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Abstract— In this letter, we propose a robust constraint-
following control approach for uncertain mechanical systems
under both equality and inequality constraints. Particularly,
both the global and local inequality constraints are systemat-
ically incorporated into the Udwadia-Kalaba (U-K) equation
leveraging the diffeomorphism technique, wherein a novel
smooth approximation of the local inequality constraints is
proposed to address the non-differentiability resulting from its
spatiotemporal dependence nature. Based on this development,
the generalized U-K equation is mathematically established.
With this, we develop a robust constraint-following control
strategy to ensure satisfying system performance in the pres-
ence of uncertainties and various constraints. Moreover, by
Lyapunov minimax approach, the proposed control strategy
guarantees both uniform boundedness (UB) and uniform ul-
timate boundedness (UUB) of the system. Finally, numerical
simulations on the lateral motion control of an autonomous
vehicle demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

Robust stability and performance of servo mechanical
systems have gathered significant research attention in the
existing literature [1]. The primary motivation for its devel-
opment is to analyze and design a control strategy to mitigate
the influence of system uncertainty. Since the uncertainty
in mechanical system dynamics is generally time-varying,
designers typically use its bound as the basis for controller
design to ensure satisfactory system performance. Along
with this line, substantial efforts have been devoted to the
development of robust control strategies [2]–[4]. Specifically
for servo mechanical systems, most existing works on robust
control mainly focus on trajectory tracking and set-point
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stabilization problems. In realistic scenarios, specific non-
holonomic constraints are commonly encountered in these
control problems, which are not investigated thoroughly.

Constraint-following control, inspired by the servo con-
straint problem in analytical mechanics, has been one of the
research frontiers in control systems [5]–[7]. Specifically,
the implementation of constraint-following control via the
Udwadia-Kalaba (U-K) approach facilitates the management
of both holonomic and nonholonomic constraints in servo
mechanical systems [8]. In addition, this method does not
require any linearizations or nonlinear cancellations for the
mechanical systems. It also renders the control input to
meet Gauss’s principle and D’Alembert’s principle, thus
generating a moderate control force in the real world. Fur-
thermore, the U-K approach does not require any auxiliary
variables (such as Lagrange multiplier) or pseudo variables
(such as generalized speeds) compared with the standard
Lagrange equation. Apart from equality constraints, a se-
ries of inequality constraints also need to be satisfied due
to physical limitations, prescribed performance, and safety
specifications of servo mechanical systems. Since an added
control force introduced by inequality constraints can impede
the equality constraint-following performance and increase
the complexity of control problems, it brings additional
challenges to the control design.

To ensure the satisfaction of inequality constraints and
maintain the stability, barrier Lyapunov functions (BLFs)
have been widely applied in control systems [9]–[11]. In
[11], an adaptive neural network control methodology was
developed by utilizing BLF to deal with the system con-
straints and disturbances. Another effective tool to han-
dle the inequality constraints in mechanical systems is the
diffeomorphism approach, which transforms the state from
bounded space to an unbounded counterpart [12]. In [13],
a diffeomorphism-based robust bounded control scheme was
formulated to address the inequality constraints in the tra-
jectory tracking task. Furthermore, in certain instances, the
inequality constraints are spatiotemporally dependent, i.e.,
only activated when the controlled system enters a specific
area or time interval, which are the so-called local inequality
constraints. Local inequality constraints are inherently non-
differentiable due to their piecewise nature resulting from
spatiotemporal dependence, which renders the control prob-
lem rather difficult to be solved. However, in most of the
existing efforts, only global constraints (i.e., the constraints
exist throughout the entire domain) are considered in the
trajectory tracking problems. In this sense, it leaves an open
and interesting question to handle local inequality constraints
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as typically encountered in servo mechanical systems.
This work proposes a novel perspective on the U-K ap-

proach for handling both equality and inequality constraints
in uncertain mechanical systems, which is distinctly different
from existing approaches in [10], [14]–[16]. Leveraging the
diffeomorphism technique and a smooth approximation, both
the global and local inequality constraints are systematically
incorporated into the constraint-following problem. Then,
effective extensions are made to the existing U-K approach
and the generalized U-K equation is established therein. By
Lyapunov minimax approach, the proposed robust controller
guarantees both uniform boundedness (UB) and uniform
ultimate boundedness (UUB) of the servo mechanical system
even in the presence of uncertainties. Particularly, differ-
ent from [14], [15], the diffeomorphism of this work is
constraint-based and does not invoke the complicated state
transformation to the system equation. In contrast with [10],
the applicability of the proposed robust controller is not only
limited to autonomous systems, but also can be utilized for
non-autonomous systems, such that time-varying uncertainty
can be dealt with appropriately. Although the barrier function
used in [16] is effective in addressing inequality constraints,
this method primarily does not provide effective routines
for handling various types of equality constraints, especially
non-holonomic equality constraints. However, our approach
inherits the advantages of the U-K approach, especially
the ability to deal with both holonomic and nonholonomic
equality constraints. In summary, this work establishes a
systematic framework for handling (i) both holonomic and
nonholonomic constraints; (ii) both equality and inequality
constraints; (iii) both global and local inequality constraints;
(iv) both autonomous and non-autonomous systems.

II. PROBLEM FORMULATION

A. System Description

The dynamical model of an uncertain mechanical system
can be given by the following equation:

M(ν(t), $(t), t)ν̈(t) + C(ν(t), ν̇(t), $(t), t)ν̇(t)

+G(ν(t), $(t), t) + F (ν(t), ν̇(t), $(t), t) = u(t), (1)

where t ∈ R is the time, ν ∈ Rn, ν̇ ∈ Rn, and ν̈ ∈ Rn

represent the position, the velocity, and the acceleration,
respectively. The vector $(t) ∈ Π ⊂ Rq denotes the possi-
bly fast time-varying uncertainty with the compact bounding
set Π. Also, M represents the inertia matrix, C represents
the Coriolis or centrifugal force, G represents the force of
gravity, and F is the impressed forces except for the force
of gravity. The vector u ∈ Rn is the control input.

Consider that the system (1) is subject to the following
constraint in the first-order form [15]:

D(ν, t)ν̇ = c(ν, t), (2)

where D = [Dpi]m×n and c = [c1 c2 . . . cm]T . The
constraint (2) may be holonomic and/or nonholonomic. Then,

by taking time-derivative of (2), the second-order form of the
constraints is given as

D(ν, t)ν̈ = b(ν, ν̇, t), (3)

where b = [b1 b2 . . . bm]T .
Assumption 1 [5]: (i) For each (ν, t) ∈ Rn × R,

rank[D(ν, t)] ≥ 1 and D(ν, t) is of full rank; (ii) For each
(ν, t) ∈ Rn ×R, $ ∈ Π, M(ν,$, t) > 0.

Let Feq = Cν̇ +G+ F , we have the following theorem:
Theorem 1 [15]: Consider the system (1) and the servo

constraint (3) are subject to Assumption 1, with the U-K
equation, the constraint force is given as

Qc =M
1
2 (ν,$, t)(D(ν, t)M−

1
2 (ν,$, t))†[b(ν, ν̇, t)

+D(ν, t)M−1(ν,$, t)Feq(ν, ν̇,$, t)], (4)

where the superscript “†” represents the Moore-Penrose (MP)
generalized inverse.

Remark 1: This work relies on the U-K approach which
is well-suited for addressing the inherent nonlinearity of the
mechanical systems, and it provides an explicit closed-form
constraint force. This may not be straightforward to obtain
using linearization-based methods. In the absence of consid-
eration for uncertainty, utilizing u = Qc would be sufficient
to accurately drive the system to follow the specified servo
constraint (3). Nevertheless, as parameter uncertainties and
external disturbances inevitably exist, it is critical to design
a robust control scheme that guarantees constraint-following
performance under various uncertainties.

B. Diffeomorphism for Inequality Constraints

In practice, the system is typically under the following
global inequality constraints:

φ
j
(ν, t) <φj(ν, t) < φ̄j(ν, t), j = 1, 2, . . . , l, (5)

where φ
j
(ν, t) and φ̄j(ν, t) are C1 in ν and t, representing

the upper and lower bounds for φj(ν, t).
By using the U-K equation, it is only possible to follow

the servo equality constraint (3) through the design of the
constraint force (4). Hence, to satisfy the specified inequality
constraints, an additional constraint force Qi is formulated:

Qi(ν, ν̇, t) = (I −D†(ν, t)D(ν, t))r(ν, ν̇, t), (6)

where r(ν, ν̇, t) ∈ Rn is a vector that is used to adjust the
magnitude of the additional constraint force Qi. Recalling
the property of MP inverse, by (1) and (4), we have

Dν̈ =D[M−
1
2 (DM−

1
2 )†(b+DM−1Feq)−M−1Feq +Qi]

=b+ (D −DD†D)r = b. (7)

This implies that the constraint (3) is still guaranteed under
the addition of Qi.

Following it, we aim to design a local diffeomorphism
to transform the constrained space of φj(ν, t) to an uncon-
strained counterpart. Thus, solving the inequality constraint
problem is converted to find a sequence of Ξj such that for
φj(ν, t) ∈ Ωj = (φ

j
, φ̄j), the local diffeomorphism satisfies
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Ξj : Ωj → R, j = 1, 2, . . . , l. Based on the above analysis,
we propose the following diffeomorphism:

ξj =artanh

[
2

φ̄j − φj
φj(ν, t) +

φ̄j + φ
j

φ̄j − φj

]
+ λj =: sj(ν, t),

(8)

where ξj is the transformed variable and the parameter λj is
used to adjust the correspondence between ξj and φj in the
diffeomorphism. Notice that ξj → +∞ when φj(ν, t)→ φ̄j
and ξj → −∞ when φj(ν, t)→ φ

j
.

Additionally, the system is possibly subject to a class
of local inequality constraints. That is, φj(ν, t) ∈ (φ

j
, φ̄j)

for εj ∈ (εj , ε̄j), j = 1, 2, . . . , p. Notice that εj here is a
general symbol. It could refer to the state variable νj or time
variable t. To address the non-differentiability of the local
equality constraint, a smooth approximation is appropriately
constructed as follows:

φ̄jap(ν, t) :=
1

β1
eβ2(εj−εj)(εj−ε̄j) − 1

β1
+ φ̄j(ν, t), (9)

φj
ap

(ν, t) :=− 1

β1
eβ2(εj−εj)(ε−ε̄j) +

1

β1
+ φ

j
(ν, t). (10)

Note that the functions (9) and (10) are smooth and differ-
entiable. Here, β1, β2 > 0 are the smoothing parameters and
the approximation effect improves as they increase.

Consider both global and local inequality constraints, with
the diffeomorphism (8), the relation between the original
coordinate ν and the transformed coordinate ξ is given as

ξ = s(ν, t), (11)

where ξ = [ξ1 ξ2 · · · ξl]T and s = [s1 s2 · · · sl]T . Then,
we proceed to take the first-order and second-order time
derivatives of (11), which yields

ξ̇ =
∂s

∂ν
ν̇ +

∂s

∂t
, ξ̈ = : h1(ν, ν̇, t) + h2(ν, ν̇, t)r, (12)

where

h1(ν, ν̇, t) =

[
d

dt

(
∂s

∂ν

)]
ν̇ +

∂2s

∂t2
+

(
∂s

∂ν

)
[−M−1Feq+

M−
1
2 (DM−

1
2 )†(b+DM−1Feq)], (13)

h2(ν, ν̇, t) =

(
∂s

∂ν

)
(I −D†D). (14)

Referring to (12), we define ζ̃ := ξ and ζ̂ := ξ̇. Let ζ :=
[ζ̃T ζ̂T ]T , h3(ν, ν̇, t) := [ζ̂T hT1 (ν, ν̇, t)]T , and h4(ν, ν̇, t) :=
[0n×l h

T
2 (ν, ν̇, t)]T . The second-order derivative of ξ can be

equivalently represented as ζ̇ = h3(ν, ν̇, t) + h4(ν, ν̇, t)r.
Assumption 2: There exist a vector r0(ν, ν̇, t) : Rn×Rn×

R→ Rn, a continuously differentiable function V (·) : R2l×
R → R+, and scalar constants γ1,2 ≥ 0, h̃ ≥ 0 such that
for all ‖ζ‖ > h̃, γ1‖ζ‖2 ≤ V (ζ, t) ≤ γ2‖ζ‖2 and ∂V (ζ,t)

∂t +
∇Tζ V (ζ, t)(h3(ν, ν̇, t) + h4(ν, ν̇, t)r0(ν, ν̇, t)) ≤ 0.

The implication of this assumption is that ζ is bounded
by choosing an appropriate vector r0. With ζ = [ξT ξ̇T ]T ,
this in turn means ξ is bounded. Therefore, by designing
the diffeomorphism (8), which indicates that ξj → +∞

as φj(ν, t) → φ̄j and ξj → −∞ as φj(ν, t) → φ
j
, the

prescribed inequality constraint can be strictly satisfied.
When the system uncertainty is known a priori, recalling

the constraint force (4) and the design of Qi, the generalized
U-K equation considering both equality servo constraints and
inequality constraints is formulated as

Mν̈ =− Feq +M
1
2 (DM−

1
2 )†(b+DM−1Feq)

+M(I −D†D)r0. (15)

III. ROBUST CONTROL DESIGN

For the uncertain system (1), we have the following
decomposition: M(ν,$, t) = M̄(ν, t) + ∆M(ν,$, t),
C(ν, ν̇,$, t) = C̄(ν, ν̇, t) + ∆C(ν, ν̇,$, t), G(ν,$, t) =
Ḡ(ν, t) + ∆G(ν,$, t), F (ν, ν̇,$, t) = F̄ (ν, ν̇, t) +
∆F (ν, ν̇,$, t). With M̄ > 0, let E := M̄−1, ∆E :=
M−1 − M̄−1, and Λ := M̄M−1 − I . Thus, we have
∆E := EΛ.

Assumption 3: There exists a constant ρΛ > −1 such that
for all (ν, t) ∈ Rn ×R,

1

2
min
$∈Π

λm(Λ(ν,$, t) + ΛT (ν,$, t)) ≥ ρΛ. (16)

It should be noted that the control objective of a servo
mechanical system is to follow the prescribed constraints
(2). With this, we define η(ν, ν̇, t) := D(ν, t)ν̇ − c(ν, t),
which serves as one of the metrics of the constraint-following
performance.

With the decomposition of matrices, we define F̄eq :=
C̄ν̇ + Ḡ + F̄ and ∆Feq := ∆C̄ν̇ + ∆Ḡ + ∆F̄ . Then, the
η-dynamics is given as

η̇ =D(Eu− EF̄eq − E∆Feq + ∆E(u− Feq))− b. (17)

Assumption 4: There exist a constant γ ∈ R+ and a
function g(γ, ·) : R+ × Rm × R → Rm such that the
function g(γ, ·) ∈ R(D). Also, there exist a Lyapunov
function L(·) : Rm × R → R+, and constants ci > 0,
i = 1, 2, 3 such that for all (γ, ν, ν̇, t) ∈ R+×Rn×Rn×R,

c1‖η‖2 ≤L(η, t) ≤ c2‖η‖2, (18)
∂L(η, t)

∂t
+∇Tη L(η, t)g(γ, η, t) ≤ −γc3‖η‖2. (19)

where R(·) denotes the range space of a matrix. Inspired by
the generalized U-K equation (15), we propose

u1 :=M̄
1
2 (DM̄−

1
2 )†(g + b+DM̄−1F̄eq) + M̄(I −D†D)r0.

(20)

Theorem 2: Consider the nominal part of the system (1),
for all (γ, ν, ν̇, η, t) ∈ R+ × Rn × Rn × Rm × R, given
the function g(γ, η, t) = −εγη with a constant ε > 0, the
control u = u1(γ, ν, ν̇, η, t) renders the origin of the nominal
η-dynamics globally asymptotically stable and lim

t→∞
η = 0.

Proof: By (17), the nominal η-dynamics can be written as

η̇ = D(Eu− EF̄eq)− b. (21)

With u = u1 and the property of MP inverse, we have

D(Eu− EF̄eq)− b
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=DM̄−
1
2 (DM̄−

1
2 )†(g + b+DM̄−1F̄eq))−DM̄−1F̄eq − b

=g + b+DM̄−1F̄eq −DM̄−1F̄eq − b = g. (22)

Choose the Lyapunov function L1 = ηT η/2, and the deriva-
tive of L1 yields

L̇1 = ηT η̇ =ηT [D(Eu− EF̄eq)− b]
=ηT g = −εγ‖η‖2 ≤ 0. (23)

Therefore, the control u1 guarantees that the origin η = 0
of nominal η-dynamics is a globally asymptotically stable
equilibrium point and η converges to zero as t→∞.

Remark 3: Theorem 2 indicates that the control u1 only
compensates the nominal dynamics of η. Hence, to addition-
ally compensate for the uncertain part of the η-dynamics,
another term u2 needs to be introduced in the control u.

Assumption 5 [13]: There exist an unknown scalar α and a
known function Σ(·) ∈ R+ such that for all (γ, ν, ν̇, η, t) ∈
R+ ×Rn ×Rn ×Rm ×R, $ ∈ Π,

‖Λ(ν,$, t)(−Feq(ν, ν̇,$, t) + u1(γ, ν, ν̇, η, t))

−∆Feq(ν, ν̇,$, t)‖ ≤ αΣ(γ, ν, ν̇, η, t). (24)

Next, the robust control scheme is proposed as follows:

u = u1(γ, ν, ν̇, η, t) + u2(γ, ν, ν̇, η, t), (25)

with u2(γ, ν, ν̇, η, t) = −κµ‖µ‖2ρ−2Σ2ρ(γ, ν, ν̇, η, t) and
µ = EDT∇ηL. Also, κ > 0 and ρ > 1 are scalar constants.

Theorem 3: Consider that the system (1) is subject to
Assumptions 1-5. The control law (25) renders η uniformly
bounded and uniformly ultimately bounded.
Proof: We proceed to prove Theorem 3 based on the
Lyapunov minimax approach. By (17) and (25), the first-
order derivative of L can be given as

L̇ =
∂L
∂t

+∇Tη Lη̇ =
∂L
∂t

+∇Tη L[D(−EF̄eq + E(u1 + u2)

− E∆Feq + ∆E(−Feq + u1 + u2))− b]. (26)

By (19) and (22), we have

∂L
∂t

+∇Tη L[D(−EF̄eq + Eu1)− b] ≤ −γc3‖η‖2. (27)

Since ∆E := EΛ, with µ = EDT∇ηL and (24), we have

∇Tη LD(∆E(−Feq + u1)− E∆Feq) ≤ α‖µ‖Σ. (28)

Recall the design of u2, and we have

∇Tη LD(E + ∆E)u2

=− κ‖µ‖2ρΣ2ρ +∇Tη LDEΛ(−κµ‖µ‖2ρ−2Σ2ρ). (29)

By (16), the second term of (29) yields

∇Tη LDEΛ(−κµ‖µ‖2ρ−2Σ2ρ)

=− 1

2
κ∇Tη LDE(Λ+ ΛT )EDT∇ηL‖µ‖2ρ−2Σ2ρ

≤− κρΛ‖µ‖2ρΣ2ρ. (30)

Substituting (30) into (29), we have

∇Tη LD(E + ∆E)u2 ≤ −κ(1 + ρΛ)‖µ‖2ρΣ2ρ. (31)

Combining (27), (28), and (31), thus we have

L̇ ≤ − γc3‖η‖2 + α‖µ‖Σ− κ(1 + ρΛ)‖µ‖2ρΣ2ρ

=:− γc3‖η‖2 + λ1, (32)

where λ1 = (2ρ− 1)α 2ρ−1
√
α/(2ρκ(1 + ρΛ))/2ρ. It con-

cludes that V̇ < 0 for all ‖η‖ >
√
λ1/γc3. Therefore, the

control law (25) ensures UB and UUB of the vector η.

IV. ILLUSTRATIVE EXAMPLE

A. System Description
The lateral motion control of an autonomous vehicle

is used as an illustrative example in this section. In this
example, the vehicle aims to traverse the local area while
maintaining a constant longitudinal velocity, and not exceed-
ing the roadside line. Then, the equation of motion in the
lateral and yaw directions can be written as[

m 0
0 J

] [
ÿ

ψ̈

]
+

[
Cf+Cr

v
Cf lf−Crlr

v +mv
Cf lf−Crlr

v

Cf l
2
f+Crl

2
r

v

] [
ẏ

ψ̇

]
=

[
Fxf + Cf Fxr + Cr

(Fxf + Cf )lf −(Fxr + Cr)lr

] [
δf
δr

]
, (33)

where y is the lateral position of the vehicle, ψ is the yaw
angle, m denotes the vehicle mass, J denotes the moment of
inertia, Cf , Cr denote the cornering stiffness of the front tire
and the rear tire, lf , lr denote the distances from center of
gravity to the front axle and the rear axle, Fxf , Fxr denote
the longitudinal forces of the front tires and the rear tires,
respectively, δf , δr denote the front and rear steering angles,
v is the longitudinal velocity of the vehicle.

To ensure that the safety and comfort of passengers in on-
road driving scenarios, the reference commands regarding the
yaw angle and yaw rate are given as ψr = 0 and ψ̇r = 0.
Furthermore, to ensure the tracking error is approximately
asymptotically stable, we formulate the trajectory constraint
as (ψ̇−ψ̇r)+λ(ψ−ψr) = 0, where λ > 0 is a scalar constant.
Then, the constraint can be rewritten into the second-order
form (3), which yields D = [0 1] and b = ψ̈r − λ(ψ̇ − ψ̇r).

Furthermore, to avoid possible collisions in the locally
bounded area, we suppose that the vehicle is under the
following inequality constraint:

y +
w

2
< y < ȳ − w

2
, for x < x < x̄, (34)

where w is the width of the vehicle. Also, x̄, x, ȳ, and y are
constants which specify the scope of the local region. For the
numerical simulation, we choose w = 1.786 m, ȳ = 1 m,
y = −1 m, x̄ = 20 m, and x = 10 m. Since a constant lon-
gitudinal velocity is assumed, x ∈ (x, x̄) indeed corresponds
to t ∈ (x/v, x̄/v). Following (9) and (10), the approximation
can be formulated as y

ap
= − 1

β1
eβ2(t−x/v)(t−x̄/v) + 1

β1
+

y + w
2 and ȳap = 1

β1
eβ2(t−x/v)(t−x̄/v) − 1

β1
+ ȳ − w

2 with
β1 = 1× 104 and β2 = 5.

Recalling (8), the following diffeomorphism is formulated
to address the inequality constraint (34), which yields

ξ =artanh

(
2

ȳap − yap
y

)
=: artanh(κ1y). (35)
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B. Assumption Verification

(i) Verification on Assumptions 1-3: Note that rank[D] =
1, and it is straightforward that D is of full rank. It follows
that Assumption 1 is satisfied with the vehicle mass m > 0
and the moment of inertia J > 0. Recall that D = [0 1],
with r0 = [r1 r2]T , we have (I −D†D)r0 = [r1 0]T . With
(12) and h2 = [h̃2 0], then we have

ξ̇ =
κ̇1y + κ1ẏ

1− (κ1y)2
, ξ̈ = h1 + h̃2r1, (36)

where

h1 =
(κ̈1y + 2κ̇1ẏ)(1− κ2

1y
2) + 2κ1y(κ̇1y + κ1ẏ)2

(κ2
1y

2 − 1)2

+
κ1(Cf + Cr)ẏ + κ1(Cf lf − Crlr)ψ̇ + κ1m̄v

2ψ̇

m̄v(κ1y)2 − m̄v
, (37)

h̃2 =
κ1

1− (κ1y)2
. (38)

Since −1 < κ1y < 1, then 1 − (κ1y)2 > 0. With r0 =

[r∗1 0]T , we choose r∗1 = −h1+k1ξ+k2ξ̇

h̃2
, where k1 and k2

are positive constants. Substituting r1 = r∗1 into (36), thus
we have ξ̈ = −k1ξ − k2ξ̇. It is straightforward to verify
Assumption 2 and ξ is thus bounded.

We recall that E := M̄−1, ∆E := M−1−M̄−1, and Λ :=
M̄M−1−I . For the autonomous vehicle, we have Λ = ΛT =
diag[m̄/m − 1, J̄/J − 1]. Then, we have 1

2 minλm(Λ +
ΛT ) = min

{
m̄/m− 1, J̄/J − 1

}
. Since m > 0, m̄ > 0,

J > 0, and J̄ > 0, it follows that m/m̄ > 0 and J/J̄ > 0.
Therefore, m/m̄−1 > −1 and J/J̄−1 > −1, which implies
that 1

2 minλm(Λ + ΛT ) > −1. Hence, there always exists
a constant ρΛ > −1 that meets Assumption 3. Here, we
choose ρΛ = −0.1.

(ii) Verification on Assumptions 4-5: The function L
represents the Lyapunov function. We choose a standard
quadratic Lyapunov function L = ηTPη in this design with
P ∈ Rm×m, P > 0. Then, Assumption 4 can be met with
c1 = λm(P ), c2 = λM (P ), and c3 = ελM (P ).

We define Φ := ‖Λ(−Feq + u1) − ∆Feq‖. Recalling
Assumption 5, the scalar α and Σ are related to the bound
of Φ. Thus, we have

Φ ≤ |∆m/m|
∣∣∣ m̄r1 − (Cf + Cr)ẏ/v − (Cf lf − Crlr)ψ̇/v

∣∣∣︸ ︷︷ ︸
d1

+ 2 |∆m|
∣∣∣vψ̇∣∣∣︸︷︷︸
d2

+ |∆J | |g + b|︸ ︷︷ ︸
d3

. (39)

Thus, Assumption 5 can be satisfied with

α :=
√

∆m2/m2 + 4∆m2 + ∆J2, (40)

Σ :=
√
d2

1 + d2
2 + d2

3. (41)

For the control parameters, we choose κ = γ = 2, ρ = 2,
λ = 4, k1 = 20, k2 = 5, P = 0.005, and ε = 1. For the
numerical simulation, the system’s parameters are given as
m̄ = 800 kg, J̄ = 1100 kg ·m2, Cf = Cr = 20000 N/rad,
Fxf = Fxr = 80000 N, v = 10 m/s, lf = 1.2247 m, and

lr = 1.4373 m. Also, the system uncertainties are simulated
by using parametric variations ∆m = |100 sin(10πt)| kg and
J = 200 sin(20πt) kg ·m2, and input disturbances ∆δf =
|π/20 sin(4πt)| rad and ∆δr = π/20 sin(4πt) rad.

C. Simulation Results

To verify that the proposed method can satisfy the in-
equality constraint with the design of diffeomorphism (35),
the proposed method without diffeomorphism is used for
comparison. Moreover, to evaluate the robustness of our
method, we carried out a comparison with the standard
linear quadratic regulator (LQR) under identical parametric
variations and input disturbances. The initial value for y, ẏ,
ψ, and ψ̇ are set as y(0) = 1 m, ẏ(0) = −6 m/s, ψ(0) =
π/6 rad, and ψ̇(0) = −1.6 rad/s. For the implementation
of LQR, we chose the weighting matrices Q and R as
Q = diag[3, 2, 0.01, 1] and R = 5. These values were
chosen to ensure that the vehicle tracks the desired reference
with the control input remaining within a feasible range of
δf , δr ∈ (−π/4 rad, π/4 rad).

Fig. 1 depicts the trajectory of the vehicle. The prescribed
local inequality constraint (34) is highlighted in Fig. 1 with
a light green rectangular region. It can be seen that when
10 ≤ x ≤ 20, the designed smooth approximation closely
fits the actual constraint. In addition, when x < 10 or
x > 20, the approximation rapidly grows exponentially
to infinity. This closely adheres to the specified inequality
constraint, without affecting the vehicle motion in other
regions. From Figs. 1 and 2(a)-(b), the proposed method can
effectively address the initial condition deviation of y, while
also fulfilling the prescribed constraint. It should be noted
that the proposed controller without diffeomorphism and
LQR cannot directly handle the constraint. Hence, instead
of the inequality constraint, we additionally set the reference
command as y = 0 and ẏ = 0 to provide a fair comparison.
We can see from Figs. 2(a)-(b) that both the proposed method
without diffeomorphism and LQR can converge y and ẏ to
a small neighborhood near 0. Nevertheless, the actual trajec-
tory exceeds the upper bound line (e.g., between x = 10 m
and x = 12 m), which leads to a collision of the vehicle. As
shown in Figs. 2(c)-(d), the proposed methodology drives
the vehicle to follow the reference command (i.e., ψ =
0 and ψ̇ = 0), even in the presence of parametric variations
and input disturbances. It shows that the proposed robust
scheme renders a smaller UUB ball size than that under the
proposed controller without diffeomorphism, which indicates
a superior tracking performance. However, LQR exhibits
more chattering when confronted with various uncertainties
due to its insufficient robustness. The actual control inputs
are presented in Fig. 3, respectively.

To summarize and compare the preceding simulation re-
sults, the accumulative tracking error (ATE) and the accu-
mulative control effort (ACE) of each method are shown
in TABLE I. It is evident that the proposed robust control
scheme has the lowest ATE and smallest ACE compared
with other methods. In summary, leveraging the diffeomor-
phism technique and constraint-following methodology, the
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proposed robust control scheme guarantees the prescribed
inequality constraints, attains superior tracking performance,
and demonstrates strong robustness despite the presence of
various uncertainties.

Fig. 1. Comparison of trajectory of the vehicle.

Fig. 2. (a) Comparison of time history of y; (b) Comparison of time history
of ẏ; (c) Comparison of time history of ψ; (d) Comparison of time history
of ψ̇.

Fig. 3. (a) Comparison of time history of δf ; (b) Comparison of time
history of δr .

TABLE I
PERFORMANCE COMPARISON

ATE (eψ) ATE (eψ̇) ACE (δf ) ACE (δr)

Proposed method 0.1874 0.5230 0.0308 0.0209
Proposed method
w/o diffeomorphism 0.2060 0.5247 0.0427 0.0245

LQR 0.5668 0.7596 0.2872 0.3396

V. CONCLUSIONS

To address the constraints and uncertainties in servo me-
chanical systems, this letter developed a robust constraint-
following control strategy. Leveraging the diffeomorphism
approach, the inequality constraints are systematically incor-
porated into the U-K equation. With the use of the MP gen-
eralized inverse, the generalized U-K equation is effectively
established to cope with both the global and local inequality
constraints. Based on this, a robust constraint-following
control scheme was designed to ensure UB and UUB. Addi-
tionally, the stability is strictly guaranteed by the proposed
robust control strategy. In summary, this work expands the

scope of the U-K equation and provides a new perspective on
the management of inequality constraints and uncertainties of
servo mechanical systems. Also, it should be noted that the
proposed constraint-following controller involves multiple
control parameters that significantly influence the constraint-
following performance and control cost. This introduces a
potential multi-objective and multi-parameter optimization
problem among these conflicting criteria. Thus, one possible
future work along this line is to investigate a game-theoretic
framework to address the control parameter optimization and
further enhance the system performance.
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