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Abstract—A Stackelberg duopoly model in which two firms
compete to maximize their market share is considered. The firms
offer a service/product to customers that are spread over several
geographical regions (e.g., countries, provinces, or states). Each
region has its own characteristics (spreading and recovery rates)
of each service propagation. We consider that the spreading rate
can be controlled by each firm and is subject to some investment
that the firm does in each region. One of the main objectives
of this work is to characterize the advertising budget allocation
strategy for each firm across regions to maximize its market share
when competing. To achieve this goal we propose a Stackelberg
game model that is relatively simple while capturing the main
effects of the competition for market share. By characterizing
the strong/weak Stackelberg equilibria of the game, we provide
the associated budget allocation strategy. In this setting, it is
established under which conditions the solution of the game
is the so-called “winner takes all”. Numerical results expand
upon our theoretical findings and we provide the equilibrium
characterization for an example.

Index Terms:—Winner takes all, viral marketing, resource
allocation, Stackelberg solution.

I. INTRODUCTION

Viral marketing (VM) is a strategy to promote differ-
ent products/services using social networks. The information
spreads as a virus from one person to their family, friends
and colleagues. To model the spread of information or
services within a population, various mathematical frameworks
have been developed. In the context of viral marketing, two
prominent modeling approaches are opinion dynamics models
(see [1], [2] for instance) and epidemic models (see [3], [4]
for instance). Opinion dynamics models focus on capturing
how opinions and preferences evolve among individuals in a
social network, considering factors such as interaction pattens,
biased influences, and coupled decision-making processes. On
the other hand, epidemic models capture the transmission
of diseases or information within a population, incorporating
parameters such as infection rates, recovery rates, and popu-
lation connectivity, which play a crucial role in understanding
the dynamics of service propagation and devising effective
marketing strategies to maximize the spread and adoption of
the service. In this paper, we are not focusing on a specific
dynamic but assume that the equilibrium in each region
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corresponds to the so-called “winner takes all” [5], for which
a particular case of such model is the steady-state of a multi-
virus SIS system [6]. It is noteworthy that such an equilibrium
has been observed in real life, see for instance the classical
example of Facebook and Myspace [6]. In the context of viral
marketing duopoly, the concept of “winner takes all” refers to a
scenario where two competing firms engage in viral marketing
campaigns to gain a larger market share. In this situation, the
firm that effectively leverages viral marketing techniques and
achieves widespread adoption of its product or service tends
to capture the majority of the market, leaving the competitor
with a significantly smaller share.

It has been proven that targeted marketing combined with
social network spreading has advantages over conventional
mass campaigns, including cost-effectiveness and the ability
to reach specific customer groups [2]. Basically, the authors
formulated the problem as an optimal budget allocation and
they shown that most individuals have to be targeted by
the marketing campaign in order to get a maximum profit.
The problem of competition to get a larger market share
has been addressed in [7]. The authors introduced a duopoly
model which accounts for the knowledge of opinion dynamics
through a social network and characterized the Nash strategies
of the players. Unlike these works that take advantage of the
node centrality (network topology) but rely on linear opinion
dynamic models for the service spreading, we assume here
a winner takes all model based on [6]. This setup is more
suitable for certain types of products/services, such as video
streaming and activities in social networking platforms.

The main goal of this paper is to formulate a two-level
Stackelberg game and characterize its solutions. The analysis
does not rely on a specific dynamic for the information
spreading but assumes that at the equilibrium the “winner takes
all”. We point out that the existing literature on multi-virus
epidemic emphasize the aforementioned type of equilibrium
[6], [3], [4]. We consider that two players compete over several
regions to get a higher market share. The budget allocated by
a firm to a certain region modifies the spreading rate of the
associated service in that region. Note that we are analyzing
the steady state revenue of each firm. This combined with the
“winner takes all” behavior allows us to decouple the analysis
of the investment strategy for each region. At the same time,
we highlight that the design of the budget allocation strategy
is subject to overall fixed budget constraints.

Note that each player has to solve a budget allocation
problem which is different from the ones that can be found
in the literature. In [8], a dynamic optimization problem
under budget constraints is formulated to control a single-
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virus SIS model. In [9], optimal control of joint multi-virus
infection and information dissemination is considered for
the sensitive-warned-infected-recovered-susceptible (SWIRS)
model, without budget constraints. The differences between
the present work and the existing results on epidemic control
(e.g., [10], [11], [12], [13], [14]) are mainly related to the
fact that our model can handle a multi-virus SIS epidemic
model by considering budget constraints. Two existing works
are relatively close to the present one. The first is [15] in
which the authors formulate a static and strategic form game
to deal with a bi-virus SIS epidemic model over a single region
without a budget constraint. The second one is [16] in which
only one player solves the optimal budget allocation problem
over several regions.

This paper is structured as follows. Sec. II provides the
problem formulation, going from the VM model up to the
Stackelberg game analyzed in the paper. The main result of this
work is presented at the end of Sec. II. Sec. III is devoted to the
proof of the main result. A numerical example illustrates our
theoretical findings in Sec. IV and some concluding remarks
are provided in Sec. V.

II. PROBLEM STATEMENT

We consider a set of two firms competing over K > 1
regions (e.g., countries, provinces, or states) to maximize
their market share. Let K := {1, . . . ,K} and M := {1, 2}
be the set of regions and firms, respectively. For a given
region k ∈ K and a firm m ∈ M, we respectively de-
note by (i) γmk the spreading rate of the service of Firm
m in the region k; (ii) δmk the churn rate at which the
individuals from Region k decide to dispense with the ser-
vices of Firm m. In this work, we assume that there is a
simple linear relationship between allocated budget and γmk
dissemination rate, but more advanced and faithful models
could be investigated in future work. In practice, the spread
rate is influenced by numerous factors and it would be more
accurate to assume that firms focus on captivating content
and identifying influential users or communities to indirectly
influence the spread rate of viral marketing campaigns [17],
[18], [19]. On top of this, we assume that Firm m has a given
advertising budget Bm to allocate between the K regions in
order to maximize the number of its subscribers. We denote
by γm := (γm,1, . . . , γmk) ∈ RK≥0 the action vector of Firm
m such that

∑K
k=1 γmk ≤ Bm and γ := (γ1, γ2) ∈ R2K

≥0 the
action profile. We also make a slight notation abuse by using
the following notation: γ := (γm, γ−m) for m ∈M.

Firm 1 will be referred to as the leader and Firm 2 as the
follower. This is because the leader acts on the network first
and the follower acts after a sufficiently long time such that it
can observe and react to the action made by the leader.

A. Viral marketing model

By considering that the control action γmk is a constant on
the working phase [0,+∞[. Thus, the follower can be said to
start influencing nodes at time 0. The fraction of individuals in
Region k ∈ K who subscribe to the services of Firm m ∈M
is denoted by xmk ∈ [0, 1]. For the interest of practicality, we
consider the following assumption.

Assumption 1: Each individual subscribes to at most one
service.
This assumption is justified by the consideration of average
individual behavior, which aligns with the notion that indi-
viduals typically opt for a single subscription. The fraction of
individuals in Region k ∈ K who have not subscribed to any
services is denoted by sk ∈ [0, 1]. In what follows we denote
by x∞mk := lim

t→∞
xmk(t) ∀k ∈ K,∀m ∈ M and we suppose

that:

(x∞1k, x
∞
2k) =



(
1− δ1k

γ1k
, 0
)

if
γ1k

δ1k
≥ max

(
γ2k

δ2k
, 1

)
(

0, 1− δ2k
γ2k

)
if
γ2k

δ2k
≥ max

(
γ1k

δ1k
+ π, 1

)
(0, 0) otherwise.

(1)
The presence of π > 0 in (1) is motivated by practical
reasons well-known in the economics literature. The leader has
already established its market by the time when the follower
enters the market. Thus, the follower has to invest a little
more to convince the customers to switch services. In the
economics literature π is called a barrier to entry. A barrier
to entry is a condition that makes it difficult for new firms to
enter a market and compete with established firms. Barriers
can take various forms, such as economies of scale, brand
loyalty, access to distribution channels, patents and copyrights,
government regulations, and high capital requirements [20],
[21]. The analysis in [6, Section 4.2] and [22] provide a bi-
virus (Susceptible-Infected-Susceptible) SIS model applied for
viral marketing, such that the system converges to a point
closed to (1). The main difference is that the case when
γ1k

δ1k
=
γ2k

δ2k
leads to multiple equilibria, and is avoided in our

model due to the barrier to entry π. Additionally, by setting the
churn rates δmk to zero, the model corresponds to a Colonel
Blotto game, which is commonly employed in viral marketing
literature [23].

B. Game model

As previously stated, each Firm m ∈ M solves a budget
allocation problem that maximizes a revenue under the global
budget (denoted by Bm) constraint i.e., a feasible strategy for
Firm m belong to the set Γm := {γm ∈ RK≥0 :

∑K
k=1 γmk ≤

Bm}. The budget Bm is imposed for practical reasons (e.g., a
firm has a given finite investment budget).

Similar to [24], we consider the utility of each Firm m ∈
M, such as given by

u1(γ1, γ2) :=

K∑
k=1

p1k

(
1− δ1k

γ1k

)
1H1(k,γ2k)(γ1k)

u2,π(γ2, γ1) :=

K∑
k=1

p2k

(
1− δ2k

γ2k

)
1H2,π(k,γ1k)(γ2k)

(2)

where: (i) π > 0 is the barrier to entry for the follower, which
is fixed; (ii) pmk the contribution of Region k to the revenue
of firm m when all its individuals subscribe to the service m;
(iii) the quantity

(
1 − δmk

γmk

)
represents x∞mk(γ, π) in view of

(1) and 1 is the indicator function, where

H1(k, γ2k) :=

{
γ1k ∈ R≥0 :

γ1k

δ1k
≥ max

(
γ2k

δ2k
, 1

)}
,
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and

H2,π(k, γ1k) :=

{
γ2k ∈ R≥0 :

γ2k

δ2k
≥ max

(
γ1k

δ1k
+ π, 1

)}
.

In this paper, we analyze a static Stackelberg game with a
leader (Firm 1) and a follower (Firm 2). The utility of Firm 1
depends only on γ1 as Firm 2 reacts with a best response
strategy. We adopt a pessimistic approach for the leader,
focusing on the analysis of weak Stackelberg equilibrium [25].
The leader’s utility function, considering a given barrier to
entry π > 0 for the follower, is formulated as:

uS1,π(γ1) := min
γ2∈BR2,π(γ1)

u1(γ1, γ2),

BR2,π(γ1) = argmax
γ2∈Γ2

u2,π(γ2, γ1).
(3)

It should be noted that the analysis presented in this pa-
per also applies when considering an optimistic formulation
for the leader, namely, strong Stackelberg equilibrium with
uS1,π(γ1) = max

γ2∈BR2,π(γ1)
u1(γ1, γ2). The goal of this work

is to analyse a regular Stackelberg solution (S), for a given
π > 0 of the game GSπ :=

(
M, (Γm)1≤m≤2, (u

S
m,π)1≤m≤2

)
in which: the players are Firm 1 and Firm 2; the action space
of Firm m is given by Γm; the individual utility function of
each firm is given by uS1,π in (3) and uS2,π = u2,π in (2).
Firm m ∈ M expresses its interests by setting the potential
revenues (pm,1, . . . , pmk) ∈ RK≥0, whereas the set of action Γm
is imposed by the capacity of investment of Firm m given by
the budget Bm. In addition, we emphasize that the theoretical
results established in this paper hold for a multistage game
setup in which the one-shot game is repeated at each stage
(for which the parameters are updated) and different constant
control actions are applied during it.

Let us recall the definition of a weak Stackelberg solution.
The strategy γS

π is a weak Stackelberg solution of the game
GSπ if it is a solution of the system of equations:

γS
1,π ∈ argmax

γ1∈Γ1

uS1,π(γ1) and γS
2,π ∈ argmax

γ2∈Γ2

uS2,π(γ2, γ
S
1,π).

C. Main result
As mentioned above, we investigate the weak Stackelberg

solution of the game GSπ . In what follows, we denote by:

BR−2,π(γ1) := argmin
γ2∈BR2,π(γ1)

u1(γ1, γ2)

the best response of Firm 2 which minimizes the profit of the
Firm 1 when it uses the strategy γ1 ∈ Γ1. Let BR−2k,π(γ1) :=

Pk(BR−2,π(γ1)) where ∀γ2 ∈ Γ2, k ∈ K one has Pk(γ2) =
γ2k.

Let K1 ∈ 2K representing a given set of regions of
investment under consideration by Firm 1, let us define the
following set

Γ̂1,π(K1) :=

{
γ1 ∈ RK≥0

∣∣∣
∀k ∈ K1,

γ1k

δ1k
≥ max

(
BR−2k,π(γ1)

δ2k
, 1

)
,

∀k ∈ K \ K1,
γ1k

δ1k
≤ max

(
BR−2k,π(γ1)

δ2k
− π, 1

)}
,

and Ŝπ(K1, γ1) :=
∑
k∈K1

p1k

(
1− δ1k

γ1k

)
if γ1 ∈ Γ̂1,π(K1) 6= ∅,

−1 otherwise.
(4)

In simpler terms, the expression Γ̂1,π(K1) represents the
set of investment options available to Firm 1 when Firm 2
applies a best response strategy. This set allows Firm 1 to
determine the regions and values of investment that it can
choose from. On the other hand, Ŝπ(K1, γ1) represents the
corresponding revenue that Firm 1 can generate based on its
chosen investment strategy K1 and spread rate γ1. We are
now ready to state the main result of this paper, which will
be proven in the following section.

Theorem 1: The Stackelberg strategy γSπ is obtained by
solving:

(KS1,π, γS1,π) := argmax
K1∈2K

argmax
γ1∈Γ1

Ŝπ(K1, γ1) (5)

where Γ̂1,π(K) is proven to be a convex set (see proof) for any
K and the maximization problem max

γ1∈Γ1

Ŝπ(K1, γ1) is a convex

OP for a given K1. The follower’s strategy at the Stackelberg

equilibria is given by γS2k,π =

√
p2kδ2k∑

`∈KS2,π

√
p2`δ2`

B2 if k ∈ KS2,π

and γS2k,π = 0 otherwise, where

KS2,π := argmax
K2∈2K

∑
k∈K2

p2k

1−

√
δ2k
p2k

∑
`∈K2

√
p2`δ2`

B2


s.t. K2 ∩ KS1,π = ∅.

Remark 1: In the perspective of studying the strong Stackel-
berg solution, it is enough to consider that the follower applies
the strategy in BR+

2,π(γ1) where

BR+
2,π(γ1) := argmax

γ2∈BR2,π(γ1)

u1(γ1, γ2).

Remark 2: Although the optimization problem specified in
Equation (5) theoretically involves an exponential search space
of 2K regions. On one hand we provide just a methodology
to solve such problems (that does not involve online solving
and therefore computation time is not very important) and
on the other hand, in many practical scenarios, the number of
regions K in which firms compete is relatively small, typically
around 10. Basically we can consider that USA, Europe, South
America represent regions for competition at global level.
If the competition is specific to a country than the number
of regions will be also relatively small. This manageable
number of regions significantly reduces the computational
complexity associated with solving the optimization problem.
A key result introduced in Theorem 1 is by ensuring that the
maximization of Ŝπ(K1, γ1), for a given K1 and for γ1 ∈ Γ1

can be effectively resolved through the utilization of a convex
optimization algorithm.
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In order to prove the main result of this paper, we first
characterize the best response strategy of Firm 2 and finally
characterize the weak Stackelberg solution for a fixed barrier
to entry π > 0.

III. STACKELBERG STRATEGY DESIGN

In this section, we propose a convex reformulation of the
problem in (3). This allows us to obtain the optimal budget
allocation solution for the follower and thus characterize the
weak Stackelberg solution of the game GSπ .

For a given leader’s strategy γ1 ∈ Γ1 we denote by
Γ̃2,π(K2, γ1) as the set of strategy of Firm 2 to win the
marketing battles in regions of K2 ⊆ K i.e.,

Γ̃2,π(K2, γ1) :=

{
γ2 ∈ RK≥0

∣∣∣∣∣
∀k ∈ K2,

γ2k

δ2k
≥ max

(
γ1k

δ1k
+ π, 1

)
,

∀k ∈ K \ K2,
γ2k

δ2k
≤ max

(
γ1k

δ1k
, 1

)}
.

(6)

A. Follower’s OP reformulation

The goal of this section is to reformulate the optimisation
problem for the follower (m = 2) introduced in (3).

Proposition 1: Let γ1 ∈ Γ1. The initial OP in (3) can be
reformulated such as max

γ2∈Γ2

uS2,π(γ2, γ1) =

max
K2∈2K


max
γ2

∑
k∈K2

p2k

(
1− δ2k

γ2k

)
s.t.

K∑
k=1

γ2k ≤ B2

γ2 ∈ Γ̃2,π(K2, γ1).


s.t. ∃γ2 ∈ Γ̃2,π(K2, γ1) :

K∑
k=1

γ2k ≤ B2 (P ?)

Remark 3: It appears that, the condition “∃γ2 ∈
Γ̃2,π(K2, γ1) :

∑K
k=1 γ2k ≤ B2

′′ is verified, if and only

if
∑
k∈K2

δ2k max

(
γ1k

δ1k
+ π, 1

)
≤ B2 i.e., the less restrictive

strategy of Γ̃2,π(K2, γ1) verifies the budget constraint.
Proof . In view of (3), the follower’s OP can be rewritten
in the following manner by considering both cases of Firm 2
winning or not in region k:

max
γ2∈Γ2

∑
K2∈2K

[∑
k∈K2

p2k

(
1− δ2k

γ2k

)]
1Γ̃2,π(K2,γ1)(γ2), (P1)

where Γ̃2,π is introduced in (6) and 1 is the indicator function.
Let γ2, γ̂2 ∈ Γ2, K2, K̂2 ∈ 2K such that K2 6= K̂2 and

1Γ̃2,π(K2,γ1)(γ2) = 1Γ̃2,π(K̂2,γ1)(γ̂2) = 1. Then, Γ̃2,π(K2, γ1)∩
Γ̃2,π(K̂2, γ1) = ∅ since K2 6= K̂2 and (P1) can be reformulated
such as

max
K2∈2K

[
max
γ2∈Γ2

[ ∑
k∈K2

p2k

(
1− δ2k

γ2k

)]
1Γ̃2,π(K2,γ1)(γ2)

]
.

(P2)

Furthermore, for a given K2 there exits a strategy γ2 ∈
Γ̃m(K2, γ1) that verifies the budget constraint if and only if the

set K2 verifies
∑
k∈K2

δ2k max

(
γ1k

δ1k
+ π, 1

)
≤ B2 i.e., the less

restrictive action of Γ̃2,π(K2, γ1) verifies the budget constraint.
Hence, by using the indicator function and by adding the new
constraint on the feasibility sets of K2, the problem (P2) is
equivalent to (P ?). �

B. Characterization of the follower’s best response

The following proposition establishes the characterization
of the best response BR2,π in (3) for the follower and for a
given strategy γ1 of the leader.

Proposition 2:
Let γ1 ∈ Γ1. The Best response of the follower is charac-

terized by:

(KBR
2,π(γ1), K̃BR

2,π(γ1)) ∈

argmax
K2,K̃2

∑
k∈K2\K̃2

p2k

1− 1

max

(
γ1k

δ1k
+ π, 1

)


+
∑
k∈K2

p2k

1−

√
δ2k
p2k

∑
`∈K̃2

√
p2`δ2`

B2 −
∑

`∈K2\K̃2

δ2` max

(
γ1`

δ1`
+ π, 1

)


s.t. ∀k ∈ K̃2,√
p2kδ2k

B2 −
∑

`∈K2\K̃2

δ2` max

(
γ1`

δ1`
+ π, 1

)
∑
`∈K̃2

√
p2`δ2`

> δ2k max

(
γ1k

δ1k
+ π, 1

)
.

Furthermore, any γBR
2,π ∈ BR2,π(γ1) is defined by: γBR

2k,π =



0 if k ∈ K \ KBR
2,π(γ1),

δ2k max

(
γ1k

δ1k
+ π, 1

)
if k ∈ KBR

2,π(γ1) \ K̃BR
2,π(γ1),

√
p2kδ2k

B2 −
∑

`∈KBR
2,π(γ1)\K̃BR

2,π(γ1)

γBR
2`


∑

`∈K̃BR
2,π(γ1)

√
p2`δ2`

, if k ∈ K̃BR
2,π(γ1).

(7)
Proof . According to Proposition 1, the best response of Firm
2 is characterized by the best part K2 ∈ 2K that maximises

max
γ2

∑
k∈K2

p2k

(
1− δ2k

γ2k

)
s.t. γ2 ∈ Γ̃2,π(K2, γ1),

K∑
k=1

γ2k ≤ B2.

(8)
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Let us exploit the KKT conditions by defining first the
Lagrangian: L(γ2, µ2, µ2

, λ2) :=
∑

k∈K\K2

µ
2k
γ2k

+
∑
k∈K2

p2k

(
1− δ2k

γ2k

)
− λ2

(
K∑
k=1

γ2k − B2

)

+
∑
k∈K2

µ2k

(
γ2k − δ2k max

(
γ1k

δ1k
+ π, 1

))

−
∑

k∈K\K2

µ2k

(
γ2k − δ2k max

(
γ1k

δ1k
, 1

))
.

Let us denote by γ?2k,π , µ?2k,π , λ?2,π and µ?
2k,π

the variables
that verify the first-order optimality condition.

For all k ∈ K \ K2,
∂L
∂γ2k

= −λ?2,π − µ?2k,π + µ?
2k,π

= 0,

then µ?2k,π = 0, µ?
2k,π

= λ?2,π > 0 and γ?2k,π = 0.

For all k ∈ K2,
∂L
∂γ2k

=
p2kδ2k

(γ?2k,π)2
− λ?2,π − µ?2k,π = 0, then

γ?2k,π =

√
p2kδ2k

(λ?2,π + µ?2k,π)
. Let K̃2 ∈ 2K2 (that may be empty)

such that, K̃2 ∈ {K̃ ∈ 2K2 : ∀k ∈ K̃, µ?2k,π = 0}. For all
k ∈ K̃2, the first-order optimality condition is verified when,

γ?2k,π =

√
p2kδ2k
λ?2,π

> δ2k max

(
γ1k

δ1k
+ π, 1

)
and γ?2k,π =

δ2k max

(
γ1k

δ1k
+ π, 1

)
, ∀k ∈ K2 \ K̃2. Since λ?2,π > 0,

it follows that,
∑K
k=1 γ

?
2k,π = B2. Hence,

∑
`∈K̃2

γ?2`,π =

B2−
∑

`∈K2\K̃2

γ?2`,π ⇒
√
λ?2,π =

∑
`∈K̃2

√
p2`δ2`

B2 −
∑

`∈K2\K̃2

γ?2`
. Thus, the

solution of (8) is characterized by γ?2k,π =

0 if k ∈ K \ K2,

δ2k max

(
γ1k

δ1k
+ π, 1

)
if k ∈ K2 \ K̃2,

√
p2kδ2k

B2 −
∑

`∈K2\K̃2

γ?2`,π


∑
`∈K̃2

√
p2`δ2`

if k ∈ K̃2.

Finally, the best response of the follower is obtained by a
selection of K2 and K̃2 solving the discrete OP as stated in
Proposition 2. �

C. Proof of Theorem 1

In view of (3) and Proposition 1, the utility of the leader
can be reformulated such as
uS1,π(γ1) =

∑
K1∈2K

[ ∑
k∈K1

p1k(1 − δ1k
γ1k

)1Γ̂1,π(K1)(γ1)
]
, and

we recall that Γ̂1,π(K1) is defined before Theorem 1. Thus, we

identify the same utility structure as in the proof of Proposition
1 and at the Stackelberg equilibria, it can be written as

uS1,π(γS1,π) = max
K1∈2K

max
γ1∈Γ1

Ŝπ(K1, γ1) (9)

where Ŝπ(K1, γ1) is defined in (4). Concerning the existence
of the Stackelberg strategy, the result is mainly based on the
existence of a feasible solution in the set of constraints for
the leader. Since K1 = ∅ and γ1 = (0, . . . , 0) is in the set
of constraints, we derive that the game GSπ has at least one
Stackelberg equilibrium.

In order to compute numerically (9) with well known solvers
for convex optimization problems, let us prove that Γ̂1,π(K1)

is a convex set. Let γa1 ∈ Γ̂1,π(K1) and γb1 ∈ Γ̂1,π(K1). Hence
∀k ∈ K1 and i ∈ {a, b},

γi1k
δ1k
≥ max

(
BR−2k,π(γi1)

δ2k
, 1

)
.

From the best response characterization of the follower in
Proposition 2 one has that ∀k ∈ K1, BR−2k,π(γi1) = 0. Hence
∀k ∈ K1, γi1k ≥ δ1k. Let τ ∈ (0, 1) and γb1k ≥ τγa1k + (1 −
τ)γb1k ≥ γa1k. From the monotony of the best response of the
follower w.r.t the action of the leader it follows that, ∀k ∈ K1

BR−2k,π(τγa1k + (1− τ)γb1k) = 0.

Hence, τγa1k + (1 − τ)γb1k ∈ Γ̂1,π(K1). Finally, (9) is a
strictly convex OP that can be solved with numerical solver for
convex OP. Finally, at the Stackelberg equilibrium this analysis
guarantees that ∀k ∈ KS1,π (region where the leader invest),
BR−2k,π(γS1,π) = 0, and in view of Proposition 2 we derive that

the follower’s strategy is given by γS2k,π =

√
p2kδ2k∑

`∈KS2,π

√
p2`δ2`

B2

if k ∈ KS2,π and γS2k,π = 0 otherwise, where KS2,π is defined
in Theorem 1.

IV. NUMERICAL PERFORMANCE ANALYSIS

In this section, we illustrate the solutions of the Stackelberg
game when both firms play pessimistically over a network of
K = 5 regions. The parameters of the game are given by:
p1 = (p11, . . . , p15) = (1, 2, 3, 4, 5); p2 = (p11, . . . , p25) =
(2, 3, 1, 5, 4); δ1 = (δ11, . . . , δ15) = 10−1×(5, 4, 3, 2, 1); δ2 =
(δ21, . . . , δ25) = 10−1 × (1, 2, 3, 4, 5) and the entry price for
the follower is fixed at π = 10−6.

Budgets (γS11,π , γ
S
21,π) (γS12,π , γ

S
22,π) (γS13,π , γ

S
23,π)

(0.6,0.6) (0.2,0) (0.4,0) (0,0)
(0.6,0.6) (0,0) (0,0) (0.6,0)
(0.6,5) (0.6,0) (0,1.298) (0,1.377)
(5,0.6) (0.5,0) (1,0) (1.5,0)
(5,5) (0.833,0) (1.666,0) (2.5,0)

Budgets (γS14,π , γ
S
24,π) (γS15,π , γ

S
25,π)

(0.6,0.6) (0,0.335) (0,0.264)
(0.6,0.6) (0,0.335) (0,0.264)
(0.6,5) (0,1.298) (0,1.025)
(5,0.6) (2,0) (0,0.6)
(5,5) (0,2.79) (0,2.20)

TABLE I: Budget allocation at the Stackelberg Strategy for
different value of (B1,B2)
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Fig. 1 represents the revenues of the two firms in the
utility region, when they both apply Stackelberg’s pessimistic
strategy and for different budget values. In the case of equal
budgets B1 = B2 the follower has a higher revenue at the
Stackelberg equilibrium due to the difference in the churn
rate in regions 4 and 5. When one budget is much higher the
corresponding Firm gets a larger revenue. We also observe
that, at the Stackelberg equilibrium, there is no case where
B1 ≤ B2 such that uS1,π(γSπ ) ≥ uS2,π(γSπ ). The TABLE. I
shows the Stackelberg strategy allocation for the couples
(B1,B2) highlighted in Fig. 1.

Fig. 1: Revenue of each firm (right) at the Stackelberg
equilbrium for values of (B1,B2) shown on the left.

V. CONCLUSION

We have formulated a Stackelberg duopoly game in which
two firms compete for a larger market share when services
propagate according a viral model. We have characterized
analytically the corresponding Stackelberg strategy in the
pessimistic/optimistic setting. To obtain this result, we have
described the best response map of the follower and proved
that the best response map of the leader can be found by
solving a convex OP.

To summarize, the paper provides a Stackelberg game to
mathematically model a decision-making problem in a eco-
nomic competition framework. The solution proposes strategic
budget allocation across different regions in order to get a
larger market share. It is noteworthy that we consider both the
case of emerging companies (like startups) that need to cross
a ”barrier to entry” on the market and well established com-
panies that want to preserve and enlarge their market share.
Basically the paper gives insights on the strategic resource
allocation with a priori given limitations in a competition
setting.
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[7] V.S Varma, I.C. Morărescu, S. Lasaulce, and S. Martin. Opinion
dynamics aware marketing strategies in duopolies. In 2017 IEEE 56th
annual conference on decision and control (CDC), pages 3859–3864.
IEEE, 2017.
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