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Abstract—This paper considers the quickest search problem
to identify anomalies among large numbers of data streams.
These streams can model, for example, disjoint regions monitored
by a mobile robot. A particular challenge is a version of the
problem in which the experimenter must suffer a cost each
time the data stream being sampled changes, such as the time
the robot must spend moving between regions. In this paper,
we propose an algorithm which accounts for switching costs by
varying a confidence threshold that governs when the algorithm
switches to a new data stream. Our main contributions are
easily computable approximations for both the optimal value
of this threshold and the optimal value of the parameter that
determines when a stream is flagged as an anomaly, using the
Brownian motion approximations. Further, we empirically show
(i) a uniform improvement for switching costs of interest and (ii)
roughly equivalent performance for small switching costs when
comparing to the closest available algorithm.

Index Terms—Quickest search, sequential analysis, controlled
sensing, scanning rule, switching costs

I. INTRODUCTION

A fundamental problem in sensing and signal processing
is online anomaly search. With origins in Chernoff’s se-

quential design of experiments [1], the aim of online anomaly
search is to develop an efficient policy for sampling a subset
of several data streams over time that quickly and accurately
identifies any anomalous ones. Some variations on Chernoff’s
method include [2], [3], [4], [5], [6], [7], [8]. An important
application is clinical-trial design, where the drug tested in
each trial depends on the drugs tested and outcomes obtained
in all previous trials of the study. Another application is online
search for an open channel in cognitive radio, where the
sampling policy may depend on past observations.

Recently several authors have considered the problem of
online anomaly search in which a cost is incurred any time
the current channel sampled differs from the last one [9], [10],
[11]. This new formulation models online anomaly search
more realistically than the traditional formulation because it
accounts for possible switching costs in hardware or software,
e.g., if an autonomous agent must move to observe a new
location or if equipment must be repositioned to do so. This
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Sequences Switching costs No switching costs
Finite [11], [13], [14], [15] [1] [2]

Infinite This work [12]

Fig. 1. Relationship of this work (lower left quadrant) to existing works; the
other three quadrants contain references to representative existing works on
those classes of problems.

formulation is also more challenging because conventional
analyses of exploration versus exploitation do not apply, and
thus many existing works do not consider it [12]. Table 1
shows how the problem setup in this paper relates to that of
existing work. We emphasize that we differ from these existing
works by considering switching costs and an infinite number
of data streams simultaneously. To the best of our knowledge,
this is the first work to do so. Furthermore, these existing
works that address switching costs for finite data streams
use methods that are either not possible to implement for
infinitely many data streams or provide no tangible benefit in a
setting with infinitely many data streams, such as round-robin
sampling, revisiting previous data streams, or block-scheduling
observations [11], [13], [14], [15].

Our approach is to adapt an existing method to the case
of switching costs. We do this by (i) introducing a new
parameter that controls switching between data streams and
(ii) numerically optimizing both this switching parameter and
an existing stopping parameter. Our contributions are:

• We develop an algorithm that generalizes the algorithm in
[12], which is known to be Bayes-optimal for the setting
without switching costs.

• We show that in a certain asymptotic regime, the optimal
parameters for this algorithm can be found by exactly
solving an algebraic equation and numerically solving
a strongly convex optimization problem over a scalar
decision variable. This approach compares favorably with
the Monte Carlo method of [12] in terms of computational
efficiency.

• We illustrate an almost uniform improvement in per-
formance over the closest existing method in experi-
ments. We illustrate empirically a uniform improvement
for switching costs of interest and roughly equivalent
performance for small switching costs, compared to [12].

The rest of this paper is organized as follows. In Sec-
tion II we provide our problem setup and discuss the existing
optimal solution for the setting without switching costs. In
Section III we introduce switching costs and derive an ap-
proximation of the combined observation-switching cost, and
derive the parameter choices that minimize this approximation.
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In Section IV we justify this approximation and explore the
conditions for which it is accurate. In Section V we provide
numerical results, and we conclude in Section VI.

II. PRELIMINARIES

A. Problem Setup

We consider data streams indexed over k ∈ {1, 2, . . .}. Data
stream k generates the i.i.d. sequence of random variables
Xk

1 , X
k
2 , . . . which have sample space X . Each data stream

obeys one of two hypotheses, H0 or H1. Consider two distinct
distributions on X : F0 and F1. We say hypothesis H0 is
true for data stream k if Xk

t ∼ F0 for all t ∈ {1, 2, . . . },
and that H1 is true for data stream k if Xk

t ∼ F1 for all
t ∈ {1, 2, . . . }. We use f0 and f1 to denote the PDFs of F0

and F1 respectively. In this paper if H0 is true for a particular
data stream, we say that stream is nominal, and if H1 is true,
that the stream is a target stream. We assume that for any
given data stream, H1 is true with prior probability π̂ and H0

is true with prior probability 1 − π̂, where π̂ ∈ (0, 1). We
emphasize that we make no assumptions regarding the value
of π̂, i.e., we do not assume or require that target streams are
“rare”. We use Ei to denote the expectation under hypothesis
i, and define Eπ̂[ · ] = π̂E1[ · ] + (1− π̂)E0[ · ].

We assume we have a single observer that can sample
one and only one data stream at a time. That is, if the
observer samples data stream k at time t it receives Xk

t but no
information from the other data streams. Our goal is to design
an algorithm for this observer to identify a target data stream
as quickly as possible. In much of the existing literature, “as
quickly as possible” means minimizing the expected number
of observations required while satisfying some constraint on
the error probability, i.e., satisfying an upper bound on the
probability that the stream we identify as a target is actually
nominal. We use τ to denote the number of observations
taken before the algorithm terminates and declares a particular
data stream, which we denote as kτ , as a target. We use
Hkτ to denote the hypothesis obeyed by data stream kτ ,
and P (Hkτ = H0) as the error rate, i.e., the probability
that the stream kτ is actually nominal. Therefore, our goal
is to find the algorithm that minimizes Eπ̂[τ ] while ensuring
P (Hkτ = H0) ≤ ϵ, where ϵ > 0 is an allowable error rate.

B. Solution Without Switching Costs

This subsection briefly reviews related work on problems
without switching costs; switching costs will be introduced in
the next section. It was shown in [12] that a cumulative-sum-
based (CUSUM-based) test is the optimal algorithm for the
setting without switching costs. This algorithm is defined by
two threshold parameters: γL ≤ 0 ≤ γU . In this algorithm the
observer maintains a statistic Λk

t for stream k which is updated
after every observation and is initialized as Λ1

0 = 0. If at time t
the observer samples data stream k (i.e., the observer receives
Xk

t ), then it performs the update Λk
t = Λk

t−1 + log
(

f1(X
k
t )

f0(Xk
t )

)
.

If γL ≤ Λk
t < γU , then the observer will sample data stream

k again at time t + 1. If Λk
t < γL, then the observer has

declared stream k as nominal. The observer will begin using

the new statistic Λk+1
t = 0 and will switch to sampling data

stream k + 1 (we assume the streams are either pre-ordered
or the next stream is selected at random) beginning at time
t+1. This procedure describes the kth stage of the algorithm,
during which data stream k is observed.

The algorithm carries out the same procedure on data
streams k + 1, k + 2, . . . until a target stream is indicated.
Specifically, if Λk

t ≥ γU , then the algorithm terminates and the
observer declares data stream k as a target stream. The optimal
choice for γL is 0 regardless of F0, F1, π̂, or ϵ [12, Section
IV]. Because Eπ̂[τ ] monotonically increases as γU → ∞
and P (Hkτ = H0) monotonically decreases as γU → ∞,
the optimal choice for γU is the smallest value for which
P (Hkτ = H0) ≤ ϵ. However, a closed form for this γU is
not known; it must be estimated using numerical experiments.

III. PROBLEM STATEMENT WITH SWITCHING COSTS

We now introduce switching costs to the model described in
the previous section, and this will give the problem formulation
that we consider in this paper. When the observer switches
from data stream k to data stream k+ 1, it now incurs a cost
λk drawn from some non-negative distribution L for all k. That
is, λk ≥ 0 and E[λk] = λ̄ is finite. We also assume that the
costs λk and the observations Xk′

t are mutually independent
for all k, k′, and t. This cost models applications in which
observing a new data stream requires “deadtime” when no
observations can be taken, such as when equipment needs to
be re-positioned or re-calibrated. It also models problems in
which observations and switches are “costly” in some resource
other than time, such as energy or money. Under this switching
cost assumption, the new optimization problem becomes:

Problem 1. Let an error tolerance ϵ ∈ (0, 1) and prior π̂ ∈
(0, 1) be given. Then

minimizeγL≤0≤γU
Eπ̂[τ ] + Eπ̂[s] (1)

s.t. P (Hkτ = H0) ≤ ϵ, (2)

where s =
∑kτ−1

i=1 λk is the total switching cost incurred
before terminating the algorithm.

To derive threshold choices for this problem we will next
rewrite the problem in terms of the stage-wise false-positive
and false-negative rates α and β of the algorithm, and then
establish the relationship between these rates and the threshold
choices γL and γU . By the stage-wise false-positive rate, we
mean the probability that a stage’s terminal value of Λ exceeds
(or equals) γU given that the stage’s data follow H0, i.e., the
probability that a stream is declared a target even though the
stage’s data are nominal. The stage-wise false-negative rate is
similarly defined as the probability that γL exceeds the stage’s
terminal value of Λ given that the stage’s data follow H1, i.e.,
the stage’s data are not nominal, but the stream is labelled
nominal.

Let tk be the time when the algorithm takes its last obser-
vation of stream k (i.e., Λk

tk
/∈ [γL, γU )). Then t̂ = tk − tk−1

is the stage-wise stopping time of stage k, or the number
of observations taken of stream k before making a decision.
Then we may more compactly write that α = P0[Λ

k
tk
≥ γU ]
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and β = P1[Λ
k
tk

< γL], where Pi is the probability under
hypothesis i. Consider the inequalities

γL ≥ log(β/(1− α)) (3)
γU ≤ log((1− β)/α)) (4)

Eπ̂[Λ
k
tk
| Λk

tk
≥ γU ] ≥ γU (5)

Eπ̂[Λ
k
tk
| Λk

tk
< γL] ≤ γL, (6)

which are given in [16, Equations (2.9) and (2.10)]. In accor-
dance with [16], we assume these inequalites are approximate
equalities for the remainder of this section. These approxima-
tions are known as “Brownian motion approximations”.

Remark 1 (Brownian Motion Approximations). The assump-
tion that (3)-(6) are approximate equalities is accurate under
the conditions that (a) f0 and f1 are sufficiently close, (b) λ̄ is
sufficiently large, and (c) ϵ is small. These conditions imply
that the step size in the sequential probability ratio test of
one stage is small compared to the decision thresholds, and
thus overshoots of decision thresholds are also comparatively
small. We will elaborate on these conditions in Section IV.

The quantities α and β appear in Problem 1 in the fol-
lowing manner: using Wald’s Identity we see that Eπ̂[τ ] =
Eπ̂[kτ ]Eπ̂[t̂] (see Equation (30) in [12]). Intuitively, this result
states that the expected number of total observations before
termination is equal to the expected number of data streams
visited (kτ ) multiplied by the expected number of observations
per data stream (which is t̂). Using Wald’s Identity again gives
Eπ̂[s] = Eπ̂[kτ − 1]λ̄, which states that the expected total
switching cost incurred over time is equal to the expected
number of switches (one less than the number of streams
visited) multiplied by the expected switching cost per switch.

We first address the term Eπ̂[t̂]. Assume that a particular
data stream k being sampled by the observer is a target, and
assume that the observer takes its last sample of k at time tk.
Then one of the termination criteria has been met and Λk

tk
̸∈

[γL, γU ). Let f0, f1 be the PDFs of F0, F1 respectively. Using
Wald’s Identity again, we have E1[Λ

k
tk
] = D(f1||f0)E1[tk],

where D(f1||f0) = E1

[
log f1(x)

f0(x)

]
is the Kullback-Leibler

(KL) divergence of f0 from f1. Using the same procedure
we see E0[Λ

k
tk
] = −D(f0||f1)E0[t̂]. From the definition of

Eπ̂[·], we can write

Eπ̂[t̂] = (1− π̂)
E0[Λ

k
tk
]

−D(f0||f1)
+ π̂

E1[Λ
k
tk
]

D(f1||f0)
. (7)

Furthermore, we see that E0[Λ
k
tk
] = αE0[Λ

k
tk
|Λk

tk
≥ γU ]+(1−

α)E0[Λ
k
tk
|Λk

tk
< γL]. By the Brownian motion approximations

we have E0[Λ
k
tk
|Λk

tk
≥ γU ] ≈ γU and E0[Λ

k
tk
|Λk

tk
< γL] ≈

γL. Following equivalent steps for E1[Λ
k
tk
] gives

Eπ̂[t̂] ≈ (1−π̂)αγU + (1− α)γL
−D(f0||f1)

+π̂
(1− β)γU + βγL

D(f1||f0)
. (8)

Furthermore, from [12, Equation (30)] we also have

Eπ̂[kτ ] =
1

(1− π̂)α+ π̂(1− β)
. (9)

For ease of notation, we now define δU = exp(γU ) and
δL = exp(γL). While γL ≤ 0 ≤ γU are the actual thresholds

used by the algorithm, rewriting the problem in terms of
0 < δL ≤ 1 ≤ δU makes the following notation simpler.
Inverting the approximate equalities in (3) and (4), we obtain
the following: α ≈ 1−δL

δU−δL
, β ≈ δL

δU−1
δU−δL

, 1 − α ≈ δU−1
δU−δL

,
and 1−β ≈ δU

1−δL
δU−δL

. Substituting these into (8) and (9) and
simplifying yields that the function

C(δL, δU ) :=
1− π̂

−D(f0||f1)
log(δU ) +

δU−1
1−δL

log(δL)

1 + π̂(δU − 1)

+
π̂

D(f1||f0)
δU log(δU ) + δL

δU−1
1−δL

log(δL)

1 + π̂(δU − 1)

+
λ̄ δU−δL

1−δL

1 + π̂(δU − 1)
(10)

approximates the cost given in (1).
Furthermore, from [12, Equation (29)] we have that that

P (Hkτ = H0) = (1−π̂)α
(1−π̂)α+π̂(1−β) , which is bounded above

by 1−π̂
1+π̂(δU−1) since (1 − β)/α ≥ δU . As a result, this

inequality is an approximate equality under the Brownian
motion approximations. Therefore, following some algebraic
manipulation we see that P (Hkτ = H0) ≤ ϵ if δU ≥ 1−π̂

π̂
1−ϵ
ϵ .

Note that 1−π̂
π̂

1−ϵ
ϵ > 1 so long as ϵ < 1 − π̂, which should

always be the case; if the tolerable error rate is greater than the
prevalence of nominal data streams then the optimal algorithm
is to take no observations and flag a data stream at random.

Therefore, we can find an approximate solution to Prob-
lem 1 by solving the following problem.

Problem 2. Let an error tolerance ϵ ∈ (0, 1) and a prior π̂ ∈
(0, 1) be given. Then find

Find (δ∗L, δ
∗
U ) = argmin

δL,δU

C(δL, δU ) (11)

s.t. δU ≥
1− π̂

π̂

1− ϵ

ϵ
(12)

δL ∈ [0, 1]. (13)

From the structure of C(δL, δU ), we can derive the follow-
ing propositions:

Proposition 1. For any fixed δ̂L ∈ (0, 1), C(δ̂L, ·) is mono-
tonically increasing on the domain [1,∞). From this fact, we
get δ∗U = 1−π̂

π̂
1−ϵ
ϵ .

Proof: The monotonic behavior of C(δ̂L, ·) on this domain
is apparent by inspection. Because we wish to minimize
C(δ̂L, ·), we want to set δU to its minimum allowable value.
Since that value is 1−π̂

π̂
1−ϵ
ϵ , we have δ∗U = 1−π̂

π̂
1−ϵ
ϵ regardless

of the value of δ̂L. ■

Proposition 2. For any fixed δ̂U > 1, C(·, δ̂U ) is strongly
convex on the domain (0, 1]. From this fact δ∗L exists, is unique,
and can be found by solving the scalar optimization problem
δ∗L = argmin

δL∈[0,1]

C(δL, δ
∗
U ). Furthermore, δ∗L lies in the interior

of this interval for λ̄ > 0 (i.e., δ∗L ∈ (0, 1)).

Proof: Differentiation shows limδL→0+
∂C(δL,δ̂U )

∂δL
= −∞

and limδL→1−
∂C(δL,δ̂U )

∂δL
= ∞ so long as λ̄ > 0. Therefore,

from the Intermediate Value Theorem there must exist some
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Algorithm 1: Quickest Search Algorithm with Switch-
ing Costs

Input: ϵ ∈ (0, 1), π̂ ∈ (0, 1), D(f1||f0) > 0,
D(f0||f1) > 0
γU ← log

(
1−ϵ
ϵ

1−π̂
π̂

)
γL ← log

(
argmin[0,1] C

(
·, 1−ϵ

ϵ
1−π̂
π̂

))
t← 0, Λ1

0 ← 0, k ← 1
while Λk

t < γU do
if Λk

t ≥ γL then
Observe: Xk

t+1

Λk
t+1 ← Λk

t + log
(

f1(X
k
t+1)

f0(Xk
t+1)

)
t← t+ 1

else
k ← k + 1
Λk
t ← 0

end if
end while
Label arm k as a target

value δ̂L ∈ (0, 1) for which ∂C(δL,δ̂U )
∂δL

= 0 at δL = δ̂L.
Strong convexity is established by characterizing the limiting
behavior of ∂2C(δL,δ̂U )

∂δ2L
. Observe that C(δL, δU ) is a sum of

three terms: the first two which contain the KL divergences
D(f0||f1) and D(f1||f0), and the third which contains
λ̄. Name these terms C1 C2, and C3 respectively. First,
we see that limδL→0+

∂2(C1(δL,δ̂U )+C2(δL,δ̂U ))
∂δ2L

= ∞ and

limδL→1−
∂2(C1(δL,δ̂U )+C2(δL,δ̂U ))

∂δ2L
= δ̂U−1

1+π̂(δ̂U−1)
( 23

1−π̂
D(f0||f1) +

1
3

π̂
D(f1||f0) ), and that ∂2(C1(δL,δ̂U )+C2(δL,δ̂U ))

∂δ2L
is

monotonically decreasing with δL on [0, 1]. Additionally,
we see limδL→0+

∂2C3(δL,δ̂U )
∂δ2L

= λ̄(δ̂U−1)

1+π̂(δ̂U−1)
and

limδL→1−
∂2C3(δL,δ̂U )

∂δ2L
= ∞, and that ∂2C3(δ̂L,δ̂U )

∂δ2L
is

monotonically increasing with δL on [0, 1]. Therefore,
C( · , δ̂U ) is δ̂U−1

1+π̂(δ̂U−1)
( 23

1−π̂
D(f0||f1) +

1
3

π̂
D(f1||f0) + λ̄)-strongly

convex on this interval. Therefore δ̂L is a unique minimizer
of C( · , δ̂U ), and δ∗L can be found by minimizing C( · , δ∗U ).
■

Therefore, Propositions 1 and 2 tell us we can calculate
δ∗U explicitly as a function of π̂ and ϵ, and δ∗L numerically
as the solution to a scalar, set-constrained, strongly convex
optimization problem. These steps give rise to the Quickest
Search Algorithm with switching Costs, which is Algorithm 1.

IV. DISCUSSION OF BROWNIAN-MOTION
APPROXIMATIONS

Now that we have presented Problem 2 as a solvable
approximation of Problem 1, we will justify this substitution
by showing that in the limiting cases described in Remark 1
in Section III, the approximate inequalities used to formulate
Problem 2 approach equalities. We are interested in the case
where f0 and f1 are “close” since if they are easily distin-
guished, the problem is easy and optimality is not crucial. We
are interested in the case where ϵ is small because we want
few errors. Further, we are interested in the case where λ̄ is

relatively large because otherwise, the problem is solvable by
the existing method of [12].

Recall from [16] that that the inequalities (3)-(6) being
treated as equalities only fail to be equalities if the statistic
Λk
tk

overshoots the relevant threshold γU or γL, rather than
hitting it exactly. That is, while we will always have Λk

tk
≥ γU

(or Λk
tk

< γL) at the end of any stage, Problem 2 is derived
by assuming Λk

tk
= γU (or Λk

tk
= γL). This approximation

is reasonable when the expected overshoot of a particular
threshold is small with respect to the threshold itself, i.e.,

if E
[
Λk

tk
−γU

γU
| Λk

tk
≥ γU

]
and E

[
Λk

tk
−γL

γL
| Λk

tk
< γL

]
are

small. The remainder of this section shows that these terms
are indeed small when a problem satisfies the conditions in
Remark 1.

A. The case of “close” f0 and f1

Here the phrase “sufficiently close” means the KL diver-
gences D(f1||f0) and D(f0||f1) are small. Because E[Λk

tk
−

γU |Λk
tk
≥ γU ] ≤ E[Λk

tk
− Λk

tk−1|Λk
tk
≥ γU ], we can see from

the update law for Λk in Algorithm 1 and the definition of the
KL divergences that this expected overshoot approaches zero
as D(f1||f0) and D(f0||f1) approach zero, as desired.

B. The case of small ϵ

As ϵ shrinks, we must enforce a smaller error probability
P (Hkτ = H0). From its definition, a smaller error probability
directly implies a larger value of 1−β

α , which implies a larger
value of γ∗

U . This relationship is intuitive: while both γU and
γL affect P (Hkτ = H0), the effect of γU is significantly
greater since the algorithm only terminates at data stream k if
Λk
tk
≥ γU . Having a large γ∗

U means the expected overshoots
are small, as desired.

C. The case of large λ̄

The relationship between λ̄ and γ∗
L is perhaps the most

interesting one. Consider the high-level goal of our analysis:
to minimize the number of switches our algorithm makes
before finding and identifying (hopefully correctly) a target
data stream. The requirement that we find a target data stream
(with probability 1 − ϵ) means that we specifically want to
avoid switching away from a target data stream. In other
words, the goal is to reduce β. As with P (Hkτ = H0), β
depends on both γU and γL, but the effect of γL is significantly
greater as the algorithm only switches away from stream k if
Λk
tk

< γL. Having a very negative γ∗
L means the expected

overshoots are close to zero, as desired.
The purpose of this analysis is to address non-trivial switch-

ing costs. However, we do note that our rule for selecting γ∗
L

is optimal as λ̄ approaches zero as well. Recall from Section II
and [12] that the true optimal value of γL for λ̄ = 0 (i.e., the
value that minimizes (1)) is γL = 0. As λ̄ → 0, our value of
γ∗
L found by solving Problem 2 also approaches zero, implying

that the algorithm described in [12] is a special case of the
one we develop here.
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V. NUMERICAL RESULTS

We now compare the performance of our algorithm with
the one described in [12] in MATLAB, which is the closest
comparable algorithm, in a setting where switching costs are
present. While the algorithm in [12] is optimal for the case
where λ̄ = 0, it does not take into account switching costs.
Furthermore, the optimal threshold γU cannot be directly
calculated for that algorithm, and must be estimated via Monte
Carlo simulations. In contrast, our algorithm directly accounts
for switching costs and uses thresholds that can be directly
calculated.

In this setting, target data streams occur with prior probabil-
ity π̂ = 0.1, and obey the distribution F1 = N (0, 1). Nominal
data streams obey F0 = N (0, 1.5). That is, for the purposes
of this simulation, if an algorithm crosses γL, the next set
of observations have a 10% chance of being drawn from f1,
and f0 otherwise. We choose ϵ = 0.01 to be our maximum
tolerable error rate. Switching costs are drawn from a gamma
distribution λk ∼ Γ(a, b), which has λ̄ = a

b . We will compare
the performances of both algorithms across a range of values
of λ̄, by keeping b = 1 constant and exploring a ∈ [0, 5]. The
algorithm from [12] uses thresholds γL = 0 and γU = 6.130
for this problem regardless of the switching costs. For the
algorithm described in this paper, γU = 6.794 regardless of
switching costs, and γL is chosen by solving Problem 2 with
λ̄. The ordering of nominal vs target data streams is randomly
generated, but kept the same for both algorithms for a fair
comparison and reproducibility. The values of γL used and
their corresponding values of λ̄ are plotted in Figure 2.

Fig. 2. The larger λ is, the more negative γ∗
L is in Algorithm 1.

The algorithm from [12] achieves Eπ̂[τ ] = 109.42 and
Eπ̂[kτ − 1] = 42.15, and our algorithm achieves the similar
numbers Eπ̂[τ ] = 113.21 and Eπ̂[kτ − 1] = 42.04 for
λ̄ = 0. We note that in this zero switching cost case our
algorithm achieves an error of 3.4% compared to the algorithm
in [12], demonstrating that the Brownian Motion Approxi-
mations resulted in a valid approximation for this problem.
Furthermore, from Section IV our approximated thresholds
will more closely approach the theoretically optimal thresh-
olds as λ̄ grows. We also note that our algorithm achieves
an error rate of 0.005, which satisfies our error bound of

ϵ = 0.01. As λ̄ grows, our goal is to reduce the combined
observation/switching cost formulated in (1) by reducing the
number of switches. In Figure 3, we see that this is achieved.
As γL is varied to account for higher values of λ̄, we see
that the number of expected switches drops significantly. Note
that, given the prior π̂ = 0.1, a “perfect” algorithm (one that
perfectly identifies all nominal and target streams and achieves
α, β = 0) would have Eπ̂=0.1[kτ − 1] = 9, since on average
the algorithm would have to scan through 10 streams before
encountering its first target stream. As such, as λ̄ grows and
γL becomes more negative, we would expect the number of
switches for our algorithm to approach 9, which is the behavior
observed in Figure 3.

Fig. 3. The expected number of switches under Algorithm 1 for different
values of λ̄. As γL → −∞, the expected number of switches will approach
9, the expected number of switches required before our algorithm encounters
its first target stream.

As a consequence of a more negative value of γL, our
algorithm will tend to take more observations of data streams
before switching away. The end result is, as Figure 4 shows,
the total number of observations before termination of our
algorithm grows with λ̄. However, as we will see in Figure 5,
this growth in observation cost is more than offset by the
reduction in expected switching cost observed in Figure 3.

The combined observation/switching costs for both algo-
rithms are plotted in Figure 5. We can see that in the large λ̄
region, our algorithm significantly outperforms the algorithm
from [12], which, due to its fixed behavior, achieves a cost of
109.42 + λ̄42.15, resulting in the linear growth of its cost
with λ̄ illustrated by the orange dashed line in Figure 5.
The algorithms perform comparably up until around λ̄ = 1,
after which the cost for our algorithm is always lower than
the algorithm in [12]. Specifically, the observation/switching
cost for the algorithm from [12] increases by 42.15 for every
unit increase of λ̄, since 42.15 is the expected number of
switches under that algorithm. In contrast, in the regime
explored in this simulation, the use of Algorithm 1 increases
the observation/switching cost at a rate of around 16.3 per unit
increase of λ̄, meaning the cost of Algorithm 1 grows at a rate
61.3% slower than the [12] algorithm.
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Fig. 4. The expected number of total observations before termination under
Algorithm 1 for different values of λ̄. The number of observations grows
since a lower value of γL will require more observations be taken before
Algorithm 1 switches away from a data stream. However, the reduction in
switching cost outpaces the increase in observation cost.

Fig. 5. The combined observation/switching costs for our Algorithm 1 (blue
solid line) and the algorithm from [12] (orange dashed line).

VI. CONCLUSION

In this paper we introduced an algorithm which performs
online anomaly search over many sequences with switching
costs, with parameters that can be directly calculated, and
almost uniform improvement over the best comparable method
that does not account for switching costs [12]. We showed that
the approximations used to derive this algorithm are accurate
for problems of interest, and demonstrated the success of
this algorithm with numerical simulations. Future work will
embed the problem into a physical setting and perform optimal
routing and control for a physical vehicle that incorporates the

cost of switching that is due, e.g., to the downtime incurred
by moving.

ACKNOWLEDGEMENTS

The views and opinions expressed in this article are those
of the authors and do not necessarily reflect the official policy
or position of any agency of the U.S. government. Examples
of analysis performed within this article are only examples.
Assumptions made within the analysis are also not reflective of
the position of any U.S. Government entity. The Public Affairs
approval number of this document is AFRL-2023-0996.

REFERENCES

[1] H. Chernoff, “Sequential design of experiments,” The Annals of
Mathematical Statistics, vol. 30, no. 3, pp. 755–770, 1959.

[2] V. Dragalin, “A simple and effective scanning rule for a multi-channel
system,” Metrika, vol. 43, no. 1, pp. 165–182, 1996.

[3] S. Nitinawarat, G. K. Atia, and V. V. Veeravalli, “Controlled sensing
for multihypothesis testing,” IEEE Transactions on Automatic Control,
vol. 58, no. 10, pp. 2451–2464, 2013.

[4] M. Naghshvar and T. Javidi, “Active sequential hypothesis testing,” The
Annals of Statistics, vol. 41, no. 6, pp. 2703–2738, 2013.

[5] S. Nitinawarat and V. V. Veeravalli, “Controlled sensing for sequential
multihypothesis testing with controlled Markovian observations and non-
uniform control cost,” Sequential Analysis, vol. 34, no. 1, pp. 1–24,
2015.

[6] K. Cohen and Q. Zhao, “Active hypothesis testing for anomaly detec-
tion,” IEEE Transactions on Information Theory, vol. 61, no. 3, pp.
1432–1450, 2015.

[7] B. Huang, K. Cohen, and Q. Zhao, “Active anomaly detection in
heterogeneous processes,” IEEE Transactions on Information Theory,
vol. 65, no. 4, pp. 2284–2301, 2018.

[8] A. Tsopelakos, G. Fellouris, and V. V. Veeravalli, “Sequential anomaly
detection with observation control,” in 2019 IEEE International
Symposium on Information Theory (ISIT). IEEE, 2019, pp. 2389–
2393.

[9] N. K. Vaidhiyan, S. P. Arun, and R. Sundaresan, “Neural dissimilarity
indices that predict oddball detection in behaviour,” IEEE Transactions
on Information Theory, vol. 63, no. 8, pp. 4778–4796, 2017.

[10] N. K. Vaidhiyan and R. Sundaresan, “Active search with a cost
for switching actions,” in 2015 Information Theory and Applications
Workshop (ITA). IEEE, 2015, pp. 17–24.

[11] T. Lambez and K. Cohen, “Anomaly search with multiple plays under
delay and switching costs,” IEEE Transactions on Signal Processing,
vol. 70, pp. 174–189, 2021.

[12] L. Lai, H. V. Poor, Y. Xin, and G. Georgiadis, “Quickest search over
multiple sequences,” IEEE Transactions on Information Theory, vol. 57,
no. 8, pp. 5375–5386, 2011.

[13] F. Qin, H. Feng, T. Yang, and B. Hu, “Low-cost active anomaly detection
with switching latency,” Applied Sciences, vol. 11, no. 7, p. 2976, 2021.

[14] D. Chen, Q. Huang, H. Feng, Q. Zhao, and B. Hu, “Active anomaly
detection with switching cost,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 5346–5350.

[15] G. R. Prabhu, S. Bhashyam, A. Gopalan, and R. Sundaresan, “Learning
to detect an anomalous target with observations from an exponential
family,” in 2019 IEEE Data Science Workshop (DSW). IEEE, 2019,
pp. 88–92.

[16] D. Siegmund, Sequential analysis: tests and confidence intervals.
Springer Science & Business Media, 1985.

4878


