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Abstract— In this paper, we revisit structure ex-
ploiting SDP solvers dedicated to the solution
of Kalman-Yakubovic-Popov semi-definite programs
(KYP-SDPs). These SDPs inherit their name from
the KYP lemma and they play a crucial role in e.g.
robustness analysis, robust state feedback synthesis,
and robust estimator synthesis for uncertain dynami-
cal systems. Off-the-shelve SDP solvers require O(n6)
arithmetic operations per Newton step to solve this
class of problems, where n is the state dimension of
the dynamical system under consideration. Special-
ized solvers reduce this complexity to O(n3). How-
ever, existing specialized solvers do not include semi-
definite constraints on the Lyapunov matrix, which
is necessary for controller synthesis. In this paper,
we show how to include such constraints in structure
exploiting KYP-SDP solvers.

I. INTRODUCTION
Let Sn denote the set of symmetric matrices of dimen-

sion n. In this work, we study optimization problems with
semi-definite constraints of the form

minimize
λ∈Rp,P ∈Sn

c⊺λ − trace(ΣP ) (1a)

s.t.
⎛

⎝

A B

I 0
⎞

⎠

⊺

⎛

⎝

0 P

P 0
⎞

⎠

⎛

⎝

A B

I 0
⎞

⎠
+
⎛

⎝

Q(λ) S(λ)

S⊺(λ) R(λ)

⎞

⎠
≺ 0,

(1b)
N(λ) ≻ 0, (1c)
P ≻ 0, (1d)

where H(λ) ∶= H0 + ∑
p
i=1 λiHi for H ∈ {N, Q, S, R}

are affine matrix valued functions of λ. The matrix
parameters are chosen to be of compatible dimensions,
i.e., Qi ∈ Sn, Si ∈ Rn×m, Ri ∈ Sm, Ni ∈ Sr, A ∈ Rn×n,
B ∈ Rn×m and c ∈ Rp for i = 0, . . . , p and positive
integers n, m, p, r ∈ N. Finally, we assume that the matrix
pair (A, B) is controllable and that the matrix Σ ∈ Sn

is positive semi-definite. Linear matrix inequalities of
the form (1b) frequently appear in control and signal
processing and are related to the celebrated KYP lemma.
A partial list of applications for the SDP (1) includes
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robustness analysis, robust controller synthesis, and ro-
bust estimator synthesis for linear dynamical systems.
Today, the solution of online SDPs, e.g., for online data-
driven control, or the solution of large SDPs, e.g., for
estimating the Lipschitz constant of recurrent neural
networks, should be of particular interest.

In many scenarios where the SDP (1) appears, the
state dimension n is larger than the number p of mul-
tipliers λi. In this case, the O(n2) decision variables in
the matrix P typically dominate the computational effort
for solving (1). Many off-the-shelve solvers work in the
canocical representation of LMIs F (x) = F0 + x1F1 + . . .,
for which the the cost of one Newton step scales with n6.
LMILab and STRUL [7] can beneficially exploit matrix
variables by cleverly assembling the involved Hessian
matrix. The KYP-LMI (1b) fits well into this structure
(7) in [7], but there are further possibilities to solve
optimization (1a)-(1c) beyond cleverly assembling the
involved Hessian within a standard scheme [3], [15], [11],
[8], [7], [21], [20].

Further structure exploiting algorithms for (1a)-(1c)
include cutting plane methods [22], [6], [10], [1]. These
methods optimize over P in an inner loop, whereas cut-
ting planes for λ are constructed in an outer loop. Such a
splitting approach enables a more efficient optimization
over P , e.g., by solving Riccati equations. Consequently,
cutting plane methods are effective when the number of
variables λi is small, but according to [12] probably less
effective when this number is moderate.

Alternatively to optimizing over P in (1), one can also
approach (1a)-(1c) by solving the equivalent frequency
domain inequality. This is considered in [14], where the
frequency domain inequality, which involves an infinite
number of semi-definite constraints, is solved using a
sampling approach. The latter can reduce the computa-
tional effort for Newton iterations, but produces only a
lower bound on the optimal value. For this reason, in [12],
a barrier function for the frequency domain inequality
over all frequencies is constructed. Evaluating this barrier
function requires solving Riccati and Lyapunov equations
in each inner loop iteration. In addition, [12] differen-
tiates through the Riccati and Lyapunov equation to
enable efficient optimization also for moderate numbers
of λi using second-order optimization algorithms.

In the present paper, we extend the problem (1a)-
(1c) studied in the cited KYP-SDP literature with the
semi-definite constraint (1d). This constraint enables, for
example, robust state-feedback synthesis. Methodologi-
cally, we employ a second-order optimization algorithm
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to minimize a barrier function relaxation of (1) similarly
to [12]. To this end, our key step is introducing a convex
barrier function for the existence of a solution to a Riccati
equation.

II. Problem statement
Since the problem (1) can be expensive to solve by off-

the-shelve SDP solvers, we study the alternative problem

minimize
λ∈Rp

c⊺λ − trace ΣP+(λ) (2)

s.t. N(λ) ≻ 0, P+(λ) ≻ 0, λ ∈ D.

Here, the value of the function λ ↦ P+(λ) is defined
as the unique anti-stabilizing solution P of the Riccati
equation F (P, λ) = 0, where F is defined as

F (P, λ) = A⊺P + PA +Q − (PB + S)R−1
(PB + S)⊺ (3)

and where we abbreviate Q = Q(λ), S = S(λ) and R =
R(λ). Further, D is defined as the set of all λ ∈ Rp with
R(λ) ≺ 0 for which F (⋅, λ) = 0 has an anti-stabilizing
solution. This problem formulation is motivated by the
following extended version of the KYP lemma [5].

Lemma 2.1: Consider a fixed λ ∈ Rp and suppose that
eig(A)∩ iR = ∅ and that (A, B) is controllable. Then the
following statements are equivalent.

1)
⎛

⎝

(A − iωI)−1B

I

⎞

⎠

∗

⎛

⎝

Q S

S⊺ R

⎞

⎠

⎛

⎝

(A − iωI)−1B

I

⎞

⎠
≺ 0 for

all ω ∈ R ∪ {∞}.
2) There exist some symmetric P satisfying (1b).
3) R(λ) ≺ 0 and there exists P ∈ Sn with F (P, λ) ≺ 0.
4) R(λ) ≺ 0 and the Riccati equation F (P, λ) = 0 has

an anti-stabilizing solution P+(λ) ∈ Sn.
We mention that standard solvers are based on 2), [12],

[14] are based on 1), whereas we utilize 4).
In the course of our exposition, we show that our for-

mulation (2) provides the same numerical advantages as
[12], but additionally allows us to consider the constraint
(1d) and the cost term − trace ΣP . The challenge is to
handle the constraint λ ∈ D, i.e., the feasibility of the
Riccati equation, and the nonlinear function λ↦ P+(λ).
We address these challenges by deriving a convex barrier
function for the feasibility of the Riccati equation and by
showing that the mapping λ ↦ P+(λ) is concave (in the
sense of Hermitian valued functions).

We conclude the section with an equivalence theorem
for (1) and (2) which is proven in Section IV.

Theorem 2.2 (Equivalence of (1) and (2)): Problem
(1) and problem (2) are equivalent, i.e., the optimal
values coincide and λ ∈ Rp is feasible for (2) if and only
if there exists P ∈ Sn such that (λ, P ) is feasible for (1).

III. An interior point method for (2)
To solve (2), we propose to employ a path-following

barrier method similar to [12]. For this purpose, a
barrier for the constraint λ ∈ D is given by λ ↦

− log det(−R(λ)) − log det ∆(λ) where ∆(λ) ∶= P+(λ) −
P−(λ) is the difference between the stabilizing solution

P−(λ) and the anti-stabilizing solution P+(λ) of the
Riccati equation. That this yields a suitable barrier is
proven in Section IV. For the remaining semi-definite
constraints, we utilize the standard log det barrier func-
tion. Overall, for an increasing sequence of t, we minimize

vt(λ) = t(c⊺λ − trace ΣP+(λ)) − log det N(λ) (4)
− log det P+(λ) − log det(−R(λ)) − log det ∆(λ)

as a function of λ. To solve this optimization problem,
we need to determine first- and second-order derivatives
of the solutions P+(λ), P−(λ) of the Riccati equation
F (P, λ) = 0. To simplify the notation we drop the
argument λ in our matrix-valued functions sometimes.

Theorem 3.1: Given λ0 ∈ Rp and P0 ∈ Sn with
F (P0, λ0) = 0, if A − BK for K ∶= R−1(P0B + S)⊺

has no eigenvalues on the imaginary axis, then there
exist a neighbourhood N of λ0 and an arbitrarily often
differentiable function P ∶ N → Sn with P (λ0) = P0, such
that F (P (λ), λ) = 0 for all λ ∈ N . Moreover, the partial
derivative ∂λiP is the solution of the Lyapunov equation

0 = ∂λi
P (A −BK) + (A −BK)⊺∂λi

P

+
⎛

⎝

I

−K

⎞

⎠

⊺

⎛

⎝

Qi Si

S⊺i Ri

⎞

⎠

⎛

⎝

I

−K

⎞

⎠
. (5)

Furthermore, the second order partial derivative ∂λi∂λj P
is the unique solution of the Lyapunov equation

0 = (A −BK)⊺∂λi∂λj P + ∂λi∂λj P (A −BK)

−∂λj K⊺R∂λiK − ∂λiK
⊺R∂λj K, (6)

where ∂λi
K ∶= R−1(B⊺∂λiP + S⊺i −RiK).

For the proof, we refer to [12], [17].
Theorem 3.1 enables us to differentiate the solutions

P+(⋅) and P−(⋅) of the Riccati equation. As a conse-
quence, we can formulate the path-following interior
point method Algorithm 1 for solving (2). Derivatives of
the barrier functions are derived using standard formulas
as provided in Algorithm 1.

Remark 3.2 (Initial feasible points): To generate an
initial interior point for Algorithm 1, we apply a standard
procedure found in [4] and extend our decision variable
to λ̃ ∶= (λ0 λ1 ⋯ λp)

⊺

, the matrices Q, S and R to

⎛

⎝

Q̃(λ̃) S̃(λ̃)

S̃(λ̃)⊺ R̃(λ̃)

⎞

⎠
∶=
⎛

⎝

Q(λ) S(λ)

S(λ)⊺ R(λ)

⎞

⎠
− λ0
⎛

⎝

I 0
0 I

⎞

⎠
,

and N to Ñ(λ̃) ∶= N(λ)+λ0I. Then λ̃ is an interior point
for the modified problem (1) with Q̃(⋅), R̃(⋅), S̃(⋅), Ñ(⋅)
replacing Q(⋅), R(⋅), S(⋅), N(⋅) if λ0 is sufficiently large.
An interior point for the original problem can thus be
found by minimizing λ0 as the objective for the modified
problem. If the infimum of this auxiliary problem is
larger than or equal to zero, then the original problem is
infeasible.
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Algorithm 1 Solver for (2)
Input: ε, tmax, initial feasible point λ of (2).
while t ≤ tmax do

P− ← stabilizing solution of F (P, λ) = 0
P+ ← anti-stabilizing solution of F (P, λ) = 0
(Q, S, R, N)← (Q(λ), S(λ), R(λ), N(λ))
vt ← − log det P+ − log det(−R) − log det N

− log det ∆ + t(c⊺λ − trace ΣP+)
(∇vt)i ← − trace ∆−1∂λi∆ + t(ci − trace Σ∂λiP+)

− trace P −1
+ ∂λiP+ − trace R−1Ri − trace N−1Ni

(Hvt)ij ← trace P −1
+ (∂λiP+P

−1
+ ∂λj P+ − ∂λi∂λj P+)

+ trace RiR
−1RjR−1 + trace NiN

−1NjN−1

+ trace ∆−1(∂λi∆∆−1∂λj ∆ − ∂λi∂λj ∆)
−t trace Σ∂λi∂λj P+

d← −H−1
vt
∇vt (Newton search direction)

α ← line search for argminα vt(λ + αd)
λ← λ + αd
if (stopping criterion) then t← 10t

end while
return (P+, λ)

IV. Convexity and equivalence result of the
reformulation

Algorithm 1 relies on the equivalence of (1) and (2),
and the fact that (4) is a convex barrier function. We
prove this fact in this section.

Lemma 4.1: Suppose R ≺ 0 and (A, B) is controllable.
Then P ∈ Sn with F (P, λ) ≺ 0 exists if and only if P+
and P− exist. If one of these conditions holds, then the
following facts are true:

1) ∀P ∈ Sn ∶ F (P, λ) ⪯ 0⇒ P− ⪯ P ⪯ P+,
2) ∀ε > 0∃P ∈ Sn ∶ F (P, λ) ≺ 0 and P+ − εI ≺ P ≺ P+,
3) ∆ = P+ − P− ≻ 0.

Proof: According to [18], R ≺ 0 implies that P ∈ Sn

with F (P, λ) ≺ 0 exists if and only if P+ and P− exist.
1) Due to R ≺ 0, this fact can be found in [18].
2) Since P+ exists, (A − BK+) is anti-stable, where

K+ = R−1(P+B +S)⊺. Therefore, the Lyapunov equation

(A −BK+)
⊺H +H(A −BK+) = I

has a solution H ≻ 0. Now, for ε > 0, consider

F (P+ − εH, λ) = A⊺(P+ − εH) + (P+ − εH)A +Q

− (S + (P+ − εH)B)R−1
(S + (P+ − εH)B)⊺

= −ε(A −BK+)
⊺H − εH(A −BK+)

− ε2HBR−1B⊺H

= −εI − ε2HBR−1B⊺H.

This expansion proves that there exists an ε0 > 0, such
that P ∶= P+ − εH is feasible for (1b) for all ε ∈]0, ε0[.

3) Due to 2), there exists P ∈ Sn with P ≺ P+. Hence,
by 1), we have P− ⪯ P ≺ P+.

Proof of Theorem 2.2: Let (λ, P ) be any feasible point
of (1). Due to Lemma 2.1 this implies R ≺ 0 and the
existence of P+, i.e., λ ∈ D. Furthermore, P ⪯ P+ holds

(Lemma 4.1) implying P+ ≻ 0 and c⊺λ− trace ΣP ≥ c⊺λ−
trace ΣP+. Hence, λ is feasible for (2) and the optimal
value of (2) is smaller than or equal to the optimal value
of (1).

Now let λ ∈ Rp be any feasible point of (2). Then R ≺
0 holds true and the anti-stabilizing solution P+ exists
implying (Lemma 4.1) the existence of P ∈ Sn with P+ −
εI ⪯ P ≺ P+ and F (P, λ) ≺ 0 for any ε > 0. Hence, we can
choose ε so small that P ≻ 0 is guaranteed and we can
perform a Schur complement showing that (P, λ) also
satisfies (1b). Furthermore, P can be moved arbitrarily
close to P+ by letting ε → 0, in which case the objective
value of (1) for (λ, P ) converges to c⊺λ − trace P+. ∎

Theorem 2.2 already implies that the feasible set of (2)
is convex since it is the projection of the convex feasible
set of (1) onto the λ variable. However, we are also able to
show that all the constraint functions and the objective
function of (2) are convex. To this end, we show the
convexity (concavity) of the Hermitian valued functions
λ ↦ P−(λ) and λ ↦ P+(λ). Such functions are called
convex with respect to the cone of positive semi-definite
matrices, if P−(αλ1+(1−α)λ2) ⪯ αP−(λ1)+(1−α)P−(λ2)
holds for all α ∈ [0, 1] or concave, if P+(αλ1+(1−α)λ2) ⪰
αP+(λ1)+(1−α)P+(λ2) holds for all α ∈ [0, 1] ([4] p. 109).

Lemma 4.2: The mapping D → Sn, λ ↦ P−(λ) is
convex and the mapping D → Sn, λ ↦ P+(λ) is concave.
Furthermore, the mappings λ ↦ − log det P+(λ), λ ↦
− log det ∆(λ), and λ↦ − trace ΣP+(λ) are convex.

Proof: W.l.o.g. consider λ ↦ P+(λ) and two arbi-
trary λ1, λ2 ∈ D. Then P1 = P+(λ1) and P2 = P+(λ2) are
solutions of the Riccati equation and thus both satisfy
the non-strict version of (1b). Since (1b) is a convex
constraint in both λ and P , also λα = αλ1 + (1 − α)λ2
and Pα = αP1 + (1 − α)P2 satisfy the non-strict (1b)
for any α ∈ [0, 1]. Consequently, Pα satisfies the Riccati
inequality F (Pα, λ) ⪯ 0 for λ = λα implying by 1) of
Lemma 4.1 that

αP+(λ1) + (1 − α)P+(λ2) = Pα ⪯ P+(αλ1 + (1 − α)λ2)

holds. This shows the concavity of P+(⋅).
The convexity of the log det functions and the cost

function of (2) follows from the composition theorem ([4]
page 110) for convex functions.

A key role in our barrier function (4) is played by the
difference ∆ between the stabilizing and anti-stabilizing
solution of the Riccati equation. This difference can be
obtained by solving the Riccati equation twice or, more
efficiently, it can be obtained from only one solution P+
of the Riccati equation and then solving a Lyapunov
equation, according to the following lemma.

Lemma 4.3: Let P1, P2 denote two solutions of the
Riccati equation F (P, λ) = 0 and K1 = R−1(S + P1B)⊺

the controller gain of P1. If the difference Y = P2 − P1 is
invertible, then it satisfies the Lyapunov equation

Y −1
(A −BK1)

⊺
+ (A −BK1)Y

−1
= BR−1B⊺ (7)

and (A−BK1) has no eigenvalues on the imaginary axis.
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Proof: Since P2 is a solution of the Riccati equation,
F (P2, λ) = 0 holds true. Substituting P1+Y for P2 yields

0 = A⊺(P1 + Y ) + (P1 + Y )A +Q

− (S + (P1 + Y )B)R−1
(S + (P1 + Y )B)⊺.

By rearranging terms and using F (P1, λ) = 0 we obtain

0 = A⊺Y + Y A − Y BK1 −K⊺1 B⊺Y − Y BR−1B⊺Y.

Multiplying this equation from both sides by Y −1 yields
the claimed Lyapunov equation. Next, we show that (A−
BK1) has no imaginary eigenvalues. To this end, assume
that w is an eigenvector of (A −BK1)

⊺ with imaginary
eigenvalue µ. Multiplying (7) from both sides by w yields

w∗BR−1B⊺w = w∗Y −1
(µw) + (µw)∗Y −1w = 0.

Since BR−1B⊺ ⪯ 0, this implies BR−1B⊺w = 0. The latter
cannot be true, since (A, B) is controllable implying
that ((A−BK1)

⊺, BR−1B⊺) is observable. This prevents
the existence of an eigenvector of (A − BK1)

⊺ with
BR−1B⊺w = 0 by the Hautus Lemma.

Both the Riccati equation (3) and the Lyapunov equa-
tion (7) also appear in [12]. There, these equations are
solved to obtain the factorization of a transfer matrix in-
volved in their barrier function. Our arguments show that
solving this Riccati and Lyapunov equation corresponds
to computing both solutions of the Riccati equation (3).

Finally, we conclude in the following lemma that (4)
is indeed a suitable barrier function for the problem (2).

Theorem 4.4: Let t > 0 be fixed. If (λk) is a sequence
of feasible values for (2) with a limit λ̄ on the boundary
of the feasible set, then vt(λk) converges to infinity.

Proof: Since λ̄ is on the boundary of the feasible
set of (2), we can perturb the problem data Q, R, N as
in Remark 3.2 to Q̃(λ) = Q(λ) − λ0I, R̃(λ) = R(λ) − λ0I
and Ñ(λ) = N(λ) + λ0I with λ0 > 0. For the perturbed
problem, all λk and λ̄ are feasible and P+ and P− satisfy
the strict Riccati inequality. Consequently, P+ and P−
satisfy, by Lemma 4.1, the inequality

P̃−(λk) ⪯ P−(λk) ⪯ P+(λk) ⪯ P̃+(λk)

for all k ∈ N, where P̃−(λk) and P̃+(λk) are the solutions
of the perturbed Riccati equations. Since P̃−(λk) and
P̃+(λk) converge to P̃−(λ̄) and P̃+(λ̄), the sequences
P+(λk) and P−(λk) are bounded and, consequently, all
log-determinants in (4) are bounded from below.

If R(λ̄) /≺ 0, then, by continuity, we infer R(λ̄) ⪯ 0 and
det R(λ̄) = 0 which implies that one of the terms in (4)
goes to infinity while the others are bounded from below.

Hence, suppose R(λ̄) ≺ 0. If det ∆(λk) → 0, then
vt(λk) also goes to infinity. If det ∆(λk) does not con-
verge to zero, then there exist accumulation points P −
and P + of P−(λk) and P+(λk) with det(P + − P −) ≠ 0,
since P−(λk) and P+(λk) are bounded sequences. By
continuity we infer P + − P − ≻ 0 and that P + and P −
solve the Riccati equation. Hence, by Lemma 4.3, the
eigenvalues of (A −BK+) and (A −BK−) cannot lie on

the imaginary axis, implying that P − and P + are (anti-
)stabilizing solutions of F (⋅, λ̄) = 0. In this case, we infer
λ̄ ∈ D implying that λ̄ can only be infeasible if P+(λ̄) /≻ 0.
Then, also vt(λk)→∞.

V. On the complexity of Algorithm 1
The complexity of one (Newton) iteration of Algo-

rithm 1 is dominated by evaluating the n × n matrices
P+ and P− and by computing the derivatives ∂λiP+,
∂λiP− and ∂λi∂λj P+, ∂λi∂λj P− of these matrices for i, j =
1, . . . , p. To this end, q1 Riccati equations need to be
solved, where q1 is the number of line search iterations,
and q1 + p(p + 3) Lyapunov equations need to be solved.
Here, two times p Lyapunov equations are required for
the first order derivatives and two times p(p + 1)/2
Lyapunov equations are required for the second order
derivatives of P+ and P−. Using the Schur method, the
leading term of the multiplication/division operations
required for the Riccati equation is 45q2n3, where q2
is the average number of double QR-iterations required
to make a sub diagonal element equal to zero [16]. For
Lyapunov equations, the leading term of the complexity
bound can be reduced to 5q2n3.

Summing this up leads to an asymptotic complexity
of 5n3q2(10q1 + p(p + 3)) per Newton step for solving
Riccati and Lyapunov equations. In addition, there is a
computational effort of O(q1p(n2 +m2 + r2)) for evalu-
ating Q(λ), S(λ), R(λ) and N(λ), of O(p2(n+m+ r)2 +
p(n+m+ r)3) for evaluating the log-determinant and its
derivatives, of O(p2(nm2+n2)) for setting up the Riccati
and Lyapunov equations, and of O(p3) for solving the
Newton system. However, these should be dominated by
the complexity of Riccati and Lyapunov equations.

VI. Application example: Robust state
feedback design

Unlike the prior works we cited in the introduction,
Algorithm 1 enables the solution of KYP-SDPs for state-
feedback synthesis. Thus, we consider as a benchmark a
robust LQR synthesis task for dynamical systems

⎛

⎝

ẋ(t)

z(t)

⎞

⎠
=
⎛

⎝

A B1 B2

C D1 D2

⎞

⎠

⎛
⎜
⎜
⎝

x(t)

u(t)

w(t)

⎞
⎟
⎟
⎠

. (8)

In this state space description, x(t) ∈ Rn is the state,
u(t) ∈ Rm is the control input, and w(t) ∈ Rd and
z(t) ∈ Rl are the input and output of an uncertain system
component. We assume that this uncertain component
satisfies, for all times, the family of quadratic constraints

⎛

⎝

Cx +D1u +D2w

w

⎞

⎠

⊺

M(λ)−1 ⎛

⎝

Cx +D1u +D2w

w

⎞

⎠
≥ 0 (9)

for all λ ∈ Rp with N(λ) ≻ 0. Our goal is finding a
robust performance control Lyapunov function V ∶ Rn →

R≥0, x↦ x⊺P −1x with positive definite P = P ⊺ such that

min
u∈Rm

∇V (x)⊺(Ax + B1u + B2w) + x⊺Qx + u⊺Ru ≤ 0 (10)
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holds true for all x ∈ Rn and w ∈ Rd satisfying (9).
In (10), Q and R are positive definite matrices and
(x, u) ↦ x⊺Qx + u⊺Ru is a stage cost function. As we
show in Appendix A using standard techniques from
robust control, such a Lyapunov function can be found
by solving the SDP

minimize
P ∈Sn,λ∈Rp

− trace P (11)

subject to P ≻ 0, N(λ) ≻ 0 and

0 ≻
⎛

⎝

A⊺ I C⊺

I 0 0
⎞

⎠

⊺

⎛

⎝

0 P

P 0
⎞

⎠

⎛

⎝

A⊺ I C⊺

I 0 0
⎞

⎠
− (12)

(⋆)
⊺

⎛
⎜
⎜
⎜
⎜
⎜
⎝

Q−1 0
0 R−1

M11(λ) M12(λ)

M21(λ) M22(λ)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 −I 0
B⊺1 0 D⊺1
0 0 −I

B⊺2 0 D⊺2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

if the family of multipliers satisfies the conditions

⎛

⎝

−I

D⊺2

⎞

⎠

⊺

⎛

⎝

M11(λ) M12(λ)

M21(λ) M22(λ)

⎞

⎠

⎛

⎝

−I

D⊺2

⎞

⎠
≻ 0, M22(λ) ≺ 0 (13)

for all λ ∈ Rp with N(λ) ≻ 0.
In order to consider realistic control systems, we use

the database [13] to select the system matrices A and B1.
To model uncertainty (which is not available in [13]), we
assume that the actuators of our controller are subject
to a parametric multiplicative uncertainty of 25%. This
model assumption can be implemented by choosing the
matrices C = 0, D1 = I, D2 = 0 and B2 = B1. Furthermore,
M and N can be chosen as N(λ) = diag(λ1, . . . , λp) and

M(λ) = diag(γ2λ1, . . . , γ2λp,−λ1, . . . ,−λp),

where γ = 0.25. For these system matrices and multiplier
matrix, we solve the KYP-SDP (11) using Algorithm 1,
the method STRUL [7], which incorporates structure
exploitation for matrix variables into SDPT3, and the
off-the-shelve SDP solvers SeDuMi [19] and Mosek [2].
Solution times for multiple discretizations of an Euler
Bernoulli Beam (EB) system, a heat flow (HF) system,
and a cable mass (CM) model can be found in Table
I. Our implementation, as well as the statistics for all
the other models featured in [13], are provided on github
(https://github.com/SphinxDG/KYP-SDP).

VII. Conclusion
We have presented a new solver for KYP-SDPs. To ex-

ploit the structure of these LMI optimization problems,
we formulate an equivalent problem where the Lyapunov
matrix of the KYP-LMI is eliminated by solving a Ric-
cati equation instead. This step removes O(n2) decision
variables from the SDP and preserves the convexity of
the original problem. As seen in Table I, this approach
achieves a significant speed-up compared to off-the-shelve
solvers and enables us to solve larger problems.

TABLE I: Computation times for four solvers. The number of
system states is n the number of multipliers (control inputs) is p =
m. “-” means that a solver did not solve the problem within 104s.

Problem n p STRUL SeDuMi Mosek Algo 1

EB1 10 1 0.184s 0.116s 0.0717s 0.0188s
EB2 10 1 0.189s 0.112s 0.0700s 0.0171s
EB3 10 1 0.197s 0.114s 0.0708s 0.0172s
EB4 20 1 0.269s 0.404s 0.130s 0.0575s
EB5 40 1 1.10s 4.18s 0.682s 0.405s
EB6 160 1 319s - 270s 7.53s
HF2D3 4489 2 - - - 8579s
HF2D4 2025 2 - - - 715s
HF2D5 4489 2 - - - 8670s
HF2D6 2025 2 - - - 690s
CM1 20 1 2.20s 0.604s 1.03s 0.130s
CM2 60 1 19.4s 41.3s 4.20s 0.90s
CM3 120 1 483s 2770s 71.6s 2.59s
CM4 240 1 - - 2073s 19.9s
CM5 480 1 - - - 92.0s
CM6 960 1 - - - 404s
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Appendix
A. Recap of elimination for robust LQR-synthesis

Denote by M̃ the matrix

⎛

⎝

M̃11 M̃12

M̃21 M̃22

⎞

⎠
∶=
⎛

⎝

M11(λ) M12(λ)

M21(λ) M22(λ)

⎞

⎠

−1

.

The first step to derive the KYP-LMI (12) is a multiplier
relaxation of the constraint (10). Namely, if there exists
a λ ∈ Rp with N(λ) ≻ 0 and a K ∈ Rm×n, such that

∇V (x)⊺((A + B1K)x+B2w) +
⎛

⎝

z

w

⎞

⎠

⊺

M̃(λ)
⎛

⎝

z

w

⎞

⎠

+ x⊺(Q +K⊺RK)x (14)

is non-positive for all x ∈ Rn ∖{0} and w ∈ Rd1 , then this
implies (10). The new constraint (14) means that

(⋆)
⊺

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 P −1

P −1 0
Q 0
0 R

M̃11 M̃12

M̃21 M̃22

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0
A + B1K B2

I 0
K 0

C +D1K D2

0 I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(15)

must be negative definite. This constraint is non-convex
due to K. Hence, we apply the following elimination
lemma ([9], Theorem 2) to eliminate the variable K.

Lemma 1.1: Consider the matrix inequality

⎛

⎝

Ik

U⊺KV +W

⎞

⎠

⊺

P
⎛

⎝

Ik

U⊺KV +W

⎞

⎠
≺ 0 (16)

and assume that P = P⊺ is invertible with exactly k
negative eigenvalues. Let U⊥, V⊥ be basis matrices of
ker(U), ker(V ) respectively. Then there exists a K ∈
Rm×n such that (16) is satisfied if and only if

V ⊺⊥
⎛

⎝

I

W

⎞

⎠

⊺

P
⎛

⎝

I

W

⎞

⎠
V⊥ ≺ 0 & U⊺⊥

⎛

⎝

W ⊺

−I

⎞

⎠

⊺

P
−1 ⎛

⎝

W ⊺

−I

⎞

⎠
U⊥ ≻ 0.

Note that (15) satisfies the eigenvalue condition, since

⎛

⎝

0 P −1

P −1 0
⎞

⎠

has n positive and n negative eigenvalues, the matrix M̃
has d1 negative and d2 positive eigenvalues due to (13),

and Q and R have n and m positive eigenvalues. This
makes a total number of n+d1 negative eigenvalues. Next,
we reorder terms in (15) to bring it to the form (16) and
enable the application of Lemma 1.1. This yields

(⋆)
⊺

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 P −1

M̃22 M̃21

P −1 0
Q 0
0 R

M̃12 M̃11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

In 0
0 Id1

A + B1K B2

I 0
K 0

C +D1K D2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We choose P as the middle matrix of this product and

U⊺KV +W =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

B1

0
I

D1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

K (I 0) +

⎛
⎜
⎜
⎜
⎜
⎜
⎝

A B2

I 0
0 0
C D2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The basis matrices of the kernels can be chosen as

U⊥ =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

I 0 0
0 I 0
−B⊺1 0 −D⊺1

0 0 I

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, V⊥ =
⎛

⎝

0
I

⎞

⎠
.

Next, by computing the products

⎛

⎝

W ⊺

−I

⎞

⎠
U⊥ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A⊺ I C⊺

B⊺2 0 D⊺2
−I 0 0
0 −I 0
B⊺1 0 D⊺1
0 0 −I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
⎛

⎝

I

W

⎞

⎠
V⊥ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
Id1

B2

0
0
D2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and applying Lemma 1.1, we can see that (15) is negative
definite if and only if

(⋆)
⊺

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 P −1

M̃22 M̃21

P −1 0
Q 0
0 R

M̃12 M̃11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
Id1

B2

0
0
D2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17)

is negative definite and

(⋆)
⊺

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 P

M22 M21

P 0
Q−1 0

0 R−1

M12 M11

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A⊺ I C⊺

B⊺2 0 D⊺2
−I 0 0
0 −I 0
B1 0 D1

0 0 −I

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(18)

is positive definite. Rearranging terms again in (18)
yields (12) and multiplying out (17) shows that this
constraint is included in (13).
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