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Abstract— An externally positive system has the property
of giving a nonnegative output for any nonnegative input.
By making the inter-vehicle spacing a nonnegative output,
this system property is significant for collision avoidance in
platooning. Yet, existing platooning results based on external
positivity just apply to adaptive cruise control (ACC): as ACC
uses on-board sensing only, these results do not apply when on-
board sensing is integrated with inter-vehicle communication,
as in cooperative adaptive cruise control (CACC). This work
provides an integrated external positivity design for CACC.
When unreliable communication requires transitions between
CACC and ACC, the design still guarantees graceful degrada-
tion in terms of collision avoidance and disturbance rejection.
Such graceful transitions can be attained also in the presence of
vehicle parameter uncertainty, via a suitable adaptive control
design.

I. INTRODUCTION

Longitudinal platooning refers to automated vehicles driv-

ing at desired inter-vehicle spacing. Although a wide range

of platooning strategies have been proposed, they can all be

categorized along two main technologies: Adaptive Cruise

Control (ACC), only using on-board sensors like radar,

tachometer, accelerometer [1], [2]; and Cooperative Adaptive

Cruise Control (CACC), where on-board sensing is aug-

mented by wireless inter-vehicle communication [3], [4], [5].

The additional wireless signals offer improved behaviour

of CACC as compared to ACC [3], [4], e.g., in terms of string

stability [6] and disturbance decoupling [7], [8]: the former

refers to attenuating a disturbance propagating throughout

the platoon from the preceding vehicles; the latter refers to

decoupling such disturbance from the inter-vehicle spacing

error. Collision avoidance is another significant behaviour

in platooning: in this regard, external positivity has been

shown as a promising property to avoid collisions [1], [2]:

external positivity of a dynamic system is defined as the

nonnegativity of the output (i.e., inter-vehicle distance) for

any given nonnegative input (i.e., predecessor velocity). This

property has been studied only for ACC; its application in

CACC is potentially significant but still open.
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In practical platooning scenarios, unreliability of wireless

communication may induce transitions between CACC and

ACC [9], [10]: thus, notions of graceful degradation of

platooning performance are needed to guarantee desirable

properties even when CACC degenerates to ACC. Unfortu-

nately, available graceful degradation notions only consid-

ered string stability [4], giving a first motivation for this

work: studying an external positivity design for CACC with

desirable properties even when CACC degenerates to ACC.

The uncertainty around vehicle dynamics gives a second

motivation to the work: most platooning designs rely on the

knowledge of the time needed by the engine of each vehicle

to reach a desired acceleration (engine time constant). As the

engine time constant is uncertain and affected by velocity,

gear, vehicle load, and road slope, adaptive designs have

been proposed that adjust the control gains online to cope

with vehicle uncertainty [11], [12]. Yet, external positivity

and graceful degradation remain open problems in such

adaptive designs. The main contributions of this work are:

• An augmented external positivity design for CACC,

where on-board sensing is augmented by inter-vehicle

wireless communication;

• An integrated CACC-ACC design with graceful degra-

dation, i.e. where collision avoidance and string stability

are retained in both CACC and ACC modes;

• A novel adaptive design inspired by adaptive switched

control [13], [14], [15], [16] with stability proven for

arbitrary transitions between CACC and ACC modes.

The problem is presented in Section II. Section III dis-

cusses external positivity in CACC and ACC; Section IV

discusses the graceful degradation. Section V presents an

adaptive design to cope with vehicle uncertainty. Validations

are in Section VI, with conclusions in Section VII.

Standard norms are adopted, such as the L2 norm

(∥v∥
2
=

[∫∞

0
v⊤(t)v(t)dt

]1/2
) and the L∞ norm (∥v∥∞ =

supt≥0

[
v⊤(t)v(t)

]1/2
). We say that v ∈ L2 or v ∈ L∞

whenever the signal is bounded in the corresponding norm.

II. PROBLEM FORMULATION

Consider a predecessor-follower system with vehicles in-

dexed as i − 1 (predecessor) and i (follower). Each vehicle

has longitudinal dynamics

ṡi(t) = vi(t),

v̇i(t) = ai(t), (1)

τiȧi(t) = −ai(t) + ui(t),

where si, vi, ai ∈ R are the longitudinal position, velocity,

and acceleration of vehicle i (similar for vehicle i − 1).
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Dynamics (1) are standard in the literature [3], [17], [18],

[19], with the last equation capturing the engine dynamics,

i.e. the time constant τi > 0 representing the time required

by the engine to reach the desired acceleration ui ∈ R.

To establish a platoon, a spacing error is needed. The

velocity-dependent spacing error with time-headway h > 0

ei(t) = si−1(t)− si(t)− hvi(t), (2)

is commonly adopted to seek desirable properties like string

stability [6]. To regulate ei, consider an input in the form

ui(t) =

ACC mode
︷ ︸︸ ︷

k1ei(t) + k2νi(t) + k3ai(t)+k4ai−1(t)
︸ ︷︷ ︸

CACC mode

, (3)

with νi = vi−1 − vi being the relative velocity, and k1, k2,

k3, k4 control gains to be designed. The platooning protocol

(3) includes feedback from ei, νi, ai acquired via ACC on-

board sensors (radar, tachometer, accelerometer), and ai−1

available to vehicle i via CACC wireless communication.

Remark 1 (Transitions between modes): In line with [4],

we study transitions between CACC and ACC dictated by

communication failures that make ai−1 unavailable, cf.

Fig. 1. Unavailability of ai−1 during failures can be equiv-

alently represented by imposing k4 = 0 in ACC mode.

The following notions of external positivity and string

stability are known from the literature:

Definition 1 (External positivity [1]): A system

described by the transfer function G(s) from input u

to output y is said externally positive if and only if its

corresponding impulse response satisfies (L−1 is the inverse

Laplace transform)

g(t) = L
−1 {G(s)} ≥ 0, ∀t ≥ 0.

Thus, assuming zero initial conditions, we have

u(t) ≥ 0, ∀t ≥ 0 ⇒ y(t) ≥ 0, ∀t ≥ 0.

Lemma 1 (External positivity of inter-vehicle distance [1]):

For the predecessor-follower system (1), if system G(s)
with input ai−1 and output ai (equivalently, input vi−1 and

output vi) is externally positive, then the system with input

vi−1 and output ϵi = si−1 − si is also externally positive.

Definition 2 (String stability [6]): For the predecessor-

follower system (1), let G(s) be the transfer function from

ai−1 to ai. If G(s) satisfies

∥G∥∞ = sup
ω∈R

|G(jω)| ≤ 1,

then the predecessor-follower system is string stable.

Remark 2 (Collision avoidance): As ϵi is the inter-vehicle

distance, Definition 1 guarantees collision avoidance since,

in view of Lemma 1, any vi−1(·) ≥ 0 implies ϵi(·) ≥ 0. With

vi−1(·) ≥ 0, external positivity also allows vi(·) ≥ 0 [1].

The problem to be solved can be broken down as follows:

Problem 1: For the predecessor-follower system (1) with

spacing error (2), consider:

a) CACC mode: design the control gains (k1, k2, k3, k4)

Fig. 1: Integrated CACC/ACC architecture.

in (3) to achieve external positivity, string stability, and

ai−1 ∈ L2 ∩ L∞ ⇒ lim
t→∞

ei(t) = 0; (4)

b) ACC mode (equivalently, k4 = 0): design the re-

maining gains (k1, k2, k3) in (3) to achieve external

positivity, string stability, and (4);

c) Graceful degradation: design the gain k4 in CACC

and a set of gains (k1, k2, k3) common to CACC and

ACC, to guarantee properties in a)-b) in both modes

and stability for arbitrary CACC/ACC transitions;

d) Adaptive design: with unknown τi in (1), design adap-

tive gains (k̂1, k̂2, k̂3, k̂4) guaranteeing convergence to

externally positive and string stable dynamics, and

stability for arbitrary CACC/ACC transitions.

Defining the state xi = [ei νi ai]
⊤ and closing the loop

with (3), the following error dynamics are obtained

ẋi(t) =





0 1 −h

0 0 −1
k1

τi
k2

τi
k3−1

τi



xi(t) +





0
1
k4

τi



 ai−1(t), (5)

with k4 = 0 in ACC mode. The rationale of Problem 1 is as

follows: dynamics (5) show that ai−1 acts as a disturbance. A

persistent ai−1(·) prevents in general convergence. Thus, (4)

considers asymptotic convergence when ai−1(·) ∈ L2∩L∞:

(4) also accounts for string stability in Definition 2, since

∥G∥∞ is the L2-induced norm from ai−1 ∈ L2 to ai ∈ L2.

Analogous to [11], [12], convergence to externally positive

and string stable dynamics in d) guarantees that the properties

in a)-b) are attained asymptotically.

III. EXTERNAL POSITIVITY: CACC AND ACC MODES

When ai−1 is available for control, [7], [8] proposed a

CACC design inspired by disturbance decoupling1 in the

form

ui(t)=k1ei(t) + k2νi(t) +
(

1− τi

h
−hk2

)

ai(t) +
τi

h
ai−1(t),

(6)

with k1, k2 > 0 arbitrary, and the other gains designed as

k3 := 1− τi
h −hk2, k4 := τi

h . Remarkably, the design of (6)

attains other properties beyond disturbance decoupling.

Proposition 1 (Externally positive CACC): Consider the

predecessor-follower system (1) with spacing error (2). The

disturbance-decoupling CACC law (6) solves item a) of

Problem 1 for any h > 0.

1In longitudinal platooning, disturbance decoupling aims to make the
controlled variable ei(·) decoupled from the disturbance ai−1(·).
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Proof: By direct calculation from (5), it can be verified

that the closed loop with the law (6) gives a Hurwitz state

matrix, and the transfer function from ai−1 to ai is

G(s) =
k4

τi
s2 + k2

τi
s+ k1

τi

s3 + 1−k3

τi
s2 + hk1+k2

τi
s+ k1

τi

=
h−1

s+ h−1
, (7)

which is externally positive for any h > 0. In fact, being

G(s) a first-order system, its impulse response is g(t) =
h−1e−h−1t, t ≥ 0 which satisfies Definition 1.

String stability is verified by Definition 2 as (7) satisfies

∥G∥∞ = 1. Implication (4) holds from standard input-output

properties of stable systems [20, Cor. 3.3.1].

Although external positivity in ACC has been shown in

[1], [2], let us propose a different approach here, which later

(Sect. IV) allows to integrate CACC and ACC.

Theorem 1 (Externally positive ACC): Consider the

predecessor-follower system (1) with spacing error (2). The

ACC control law

ui(t) = k1ei(t) +
4τi
h2

νi(t) +

(

1− k1h
2

4
− 4τi

h

)

ai(t),

(8)

with k1>0 arbitrary, solves b) of Problem 1 for any h>0.

Proof: By direct calculation from (5), it can be verified

that the closed loop with the law (8) gives a Hurwitz state

matrix, with transfer function from ai−1 to ai being

G(s) =
k2

τi
s+ k1

τi

s3 + 1−k3

τi
s2 + hk1+k2

τi
s+ k1

τi

=
4h−2

(s+ 2h−1)
2
,

(9)

which is externally positive for any h > 0. The control

gains in (8) have been obtained as follows: to attain external

positivity, let us seek a transfer function in the form

G(s) =
p

s+ w
+

q

(s+ w)2
+

r

s+ v
, (10)

with (p, q, r, w, v) and (k1, k2, k3) to be found by equating

(10) with (9). We obtain (intermediate steps are omitted)

v = k1k
−1
2 , w2 = k2τ

−1
i ,

2k1√
τik2

+
k2

τi
=

hk1 + k2

τi
⇒ k2 =

4τi
h2

,

τi
k1

k2
+ 2

√

τik2 = 1− k3 ⇒ k3 = 1− k1h
2

4
− 4τi

h
,

where k1 remains an arbitrary parameter. Being G(s) in (9)

a second-order critically-damped system, external positivity

is verified as the impulse response is g(t) = h−2te−h−2t,

t ≥ 0. As (9) satisfies ∥G∥∞ = 1, string stability is also

attained for any h > 0. Implication (4) holds from standard

input-output properties of stable systems [20, Cor. 3.3.1].

Remark 3 (String stable ACC): String stability of ACC in

Theorem 1 for any h > 0 seems to contradict known

results about string instability of ACC [21], [22], [23],

[24]: however, such results use h = 0. Meanwhile, as some

literature reports string instability of ACC for small h [4],

[25], [26], let us remark that there is no contradiction as

well: there, a different ACC control law with less degrees of

freedom is adopted

hu̇i(t) = −ui + k1ei(t) + k2νi(t)− hk2ai(t). (11)

As gain −hk2 in (11) is merely chosen to obtain a derivative

action k2 (νi − hai) = k2ėi, the degree of freedom of k3 is

lost in the design, making ACC string unstable for small h.

IV. EXTERNAL POSITIVITY: GRACEFUL DEGRADATION

Communication failures trigger switches between CACC

and ACC. A question arises if CACC and ACC can be

seamlessly integrated in the presence of such failures: an

answer is found by exploiting the freedom to choose arbitrary

k1, k2>0 in (6) and arbitrary k1>0 in (8).

Theorem 2 (Seamless CACC/ACC integration): Consider

the predecessor-follower system (1) with spacing error (2).

The integrated CACC-ACC law

ui(t) =
4τi
h3

ei(t) +
4τi
h2

νi(t) +

(

1− 5τi
h

)

ai(t)

+

{
τi
h ai−1(t) in CACC mode

0 in ACC mode
(12)

solves item c) of Problem 1 for any h > 0.

Proof: The result is obtained noting that (12) is

constructed to satisfy both CACC design (6) (Proposition

1) and ACC design (8) (Theorem 1). We need k4 = τi
h in

CACC and k4 = 0 in ACC. We need k2 = 4τi
h2 in both CACC

and ACC, possible as k2 is arbitrary in (6). Then, k1 and k3
remain to be determined. For CACC, we need

k3 = 1− τi

h
− hk2 = 1− τi

h
− 4τi

h
, (13)

where we have substituted k2 = 4τi
h2 . For ACC, we need

k3 = 1− k1h
2

4
− 4τi

h
. (14)

As k1 is arbitrary in (6) and (8), there is freedom to impose
k1h

2

4
= τi

h , i.e. k1 = 4τi
h3 . To prove stability for arbitrary

transitions, closing the loop with (12) gives

ẋi =





0 1 −h

0 0 −1
4

h3

4

h2 − 5

h





︸ ︷︷ ︸

A

xi +











0
1
1

h



 ai−1 in CACC





0
1
0



 ai−1 in ACC

(15)

Being the state matrix A Hurwitz and common to CACC and

ACC modes, a common Lyapunov function can be adopted

V
(
xi

)
=

1

2
x⊤
i Pxi, (16)

where P > 0 solves the Lyapunov equation

A⊤P + PA = −Q, Q > 0. (17)

Stability of the origin of (15), not shown due to space

limits, follows from standard results on common Lyapunov

functions [27, Sect. 2.1], noting that V
(
xi

)
is continuous at

any transition between CACC and ACC modes.
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V. EXTERNAL POSITIVITY: ADAPTIVE DESIGN

In case τi is unknown, none of the laws (6), (8), (12)

can be implemented. The works [11], [12] recently studied

adaptive tools to handle uncertainty in τi. These tools are

extended here in a switched-systems sense.

Step 1) Reference dynamics: Define a reference engine

time constant τ̄i, used to form vehicle reference dynamics

˙̄ei(t) = vi−1(t)− v̄i(t)− hāi(t),

˙̄vi(t) = āi(t), (18)

τi ˙̄ai(t) = −āi(t) + ūi(t),

with control law in the same structure as (12)

ūi(t) =
4τ̄i
h3

ēi(t) +
4τ̄i
h2

ν̄i(t) +

(

1− 5τ̄i
h

)

āi(t)

+

{
τ̄i
h ai−1(t) in CACC mode

0 in ACC mode
(19)

but with τ̄i in place of τi. Note that vi−1 = νi−1 + vi is

available with on-board sensing. Define the reference model

state x̄i = [ēi ν̄i āi]
⊤ with ν̄i = vi−1 − v̄i.

Step 2) Ideal model matching: By design, x̄i has dynamics

as in (15). We find now an ideal control u∗
i making the

predecessor-follower (1) match the reference predecessor-

follower dynamics (18)-(19): direct calculations give

u∗
i (t) = k∗1ei(t) + k∗2νi(t) + k∗3ai(t)

+

{
k∗4ai−1(t) in CACC mode

0 in ACC mode
(20)

with k∗1 = 4τi
h3 , k∗2 = 4τi

h2 , k∗3 = 1 − 5τi
h , k∗4 = τi

h . With (1)

and (20), xi has also dynamics as in (15).

Step 3) Adaptive model matching: As u∗
i in (20) cannot

be implemented, an adaptive version is designed hereafter.

Theorem 3 (Adaptive design): Consider the predecessor-

follower system (1) with spacing error (2) and adaptive law

ui(t) = k̂1(t)ei(t) + k̂2(t)νi(t) + k̂3(t)ai(t)

+

{

k̂4(t)ai−1(t) in CACC mode
0 in ACC mode

(21)

where k̂1, k̂2, k̂3, k̂4 are adaptive gains updated as

˙̂
k1(t) = −γ1B

⊤Px̃i(t)ei(t),

˙̂
k2(t) = −γ2B

⊤Px̃i(t)νi(t),

˙̂
k3(t) = −γ3B

⊤Px̃i(t)ai(t),

˙̂
k4(t) =

{
−γ4B

⊤Px̃i(t)ai−1(t) in CACC mode
0 in ACC mode

(22)

where γ1, γ2, γ3, γ4 > 0 are update gains, x̃i = xi − x̄i

is the error between the system and the reference model

state, B⊤ =
[
0 1 h−1

]
and P > 0 solves the Lyapunov

equation (17). Then, the adaptive law (21)-(22) solves item

d) of Problem 1 for any h > 0. In particular,

lim
t→∞

x̃i(t) = 0, (23)

i.e. the adaptive closed loop converges to the externally

positive and string stable reference model dynamics.

Proof: To get the dynamics of x̃i, close the loop of (1)

with (21): then, add and subtract the ideal control (20):

˙̃xi(t) = Ax̃i(t) +B
1

k∗4

(
k̃1(t)ei(t) + k̃2(t)νi(t) + k̃3(t)ai(t)

+

{

k̃4(t)ai−1(t)
)

in CACC mode
0
)

in ACC mode
(24)

with k̃1=k̂1−k∗1 , k̃2=k̂2−k∗2 , k̃3=k̂3−k∗3 , k̃4=k̂4−k∗4 . Consider

the Lyapunov function (common to CACC and ACC)

V
(
x̃i, k̃

)
=

1

2
x̃⊤
i Px̃i+

k̃21
2γ1k∗4

+
k̃22

2γ2k∗4
+

k̃23
2γ3k∗4

+
k̃24

2γ4k∗4
(25)

with k̃⊤ =
[

k̃1 k̃2 k̃3 k̃4
]
. The time derivative of V gives

V̇
(
x̃i, k̃

)
=

1

2
x̃⊤
i

(
A⊤P + PA

)
x̃i +

k̃1
˙̃
k1

γ1k
∗
4

+
k̃2

˙̃
k2

γ2k
∗
4

+
k̃3

˙̃
k3

γ3k
∗
4

+
k̃4

˙̃
k4

γ4k
∗
4

+B⊤Px̃i
1

k∗4

(
k̃1ei + k̃2νi + k̃3ai

+

{

k̃4ai−1

)
in CACC mode

0
)

in ACC mode
(26)

where dynamics (24) is used. Substitution of the Lyapunov

equation A⊤P + PA = −Q and rearranging terms gives

V̇
(
x̃i, k̃

)
= −1

2
x̃⊤
i Qx̃i +

k̃1

k∗4
(B⊤Px̃iei +

˙̂
k1

γ1
)

+
k̃2

k∗4
(B⊤Px̃iνi +

˙̂
k2

γ2
) +

k̃3

k∗4
(B⊤Px̃iai +

˙̂
k3

γ3
)

+







k̃4

k∗

4

(B⊤Px̃iai−1 +
˙̂
k4

γ4

) in CACC mode

k̃4

k∗

4

˙̂
k4

γ4

in ACC mode

(27)

where we have also used the fact that the ideal gains in (20)

are constant. Substitution of the adaptive laws (22) gives

V̇
(
x̃i, k̃

)
= −1

2
x̃⊤
i Qx̃i ≤ 0. (28)

As the Lyapunov function (25) is common to CACC and

ACC, it is continuous at any arbitrary transition instants.

Continuity and (28) imply that the origin (x̃i, k̃) = 0 is

stable, i.e. the signals x̃i(·), k̃(·) are bounded (x̃i, k̃ ∈ L∞).

We obtain convergence of x̃i using Barbalat’s Lemma.

Recall that ai−1(·) ∈ L∞ (cf. Problem 1), implying x̄i ∈ L∞

as a result of the stable reference model (18). It follows that

xi = x̄i+ x̃i ∈ L∞. Then, ˙̃xi ∈ L∞ from the error dynamics

(24). To apply Barbalat’s Lemma, we need x̃i ∈ L2. This can

be shown by integrating V (t) = V (x̃i(t), k̃(t)) in (28)

1

2

∫ ∞

0

x̃⊤
i (t)Qx̃i(t) dt = V (0)− V∞, (29)

where V∞ = limt→∞ V (t) is bounded. Consequently, x̃i ∈
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(a) State-of-the-art ACC design with external positivity.
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(b) Proposed ACC design with external positivity.

Fig. 2: Spacing errors, inter-vehicle distances, velocities and accelerations with different ACC designs. Note the strong initial braking of the

state of the art as compared to the proposed design. For both designs, positive inter-vehicle distances validate collision avoidance.
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(b) Adaptive CACC-ACC design with uncertainty in τi.

Fig. 3: CACC-ACC designs with different knowledge of τi. Shaded areaa indicate active CACC mode. Spacing errors, inter-vehicle distances,

velocities and accelerations for non-adaptive and adaptive designs. The proposed adaptive design improves the spacing error behavior.

L2, which implies from Barbalat’s Lemma that x̃i → 0
as t → ∞. This finally implies that the system state xi

converges to the state x̄i of the reference model, which is

externally positive and string stable by design.

Remark 4 (Degradation in disturbance decoupling):

Differently from CACC, no ACC design (8) can achieve

disturbance decoupling [7].

VI. NUMERICAL EXAMPLES

Let us first validate ACC, to allow a comparison with

the state-of-the-art externally positive design [2]. For the

homogeneous scenario in the numerical example of [2], i.e.

h = 1, τi = 0.1, ∀i, the state-of-the-art design is

ui(t) = −k⊤






vi(t)
ai(t)
ϵi(t)
zi(t)




 ,

k = [18.225 1.3 − 5.625 50.625]

żi(t) = hvi(t)− ϵi(t)

(30)

We compare (30) with the design (12) in Theorem 2,

specialized to ACC (k4 ≡ 0). The other gains are θ1 = 1.167

and θ1 = 0.816. We consider a platoon with 1 leading

and 3 following vehicles. We let the leader accelerate in a

sinusoidal fashion with u0 = sin(0.1t) + 0.5 sin(0.5t) up to

5π seconds, followed by a braking phase with u0 = −5.5
up to 6.5π seconds, an acceleration phase with u0 = 1
up to 7.5π seconds, and u0 = 0 thereafter. The braking

phase is designed to check collision avoidance. The initial

conditions of the vehicles, reported in Table I, have also

been selected to induce an initial braking phase. Although

the zoomed spacing errors ei in Fig. 2 show the same

response at regime, the velocity response in Fig. 2a shows

a strong initial braking phase for the state-of-the-art design

(30), in contrast with the smooth response of the proposed

design in Fig. 2b. The acceleration responses suggest a more

comfortable behaviour for the proposed design. Yet, the

positive inter-vehicle distances validate collision avoidance

for both designs. As long as u0 is non-vanishing, no ACC

design can regulate ei to zero, cf. Remark 4: regulation

becomes possible at the end of the scenario when u0 = 0.

We now consider an integrated CACC-ACC scenario, us-
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TABLE I: Initial conditions and ideal engine constants

i 0 1 2 3

si(0) 0 -2 -4 -6

vi(0) 10 12 8 11

ai(0) 0 0 0 0

τi 0.2 0.1 0.3 0.25

ing another platoon with 1 leading and 3 following vehicles,

with the same initial conditions as before and heterogeneous

engine constants as in Table I and h = 0.7. To simulate

uncertain engine time constants, we consider

1) the non-adaptive CACC-ACC design wrongly assum-

ing that τi = τ0 = 0.2, for i ∈ {1, 2, 3};

2) the adaptive CACC-ACC design in Theorem 3, with

γ = 0.1 and Q = 103I .

The leading vehicle has the same u0 as before. The com-

parative results are in Fig. 3 for various transitions between

CACC and ACC (the shaded area indicates active CACC

mode): one of such transitions occurs during braking. By

comparing Fig. 3a with Fig. 3b, it can be seen that uncer-

tainty in τi creates non-zero spacing errors ei in the non-

adaptive design, even when CACC is active. In the adaptive

design, thanks to the disturbance decoupling property, the

spacing errors ei converge to zero when CACC is active,

despite u0 ̸= 0: ACC makes ei converge to zero only at

the end of the scenario when u0 = 0. Despite performance

degradation of ACC, collision avoidance is achieved, even in

the non-adaptive design. The comparison between Fig. 2 and

Fig. 3 show better vehicle-following behaviour of CACC-

ACC, with smoother acceleration/deceleration than the state-

of-the-art ACC in [2].

VII. CONCLUSIONS

This work provided an external positivity framework for

longitudinal platooning where in the transitions between co-

operative adaptive cruise control (CACC) and adaptive cruise

control (ACC) desirable properties of collision avoidance and

string stability can be guaranteed. Such graceful transitions

have been studied also in the presence of vehicle parameter

uncertainty, via a suitable adaptive control design.
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