear

control-affine system:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢

with a performance index defined as follows:

𝐽 (𝑥, 𝑢) B
∫ ∞

0
𝑞(𝑥(𝑡)) + ‖𝑢(𝑡)‖2𝑅𝑑𝑡,

where 𝑥 ∈ R𝑛 and 𝑢 ∈ R𝑚 denote the state and input of the
system, respectively. The nonlinear functions 𝑓 : R𝑛 → R𝑛,
𝑔 : R𝑛 → R𝑛×𝑚, and 𝑞 : R𝑛 → R are assumed to consist of
holonomic functions, which will be defined in Section III. It
is also assumed that 𝑞(𝑥) ≥ 0 (𝑥 ∈ R𝑛) and 𝑅 ∈ R𝑚×𝑚 is
positive definite. The value function 𝑉∗ (𝑥0) B inf𝑢 𝐽 satisfies
a nonlinear PDE called the HJB equation:

HJB(𝑉∗) B 𝜕𝑉∗

𝜕𝑥
𝑓 + 𝑞 − 1

4
𝜕𝑉∗

𝜕𝑥
𝑔𝑅−1𝑔>

𝜕𝑉∗

𝜕𝑥

>
= 0,

and the optimal feedback law 𝑢∗ (𝑥) is expressed by

𝑢∗ (𝑥) = −1
2
𝑅−1𝑔> (𝑥) 𝜕𝑉

∗

𝜕𝑥

>
(𝑥).

In the SGA, a solution to the HJB equation is approx-
imated using a finite number of basis functions Φ(𝑥) B
[𝜙1 (𝑥) · · · 𝜙𝑁 (𝑥)]> as follows:

𝑉 (𝑥) B
𝑁∑︁
𝑖=1

𝑣𝑖𝜙𝑖 (𝑥) = Φ> (𝑥)𝑣 (𝑣𝑖 ∈ R) . (1)

The coefficient vector 𝑣 B [𝑣1 · · · 𝑣𝑁]> is determined by
iteratively solving〈

GHJB(𝑉 (𝑙) , 𝑢 (𝑙)), 𝜙𝑘

〉
= 0 (𝑘 = 1, . . . , 𝑁), (2)

𝑢 (𝑙+1) (𝑥) = −1
2
𝑅−1𝑔> (𝑥) 𝜕Φ

𝜕𝑥

>
(𝑥)𝑣 (𝑙) , (3)

where 𝑉 (𝑙) = Φ(𝑥)>𝑣 (𝑙) , GHJB(𝑉, 𝑢) = 𝜕𝑉
𝜕𝑥
(𝑓 +𝑔𝑢)+𝑞+‖𝑢‖2

𝑅
,

and 〈 𝑓 (𝑥), 𝑔(𝑥)〉 B
∫
R𝑛 𝑤(𝑥) 𝑓 (𝑥)𝑔(𝑥)𝑑𝑥 is an inner product

of functions with a weighting function 𝑤(𝑥) > 0 (𝑥 ∈ R𝑛).
For a particular input 𝑢(𝑥), the linear PDE GHJB(𝑉, 𝑢) = 0
for 𝑉 (𝑥) is called the GHJB equation [6].
By substituting (1) and (3) into (2), it can be reduced to

a set of linear equations for 𝑣 (𝑙) :

LE𝑘 (𝑣 (𝑙) , 𝑣 (𝑙−1)) B

𝑣 (𝑙)
>
(
𝑑𝑘 −

1
2
𝑄𝑘𝑣

(𝑙−1)
)
+ 𝑐(𝑘) + 1

4

𝑣 (𝑙−1)

2
𝑄𝑘

= 0

(𝑘 = 1, . . . , 𝑁), (4)

where 𝑄𝑘 = {𝑎(𝑖, 𝑗 , 𝑘)} is an 𝑁 ×𝑁 symmetric matrix, 𝑑𝑘 =

{𝑏(𝑖, 𝑘)} is an 𝑁-dimensional vector, and 𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘),
and 𝑐(𝑘) are defined as follows:

𝑎(𝑖, 𝑗 , 𝑘) B
〈
𝜕𝜙𝑖

𝜕𝑥
𝑔𝑅−1𝑔>

𝜕𝜙 𝑗

𝜕𝑥

>
, 𝜙𝑘

〉
,

𝑏(𝑖, 𝑘) B
〈
𝜕𝜙𝑖

𝜕𝑥
𝑓 , 𝜙𝑘

〉
, 𝑐(𝑘) B 〈𝑞(𝑥), 𝜙𝑘 (𝑥)〉 .

(5)

In the followings, for a given 𝑁 ∈ N, 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁

denote the sets of integrals required to define (4):

𝐴𝑁 B {𝑎(𝑖, 𝑗 , 𝑘) | 𝑖, 𝑗 , 𝑘 ∈ {1, . . . , 𝑁}},
𝐵𝑁 B {𝑏(𝑖, 𝑘) | 𝑖, 𝑘 ∈ {1, . . . , 𝑁}},
𝐶𝑁 B {𝑐(𝑘) | 𝑘 ∈ {1, . . . , 𝑁}}.

Once the integrals 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁 are computed, the SGA
procedure can be performed by solving the linear equation (4)
iteratively, which is summarized in Algorithm 1.
The elements of 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁 are defined as inte-

grals of nonlinear functions, which are difficult to compute
analytically. However, if the basis functions have some recur-
rence relations, such as those of orthogonal polynomials, the
elements of 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁 may have similar recurrence
relations. Such recurrence relations can be computed using
the symbolic computation of differential operators, which is
briefly introduced in the next section.

III. Holonomic Functions and Ideals
This section introduces definitions and lemmas related to

the symbolic computation of differential operators with ref-
erence to [10], [11]. In this section, 𝑥 = [𝑥1 · · · 𝑥𝑛]> ∈ R𝑛,
𝑠 = [𝑠1 · · · 𝑠𝑝]> ∈ R𝑝 , and 𝑖 = [𝑖1 · · · 𝑖𝑝]> ∈ N𝑝 . Let D𝑛

and D𝑛+𝑝 denote R[𝑥]〈𝜕𝑥〉 and R[𝑥, 𝑠]〈𝜕𝑥 , 𝜕𝑠〉, respectively.
Furthermore, let D𝑛〈𝑖,S𝑖 ,S−1𝑖 〉 denote D𝑛-algebra generated
by 𝑖, S𝑖 = [S𝑖1 · · · S𝑖𝑝]>, and S−1

𝑖
= [S−1

𝑖1
· · · S−1

𝑖𝑝
]>.

Algorithm 1 Successive Galerkin approximation

Input: Initial guess 𝑣 (0) , sets of integrals 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁 ,
error tolerance 𝜖 , max iteration 𝑙max

Output: Approximation of value function 𝑉 (𝑙) (𝑥)
1: 𝑙 ← 0
2: while

√︃∑𝑁
𝑘=1 LE

2
𝑘
(𝑣 (𝑙) , 𝑣 (𝑙)) > 𝜖 and 𝑙 < 𝑙max do

3: Solve linear equations (4) and compute 𝑣 (𝑙+1)
4: 𝑙 ← 𝑙 + 1
5: return 𝑉 (𝑙) = Φ> (𝑥)𝑣 (𝑙)

5970

Consider a set of PDEs for an unknown function 𝑓 (𝑥).

P1 • 𝑓 = · · · P𝑑 • 𝑓 = 0, (6)

where P1, . . . ,P𝑑 ∈ D𝑛. For any solution 𝑓 of (6) and
differential operator Q ∈ D𝑛, QP 𝑗 • 𝑓 = Q • 0 = 0
holds. This leads us to consider a set of differential operators
𝐼 B {Q1P1 + · · · Q𝑑P𝑑 ∈ D𝑛 | Q1, . . . ,Q𝑑 ∈ D𝑛} ⊂ D𝑛,
which is called the left ideal generated by P1, . . . ,P𝑑 . In
this paper, the adjective “left” is omitted because all ideals
in this paper are left ideals.

Definition 1 (Holonomic ideal of D𝑛): An ideal 𝐼 ⊂ D𝑛

is holonomic if the quotient D𝑛/𝐼, which can be viewed as
a left D𝑛-module, has dimension 𝑛.
For a definition of the dimensions of the left D𝑛-modules,

see [9], [11], [20]. Holonomic ideals play an important role in
the symbolic computation of differential operators, especially
to solve PDEs [9].
The solutions to holonomic ideals are called holonomic

functions and include most nonlinear functions that appear
in systems and control theory [16], [21].

Definition 2 (Holonomic function): An analytic function
𝑓 (𝑥) is said to be holonomic if 𝑓 is annihilated by a
holonomic ideal 𝐼 ⊂ D𝑛; that is, P • 𝑓 = 0 for all P ∈ 𝐼.
Holonomic functions are closed under multiplication and

integration; that is, the products and integrals of holonomic
functions are holonomic [10].

Lemma 1: For two holonomic functions 𝑓 (𝑥) and 𝑔(𝑥),
their product (𝑓 · 𝑔) (𝑥) is holonomic.

Lemma 2: Suppose a holonomic function 𝑓 (𝑥) is rapidly
decreasing with respect to 𝑥1; that is, lim𝑥1→∞ 𝑥𝑖1𝜕

𝑗
𝑥1 𝑓 (𝑥) =

0 for any nonnegative integers 𝑖 and 𝑗 . Then, the integral∫ ∞
−∞ 𝑓 (𝑥)𝑑𝑥1 is holonomic as a function of 𝑥2, . . . , 𝑥𝑛.
The recurrence relations for discrete variables can be con-

verted into PDEs and manipulated by the symbolic compu-
tation of differential operators through the Mellin transform.

Definition 3 (Mellin transform between 𝜕 and S): The
mappings 𝜇 : D𝑛+𝑝 → D𝑛〈𝑖,S𝑖 ,S−1𝑖 〉:

𝜇(𝑠 𝑗) = S𝑖 𝑗 , 𝜇(𝜕𝑠 𝑗) = −𝑖 𝑗S−1𝑖 𝑗 (7)

and 𝜇̂ : D𝑛〈𝑖,S𝑖〉 → D𝑛+𝑝:

𝜇̂(𝑖 𝑗) = −𝜕𝑠 𝑗 𝑠 𝑗 = −𝑠 𝑗𝜕𝑠 𝑗 − 1, 𝜇̂(S𝑖 𝑗) = 𝑠 𝑗 (8)

are called the Mellin transform and inverse Mellin transform,
respectively.
The Mellin transform is related to the multivariate z-

transform 𝒵 as 𝜇̂(𝑖) •𝒵[𝑓] = 𝒵[𝑖 𝑓], 𝜇̂(S𝑖) •𝒵[𝑓] =
𝒵[S𝑖 𝑓], where 𝒵[𝑓] (𝑠, 𝑥) is defined for 𝑓 (𝑖; 𝑥) as

𝒵[𝑓] (𝑠, 𝑥) B
∞∑︁
𝑖1=0
· · ·

∞∑︁
𝑖𝑝=0

𝑓 (𝑖; 𝑥)𝑠−𝑖1−11 · · · 𝑠−𝑖𝑝−1𝑝 .

IV. Recurrence Relations of Integrals
In this section, a symbolic computation method is pro-

posed to derive the recurrence relations of the integrals
𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘), and 𝑐(𝑘) defined in (5). This is achieved
by computing differential operators that annihilate the z-
transforms of the integrals and converting them into recur-
rence relations using the inverse Mellin transform.

Hereafter, we suppose 𝑛 = 1 for simplicity and that the
𝑖-th basis function 𝜙𝑖 (𝑥) in (1) is the Hermite polynomial
𝐻 (𝑖; 𝑥) of degree 𝑖. For multidimensional cases, each basis
function can be defined as the product of the Hermite
polynomials 𝐻 (𝑖1; 𝑥1)𝐻 (𝑖2; 𝑥2) · · ·𝐻 (𝑖𝑛; 𝑥𝑛). The following
discussion can be applied with appropriate modifications,
which will be part of future work.
As each integral in (5) is linear in each basis function with

subscripts 𝑖, 𝑗 , or 𝑘 , the z-transforms of (5) can be obtained
as follows:

𝒵[𝑎] (𝑠1, 𝑠2, 𝑠3) =∫ ∞

−∞

𝑤(𝑥)𝑔2 (𝑥)ℋ𝑥 (𝑠1, 𝑥)ℋ𝑥 (𝑠2, 𝑥)ℋ(𝑠3, 𝑥)
𝑅

𝑑𝑥,
(9)

𝒵[𝑏] (𝑠1, 𝑠3) =
∫ ∞

−∞
𝑤(𝑥) 𝑓 (𝑥)ℋ𝑥 (𝑠1, 𝑥)ℋ(𝑠3, 𝑥)𝑑𝑥,(10)

𝒵[𝑐] (𝑠3) =
∫ ∞

−∞
𝑤(𝑥)𝑞(𝑥)ℋ(𝑠3, 𝑥)𝑑𝑥, (11)

where ℋ B 𝒵[𝐻] and ℋ𝑥 B 𝒵[𝜕𝑥𝐻]. If each integrand
in (9)–(11) is holonomic and rapidly decreasing with respect
to 𝑥, then each z-transform is holonomic from Lemma 2. In
this case, we can compute differential operators that annihi-
late the z-transforms (9)–(11) using symbolic computation
(for detailed algorithms, see [9]–[11]), which yields the
recurrence relations of the integrals 𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘) and
𝑐(𝑘) via the Mellin transform (7).
The factors of the integrands 𝑓 , 𝑔, and 𝑞 are assumed to

be holonomic, and the weighting function 𝑤 can be designed
such that it is holonomic and all the integrands are rapidly
decreasing with respect to 𝑥. Hence, from Lemma 1, the z-
transforms (9)–(11) as well as their integrands are holonomic
if ℋ and ℋ𝑥 are holonomic.
First, to show that 𝒵[𝐻] is holonomic, we consider the

difference-differential equations satisfied by 𝐻 (𝑖; 𝑥):

(𝜕2𝑥 − 2𝑥𝜕𝑥 + 2𝑖) • 𝐻 (𝑖; 𝑥) = 0, (12)
(S2𝑖 − 2𝑥S𝑖 + 2(𝑖 + 1)) • 𝐻 (𝑖; 𝑥) = 0. (13)

The inverse Mellin transform (8) yields the following PDEs:

(𝜕2𝑥 − 2𝑥𝜕𝑥 − 2𝑠𝜕𝑠 − 2) •ℋ(𝑠, 𝑥) = 0, (14)
(𝑠2 − 2𝑥𝑠 − 2𝑠𝜕𝑠) •ℋ(𝑠, 𝑥) = 0. (15)

It can be readily verified using a CAS that (14) and (15) gen-
erate a holonomic ideal. Hence, from Definition 2, ℋ(𝑠, 𝑥)
is holonomic.

Lemma 3: The z-transform ℋ = 𝒵[𝐻] is holonomic.
Next, to show that ℋ𝑥 is holonomic, we use the equal-

ity 𝜕𝑥𝐻 (𝑖; 𝑥) = 2𝑖𝐻 (𝑖 − 1; 𝑥) satisfied by 𝐻 (𝑖; 𝑥). Using
this equality combined with (12) and (13), we first obtain
difference-differential equations satisfied by 𝜕𝑥𝐻 as follows.
From (12) with 𝑖 = 𝑖 − 1, we obtain

0 = 2𝑖 · 0 = 2𝑖 ·
{
(𝜕2𝑥 − 2𝑥𝜕𝑥 + 2(𝑖 − 1)) • 𝐻 (𝑖 − 1; 𝑥)

}
=
{
𝜕2𝑥 − 2𝑥𝜕𝑥 + 2(𝑖 − 1)

}
• 2𝑖𝐻 (𝑖 − 1; 𝑥)

=
{
𝜕2𝑥 − 2𝑥𝜕𝑥 + 2(𝑖 − 1)

}
• 𝜕𝑥𝐻 (𝑖; 𝑥), (16)

where we use the fact that 2𝑖 and 𝜕2𝑥−2𝑥𝜕𝑥+2(𝑖−1) commute.
On the other hand, (S2

𝑖
− 2𝑥S𝑖 + 2𝑖) • 𝐻 (𝑖 − 1; 𝑥) = 0 holds

5971

from (13) with 𝑖 = 𝑖 − 1. By multiplying both sides by 2(𝑖 +
1) (𝑖 + 2) from the left, we obtain

0 = 2(𝑖 + 1) (𝑖 + 2) (S2𝑖 − 2𝑥S𝑖 + 2𝑖) • 𝐻 (𝑖 − 1; 𝑥)
=
{
(𝑖 + 1)S2𝑖 − 2𝑥(𝑖 + 2)S𝑖 + 2(𝑖 + 1) (𝑖 + 2)

}
• 𝜕𝑥𝐻 (𝑖; 𝑥), (17)

where equalities (𝑖 + 2)S2
𝑖
= S2

𝑖
𝑖 and (𝑖 + 1)S𝑖 = S𝑖𝑖 are

used to derive the second line. Eventually, we obtain the
differential operators that annihilate ℋ𝑥 (𝑠, 𝑥) as the inverse
Mellin transforms of (16) and (17); that is,

𝜇̂(𝜕2𝑥 − 2𝑥𝜕𝑥 + 2(𝑖 − 1)) = 𝜕2𝑥 − 2𝑥𝜕𝑥 − 2𝑠𝜕𝑠 − 4, (18)
𝜇̂((𝑖 + 1)S2𝑖 − 2𝑥(𝑖 + 2)S𝑖 + 2(𝑖 + 1) (𝑖 + 2))
= 2𝑠2𝜕2𝑠 + (2𝑠2𝑥 − 𝑠3)𝜕𝑠 − 2𝑠2. (19)

We can confirm that the differential operators in (18) and (19)
generate a holonomic ideal using a CAS and prove the
following lemma:

Lemma 4: The z-transform ℋ𝑥 = 𝒵[𝜕𝑥𝐻] is holonomic.
As shown above, all factors of the integrands in (9)–

(11), as well as the integrals, are holnomic. Consequently,
the recurrence relations satisfied by 𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘), and
𝑐(𝑘) can be obtained using the Mellin transform. The entire
procedure is summarized in Algorithm 2.

V. Recursive Computation of Integrals
Once the recurrence relations are obtained from the out-

puts G𝑎, G𝑏 , and G𝑐 of Algorithm 2, the integrals can
be computed by recursive substitution. As each recurrence
relation may include a monomial of shift operators with a
degree exceeding one, we must first compute a few integrals
numerically. Moreover, for a certain set of indices, some
coefficients of the shift operators in a difference operator may
vanish, which indicates that the difference operator fails to
provide a recurrence relation at the set of indices, as shown
in the following example.

Example 1: Consider the following difference operator in
R[𝑖, 𝑗 , 𝑘]〈S𝑖 ,S 𝑗 ,S𝑘〉:

Algorithm 2 Derivation of recurrence relations satisfied by
𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘), and 𝑐(𝑘)
Input: Sets of differential operators G 𝑓 , G𝑔, G𝑞 , G𝑤 ⊂
D1 that annihilate 𝑓 (𝑥), 𝑔(𝑥), 𝑞(𝑥), 𝑤(𝑥), respectively,
and G𝐻 , G𝜕𝐻 ⊂ D2 that annihilate ℋ(𝑠, 𝑥), ℋ𝑥 (𝑠, 𝑥),
respectively

Output: Set of difference operators G𝑎 ⊂ O3, G𝑏 ⊂ O2,
and G𝑐 ⊂ O1 that annihilate 𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘), and 𝑐(𝑘),
respectively

1: Compute sets of differential operators J𝑎 ⊂ D4, J𝑏 ⊂
D3, and J𝑐 ⊂ D2 that annihilate the integrands of (9),
(10), and (11), respectively, from inputs

2: Compute sets of differential operators K𝑎 ⊂ D3, K𝑏 ⊂
D2, and K𝑐 ⊂ D that annihilates 𝒵[𝑎], 𝒵[𝑏], and
𝒵[𝑐] from J𝑎, J𝑏 , and J𝑐 , respectively

3: Compute G𝑎, G𝑏 , and G𝑐 from K𝑎, K𝑏 , and K𝑐 ,
respectively, via Mellin transform (7)

(− 𝑗 + 𝑖 + 𝑘 + 1) (−𝑘 − 3 − 𝑗 + 𝑖)S2𝑘
+ 4(𝑘 + 2) (𝑘 + 1) (𝑖 + 𝑗 − 𝑘 − 1), (20)

which provides a recurrence relation for 𝑎(𝑖, 𝑗 , 𝑘) as follows:

(− 𝑗 + 𝑖 + 𝑘 + 1) (−𝑘 − 3 − 𝑗 + 𝑖)𝑎(𝑖, 𝑗 , 𝑘 + 2)
+ 4(𝑘 + 2) (𝑘 + 1) (𝑖 + 𝑗 − 𝑘 − 1)𝑎(𝑖, 𝑗 , 𝑘) = 0. (21)

For a generic triplet (𝑖, 𝑗 , 𝑘) such that the coefficients of 𝑎
do not vanish, we can compute 𝑎(𝑖, 𝑗 , 𝑘 + 2) from 𝑎(𝑖, 𝑗 , 𝑘)
using (21). As 𝑎(𝑖, 𝑗 , 𝑘 + 1) cannot be computed directly
from 𝑎(𝑖, 𝑗 , 𝑘), we must provide two values 𝑎(𝑖, 𝑗 , 1) and
𝑎(𝑖, 𝑗 , 2) to compute 𝑎(𝑖, 𝑗 , 𝑘) for 𝑘 ≥ 3. Moreover, for the
triplet (𝑖, 𝑗 , 𝑘) such that the coefficient of 𝑎(𝑖, 𝑗 , 𝑘+2) in (21)
vanishes, (20) fails to provide any recurrence relation. In this
case, we must compute 𝑎(𝑖, 𝑗 , 𝑘 + 2) from other recurrence
relations, or if not possible, compute it numerically.
To summarize the numerical part of the proposed method

briefly, we introduce the following terminology. Let 𝑓 (𝑖) be a
function that maps 𝑖 = (𝑖1, . . . , 𝑖𝑛) ∈ N𝑝 to a value 𝑓 (𝑖) ∈ R,
g be a difference operator in R[𝑖]〈S𝑖〉, and 𝐹̄ ⊂ R be a
set of known values of 𝑓 (𝑖). For 𝑖∗ ∈ N𝑝 at which 𝑓 (𝑖∗) is
unknown, we say that 𝑓 (𝑖∗) is computable by g from 𝐹̄ if
there exists 𝑖 such that the recurrence relation based on g at
𝑖 = 𝑖 includes only 𝑓 (𝑖∗) and the elements of 𝐹̄. Using the
terminology, the numerical part of the proposed algorithm is
summarized in Algorithm 3.

Example 2: Consider the difference operator (20) and
𝐴̄ B {𝑎(2, 1, 1), 𝑎(1, 3, 1)}. As (20) includes S2

𝑘
, 𝑎(2, 1, 3)

and 𝑎(1, 3, 3) are the candidates of unknown values com-
putable from 𝐴̄. Indeed, 𝑎(2, 1, 3) is computable by (20)
from 𝐴̄ because (21) at (𝑖, 𝑗 , 𝑘̄) = (2, 1, 1) is −9𝑎(2, 1, 3) +
24𝑎(2, 1, 1) = 0. However, 𝑎(1, 3, 3) is not because (21)
is 48𝑎(1, 3, 1) = 0 at (𝑖, 𝑗 , 𝑘̄) = (1, 3, 1) and provides
no information on the unknown value 𝑎(1, 3, 3). Even in
the latter case, 48𝑎(1, 3, 1) = 0 indicates that 𝑎(1, 3, 1) is
exactly zero, which is difficult to verify through numerical
integration when indices 𝑖, 𝑗 , 𝑘 are large.

VI. Numerical Example

This section presents a numerical example that demon-
strates the efficiency of the proposed method. In the fol-
lowing demonstration, Risa/Asir and Julia were used
to perform symbolic and numerical computations for the
proposed method, respectively. In addition, Chebfun [22],
a MATLAB package that provides an efficient numerical in-
tegration method, and Maple were used for comparison. All
computations were performed on a PC(Intel(R) Core(TM)
i9-10920X CPU @ 3.50GHz; RAM: 64 GB).

A. Problem setting
Consider a nonlinear optimal control problem for a non-

linear scalar system.

¤𝑥 = sin(𝑥) + 𝑢(𝑥), 𝐽 =

∫ ∞

0

1
2
𝑥2 (𝑡) + 1

2
𝑢2 (𝑡)𝑑𝑡. (22)

The nonlinear functions sin(𝑥) and 𝑥2 are holonomic and an-
nihilated by differential operators 𝜕2𝑥 +1 and 𝜕3𝑥 , respectively.

5972

To perform the SGA (Algorithm 1), the following integrals
must be computed:

𝑎(𝑖, 𝑗 , 𝑘) = 〈2𝜕𝑥𝐻 (𝑖; 𝑥)𝜕𝑥𝐻 (𝑗 ; 𝑥), 𝐻 (𝑘; 𝑥)〉 ,

𝑏(𝑖, 𝑘) = 〈𝜕𝑥𝐻 (𝑖; 𝑥) sin(𝑥), 𝐻 (𝑘; 𝑥)〉 , 𝑐(𝑘) =
〈
𝑥2

2
, 𝐻 (𝑘; 𝑥)

〉
,

where the weighting function is set to 𝑤(𝑥) = exp(−𝑥2) such
that all integrands are rapidly decreasing.

B. Computation of integrals by proposed method
To obtain the recurrence relations satisfied by 𝑎(𝑖, 𝑗 , 𝑘),

𝑏(𝑖, 𝑘), and 𝑐(𝑘), Algorithm 2 can be applied to the inputs
G 𝑓 = {𝜕2𝑥 + 1}, G𝑔 = {0}, G𝑞 = {𝜕3𝑥}, G𝑤 = {𝜕𝑥 + 2𝑥}, G𝐻
being the set of (14) and (15), and G𝜕𝐻 being the set of (18)
and (19). For example, J𝑎 ⊂ R[𝑥, 𝑠1, 𝑠2, 𝑠3]〈𝜕𝑥 , 𝜕𝑠1 , 𝜕𝑠2 , 𝜕𝑠3〉
is obtained as a set of 19 differential operators, including

𝜕𝑥 + 2𝑠1𝜕2𝑠1 + (2𝑠1𝑥 − 𝑠21 + 2)𝜕𝑠1
+ 2𝑠2𝜕2𝑠2 + (2𝑠2𝑥 − 𝑠22 + 2)𝜕𝑠2 + 𝑠3 − 2𝑠1 − 2𝑠2, (23)

where the remaining elements have been omitted owing to
space limitations. It can be observed that (23) is invariant
under the interchange of 𝑠1 and 𝑠2, which is consistent
with the fact that the integrand of (9) is invariant under the
interchange of 𝑠1 and 𝑠2. From the output of Algorithm 2,
we obtain G𝑎 and G𝑏 as listed in Table I and G𝑐 = {S3

𝑘
}.

Note that 𝑐(𝑘) in this numerical example can be computed
analytically as 𝑐(𝑘) = 0 except for 𝑐(2) =

√
𝜋, which clearly

satisfies S3
𝑘
• 𝑐(𝑘) = 𝑐(𝑘 + 3) = 0 for 𝑘 ∈ N.

From the recurrence relations obtained from G𝑎 and
G𝑏 , the sets of integrals 𝐴𝑁 and 𝐵𝑁 are computed using

Algorithm 3 Recursive computation of 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁

Input: Number of basis functions 𝑁 ∈ N and sets of
difference operators G𝑎 ⊂ O3, G𝑏 ⊂ O2, and G𝑐 ⊂ O1
that annihilate 𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘), and 𝑐(𝑘), respectively

Output: Integrals 𝐴𝑁 , 𝐵𝑁 , and 𝐶𝑁

1: function CalcNewElem(𝑓 , 𝑖, G, 𝐹̄)
2: if There exists g ∈ G such that 𝑓 (𝑖) is computable

by g from 𝐹̄ then
3: Compute 𝑓 (𝑖) from g and 𝐹̄

4: else Evaluate 𝑓 (𝑖) numerically
5: Append 𝑓 (𝑖) to 𝐹̄

6: return 𝐹̄

7: Compute 𝑎(1, 1, 1), 𝑏(1, 1), and 𝑐(1) numerically
8: 𝑖 ← 1, 𝑗 ← 1, and 𝑘 ← 1
9: 𝐴̄← {𝑎(1, 1, 1)}, 𝐵̄← {𝑏(1, 1)}, and 𝐶̄ ← {𝑐(1)}
10: while 𝑘 < 𝑁 do
11: while 𝑖 < 𝑁 do
12: while 𝑗 < 𝑁 do
13: 𝐴̄← CalcNewElem(𝑎, (𝑖, 𝑗 , 𝑘), G𝑎, 𝐴̄)
14: 𝑗 ← 𝑗 + 1
15: 𝐵̄← CalcNewElem(𝑏, (𝑖, 𝑘), G𝑏 , 𝐵̄)
16: 𝑖 ← 𝑖 + 1
17: 𝐶̄ ← CalcNewElem(𝑐, 𝑘 , G𝑐 , 𝐶̄)
18: 𝑘 ← 𝑘 + 1
19: 𝐴𝑁 ← 𝐴̄, 𝐵𝑁 ← 𝐵̄, and 𝐶𝑁 ← 𝐶̄

Algorithm 3 up to degree 𝑁 = 14. During the operation of
Algorithm 3, certain integrals must be evaluated numerically.
In this example, 10 integrals: 𝑎(1, 1, 1) = 𝑎(1, 1, 2) =

𝑎(2, 1, 2) = 𝑎(1, 2, 2) = 𝑎(4, 1, 1) = 𝑎(4, 1, 2) = 𝑎(1, 4, 1) =
𝑎(1, 4, 2) = 0, 𝑎(2, 1, 1) = 𝑎(1, 2, 1) = 56.7 for 𝐴𝑁 and
11 integrals: 𝑏(1, 1) = 2.76, 𝑏(1, 2) = 𝑏(2, 1) = 𝑏(3, 2) =
𝑏(4, 1) = 𝑏(5, 3) = 0, 𝑏(1, 3) = −2.76, 𝑏(3, 1) = 24.8,
𝑏(3, 3) = 108, 𝑏(4, 2) = 144, 𝑏(5, 1) = −96.6 for 𝐵𝑁 were
numerically evaluated, which is less than 1% of the total
number of elements of 𝐴14 and 𝐵14, that is, 143+142 = 2940.

C. Results and comparison
For comparison, 𝐴𝑁 and 𝐵𝑁 were computed using

an existing integration method implemented in Chebfun
and Maple with 10 significant digits. Computations with
Chebfun were parallelized in MATLAB using 12 workers.
The error of each integral is evaluated as the absolute

difference from the value obtained using Maple. Table II
summarizes the errors in the proposed and existing methods.
For 𝐴𝑁 , the maximum and mean errors in the proposed
method are large and identical to those in the existing
method. This is because the absolute difference, as well as
the integrals, grows rapidly with respect to the indices 𝑖, 𝑗 , 𝑘 .
Indeed, both the proposed and existing methods yielded the
maximum error at 𝑖 = 𝑗 = 𝑘 = 14, whose magnitude was
almost 10−10 times smaller than the integral 5.39 × 1029
computed by Maple and thus negligible. On the other hand,
the median of the proposed method is considerably smaller
than that of the existing method, indicating that the proposed
method can compute most of the integrals with high accu-
racy. For 𝐵𝑁 , the proposed method also yielded significantly
smaller errors than the existing method.
Table III summarizes the computational times for all the

methods. The total time of the proposed method is consid-
erably smaller than that of Maple, despite its small error.
In particular, the numerical part of the proposed method
was finished within one second because it consisted of
recursive substitutions. Although the computational time of
the existing method was shorter than that of the proposed
method, its results were inaccurate.

TABLE I: Difference operators annihilating integrals
𝑎(𝑖, 𝑗 , 𝑘), 𝑏(𝑖, 𝑘), and 𝑐(𝑘)

G𝑎

(𝑗 + 1) (− 𝑗 + 𝑖 + 𝑘 + 1)S𝑖 + (𝑖 + 1) (− 𝑗 + 𝑖 − 𝑘 − 1)S 𝑗

(𝑘 + 1) (−𝑘 + 𝑖 + 𝑗)S 𝑗 − (𝑗 + 2) (− 𝑗 + 𝑖 + 𝑘)S𝑘

(− 𝑗 + 𝑖 + 𝑘 + 1) (−𝑘 − 3− 𝑗 + 𝑖)S2
𝑘
+ 4(𝑘 + 2) (𝑘 + 1) (𝑖 + 𝑗 − 𝑘 − 1)

G𝑏

𝑖 (2𝑖 − 2𝑘 − 5)S𝑖S𝑘 + (𝑖 + 1)S2𝑘 − 4(𝑘 + 1) (𝑖 + 1) (𝑖 − 𝑘 − 2)
𝑖 (2𝑖 − 2𝑘 − 5)S2

𝑖
+ (𝑖 + 2) (2𝑖 − 2𝑘 + 1)S2

𝑘
+ 4(𝑖 + 2) (−𝑘 − 1 +

𝑖) (2𝑖2 − 4𝑖𝑘 + 2𝑘2 − 5𝑖 + 3𝑘 − 2)
(𝑘 + 1) (−2𝑘 + 2𝑖 − 7)S𝑖 + 𝑖 (𝑖 + 1) (−𝑘 − 1 + 𝑖)S3𝑘 + 4(𝑖 + 1) (𝑖

3 +
(−3𝑘 − 7)𝑖2 + (3𝑘2 + 13𝑘 + 534)𝑖 − 𝑘3 − 6𝑘2 − 11𝑘 − 6)S𝑘

TABLE II: Errors of integrals
Max Mean Median Min

𝐴𝑁
Proposed 3.41 × 1019 1.43 × 1016 8.31 × 10−11 0.00
Chebfun 3.41 × 1019 1.43 × 1016 3.42 × 10−2 0.00

𝐵𝑁
Proposed 2.48 × 108 2.30 × 106 3.41 × 10−8 0.00
Chebfun 1.28 × 1013 2.13 × 1011 1.10 × 10−4 0.00

5973

Remark 1: The computation of recurrence relations,
which accounts for most of the computational time of the
proposed method, does not depend on the number of basis
functions 𝑁 . This indicates that even for large 𝑁 , the com-
putational time of the proposed method does not increase
significantly, in contrast to other methods.
The SGA (Algorithm 1) was performed using the integrals

computed by each method. The initial guess 𝑣 (0) is set to
𝑣
(0)
𝑘

= 0 except for 𝑣 (0)2 = (1
√
2)/8, which corresponds to

𝑉 (0) (𝑥) = 𝑣
(0)
2 𝐻 (2; 𝑥) and is equal to the value function

𝑉 (𝑥) = (1 +
√
2)𝑥2/2 of the linearized system ¤𝑥 = 𝑥 + 𝑢

with 𝐽 in (22) up to a constant. Note that for the integrals
obtained by Chebfun, the SGA failed to converge owing to
the errors included in the integrals.
Figure 1 shows 𝑉∗ (𝑥) and HJB(𝑉∗ (𝑥)) computed from

the integrals obtained by the proposed method, Chebfun,
and Maple, where the constant term of each value function
is adjusted such that 𝑉∗ (0) = 0. For the proposed method,
the region where HJB(𝑉∗ (𝑥)) ' 0 is considerably wider
than those of the initial guess and existing method, which
indicates that the proposed method computes the integrals
accurately. Finally, the state and input trajectories for 𝑥(0) =
4 are shown in Fig. 2, which indicates that the feedback law
obtained from 𝑉∗ (𝑥) with 𝑁 = 14 stabilizes the system while
suppressing the magnitude of the input.

VII. Conclusion
In this paper, a symbolic-numeric computation method for

integrals in the successive Galerkin approximation (SGA) is
proposed. The SGA approximates a solution to the Hamilton-
Jacobi-Bellman equation by iteratively solving a linear equa-
tion, which is defined by multiple integrals of nonlinear
functions. Using the symbolic computation of differential
operators and the Mellin transform of difference-differential
operators, a set of recurrence relations satisfied by the
integrals can be computed. After evaluating several integrals
numerically, the recurrence relations allow us to compute all
the other integrals using recursive substitutions.
Future work directions include extending the proposed

method to the case of multidimensional systems. Moreover,

TABLE III: Comparison of computational times [s]
Proposed Maple Chebfun

Recurrence relations 4.48 × 101 N/A N/A
Integrals 1.33 × 10−1 1.62 × 104 2.41 × 101
Total 4.49 × 101 1.62 × 104 2.41 × 101

0

20

V
(x

)

Proposed

V (0)(x)

Chebfun
Maple

−6 −4 −2 0 2 4 6
x

−2

0

2

H
JB

(V
(x

))

Fig. 1: Value functions and evaluation of HJB equation

the approximation with different basis functions, such as the
Chebyshev polynomials, could be investigated.

References
[1] J. A. E. Bryson and Y.-C. Ho Applied Optimal Control, John Wiley
& Sons, 1st Edition, 1975.

[2] D. L. Lukes, “Optimal regulation of nonlinear dynamical systems,”
SIAM J. Control, vol. 7, no. 1, pp. 75–100, 1969.

[3] W. L. Garrard, “Suboptimal feedback control for nonlinear systems,”
Automatica, vol. 8, no. 2, pp. 219–221, 1972.

[4] H. Almubarak, N. Sadegh, and D. G. Taylor, “Infinite horizon
nonlinear quadratic cost regulator,” Proc. Am. Control Conf., pp.
5570–5575, 2019.

[5] N. Sakamoto and A. J. van der Schaft, “Analytical approximation
methods for the stabilizing solution of the Hamilton-Jacobi equation,”
IEEE Trans. Autom. Control, vol. 53, no. 10, pp. 2335–2350, 2008.

[6] R. W. Beard, G. N. Saridis, and J. T. Wen, “Galerkin approximations
of the generalized Hamilton-Jacobi-Bellman equation,” Automatica,
vol. 33, no. 12, pp. 2159–2177, 1997.

[7] D. Kalise and K. Kunisch, “Polynomial approximation of high-
dimensional Hamilton-Jacobi-Bellman equations and applications to
feedback control of semilinear parabolic PDEs,” SIAM J. Sci.
Comput., vol. 40, no. 2, pp. A629–A652, 2018.

[8] I. Maruta, S. Nishida, and K. Fujimoto, “A study on numerical
solutions of Hamilton-Jacobi-Bellman equations based on successive
approximation approach,” SICE J. Control Meas. Syst. Integr., vol.
13, no. 3, pp. 157–163, 2020.

[9] M. Saito, B. Sturmfels, and N. Takayama Gröbner Deformations of
Hypergeometric Differential Equations, Springer-Verlag, 2000.

[10] T. Oaku, Y. Shiraki, and N. Takayama, “Algebraic algorithms for
D-Modules and numerical analysis,” Computer Mathematics (Pro.
ASCM 2003), vol. 10, pp. 23–39, 2003.

[11] T. Hibi ed. Gröbner Bases: Statistics and Software Systems, Springer
Japan, 1st edition, 2013.

[12] T. Oaku, “Algorithms for 𝐷-modules, integration, and generalized
functions with applications to statistics,” Adv. Stud. Pure Math., vol.
77, pp. 253–352, 2018.

[13] H. Nakayama, K. Nishiyama, M. Noro, K. Ohara, T. Sei,
N. Takayama, and A. Takemura, “Holonomic gradient descent and
its application to the Fisher-Bingham integral,” Adv. Appl. Math.,
vol. 47, no. 3, pp. 639–658, 2011.

[14] A. Kume and T. Sei, “On the exact maximum likelihood inference of
Fisher-Bingham distributions using an adjusted holonomic gradient
method,” Stat. Comput., vol. 28, no. 4, pp. 835–847, 2018.

[15] F. Bréhard, M. Joldes, and J.-B. Lasserre, “On a moment problem
with holonomic functions,” in Proc. Int. Symp. Symb. Algebr. Comput.
(ISSAC), pp. 66–73, 2019.

[16] T. Iori and T. Ohtsuka, “Nonlinear Bayesian filtering via holonomic
gradient method with quasi moment generating function,” Asian J.
Control, vol. 25, no. 4, pp. 2655–1670, 2023.

[17] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, “Singular
4-2-0 —A computer algebra system for polynomial computations,”
2019.

[18] D. R. Grayson and M. E. Stillman, “Macaulay2, a software system
for research in algebraic geometry,” 2020.

[19] M. Noro, N. Takayama, H. Nakayama, K. Nishiyama, and K. Ohara,
“Risa/Asir: A computer algebra system,” 2020.

[20] S. C. Coutinho A Primer of Algebraic D-Modules, Cambridge
University Press, 1995.

[21] C. Koutschan, “Advanced applications of the holonomic systems
approach,” Ph.D. dissertation, Johannes Kepler University Linz, 2009.

[22] T.A. Driscoll, N. Hale, and L.N. Trefethen, eds., Chebfun Guide,
Pafnuty Publications, Oxford, 2014.

0 2 4
t

0.0

2.5

x(t)

Initial guess
Proposed

(a) State

0 2 4
t

−10

0
u(t)

Initial guess
Proposed

(b) Input

Fig. 2: Trajectories for 𝑥(0) = 4

5974

