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Abstract— This paper presents a fractional-order controller
for the fully-actuated Hexa-rotor under external disturbances
applied to the position and attitude dynamics. We proved that
the closed-loop system equilibrium point for the positioning
subsystem is globally exponentially stable. Furthermore, the
controller provides extraordinary robustness to the system when
affected by exogenous and aggressive disturbances. The sys-
tem’s stability is also validated through MATLAB and software
in the loop simulations. One of the paper’s contributions, apart
from the control design, is the implementation of the controller
in the PX4 firmware, the most popular open-source autopilot
code used worldwide for flying drones. The code is available
for download and implemented in real drones. Finally, we
have implemented the control algorithm in the PX4-firmware
alongside a virtual environment in Gazebo and compared it with
the standard PX4-firmware controller. The results considerably
outperform the traditional PID controller programmed in the
PX4 firmware.

I. INTRODUCTION

In recent years, the research community has addressed
the disturbance robustness problem in Unmanned Aerial
Vehicles (UAVs) using robust control techniques such as
sliding mode control and others [1], [2]. In particular, this
kind of control has adopted the use of integer-order control
approaches [3], [4]. However, since UAVs’ attitude and posi-
tion are coupled, and their dynamics are subjected to external
disturbances, the interest in proposing robust controllers for
fully actuated multi-rotors has emerged in the last few years.
The fully-actuated multi-rotors can partially decouple the
attitude and position dynamics. They can be more appropriate
for solving special tasks such as agricultural harvesting [5],
[6], or aerial manipulation [7].

A. State of the art

Standard fractional-order sliding mode controls (FOSMC)
have been developed as in [8]–[12], for quadrotor UAVs
considering external disturbances to achieve a more robust
behavior. Then, [13], [14] propose similar approaches for
FOSMCs based on the backstepping method. A variant of the
FOSMC can be found in [15] through an event-trigger-based
strategy. The PI control structure is also proposed in [16]
with a fractional-order integral combined with sliding mode
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Fig. 1: The Hexa-rotor’s coordinate frames I, B, and Mi.
Here, all motors are located at a distance l from the center of
the UAV and tilted at fixed angles β = −25◦, α = 35◦(−1)i
and λ = 60◦. Note that i = {1, 2, ..., 6} indexes the i−th
motor. Disturbances are defined as ∆υ(t),∆Ω(t).

control. Furthermore, in [17], it is presented as a fractional-
order PID controller, where derivative action proves to en-
hance the control response of the system. Similarly, [18]
presents a fractional-order linear active disturbance rejection
control scheme combining the advantages of the fractional-
order PID with the linear active disturbance rejection control.
Then, [19] proposes a fractional nonlinear control strategy
based on the nested saturations to maintain the desired posi-
tion and orientation in stationary flight and trajectory tracking
tasks. The fractional-order control technique is not inherent
to quadrotor UAVs, as it is also used in other vehicles, such
as fixed-wing aircraft. For instance, [20], [21], present a
Finite-time Fault-Tolerant Control using a fractional-order
backstepping iterative design strategy for fixed-wing aircraft.
According to state-of-the-art, the fractional-order controls for
fully-actuated multi-rotor configurations is a new research
topic, particularly when the control is coded or applied to an
autopilot. With a lack of this kind of control applied to the
fully actuated Hexa-rotor, we summarize recent works using
other robust control techniques in Table I.

B. Contribution

We present a robust position controller for the fully-
actuated Hexa-rotor that utilizes a fractional-order integral,
as illustrated in Fig. 2. Our proposed control algorithm
achieves globally exponential stability of the tracking error
equilibrium. Furthermore, it exhibits strong robustness, as
demonstrated in the stability proof and realistic software-
in-the-loop simulations (SITL). In addition, we have made
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TABLE I: The relevant state-of-the-art of fully-actuated Hexa-rotor control. GES, LES, and GAS mean globally exponentially
stable, locally exponentially stable, and globally asymptotically stable, respectively.

Literature Consider disturbance Stability achieved Code released Method

Our research ✓ GES in attitude and position ✓ Fractional-order control
[22] ✓ GES in attitude and position ✗ Nonlinear model predictive control
[23] ✓ GES in attitude and position ✗ Feedback linearization
[24] ✓ GAS in attitude and position ✗ Adaptive sliding mode control
[25] ✓ Ultimate boundedness stability ✗ Feedback linearization

a significant effort to contribute to the UAV and control
community by providing open-source code for direct
implementation in the PX4 firmware. For that aim, we
have developed the fractional-order integral in C++ and
added it to the PX4 firmware for implementation. The
implementation of our proposed fractional-order control
surpasses the performance of the current PID control
programmed by default in the PX4 firmware, which is
currently the most popular open-source autopilot code for
various UAVs. Finally, we have compared our controller and
the PX4-firmware controller to validate our claim. All the
code developed for this paper and its proper documentation
is available in our GitHub repository:
https://github.com/andresmr13/Hexarotor_
fractional_control_for_PX4.git
This implementation can be tested using the Hexa-rotor
model in a virtual environment, as shown in Fig. 3, or even
in a real multi-rotor platform.

C. Outline

The remainder of this letter is described next. Section II
introduces the problem to be addressed, including preliminar-
ies and the system’s mathematical model. Section III presents
the theorems and proofs for the proposed control law. Then,
in Section IV, the control implementation through numerical
simulations is described. In this section, we present the
performance results of the proposed control against state-of-
the-art controls. Finally, Section V briefly summarizes the
results achieved and considerations for future work.

NOMENCLATURE

(αi, βi) Tilted angles of the motors w.r.t. B
∆υ(t),∆Ω(t) ∈ R3 Exogenous unknown disturbances af-

fecting the position and orientation dynamics, re-
spectively

ê3 = [0, 0, 1]⊺ Basis vector for z direction
B Hexa-rotor body frame
I Hexa-rotor inertial frame
Mi Body frame of i-th motor, i = {1, 2, ..., 6}
Ω = [ωx, ωy, ωz]

⊺ ∈ R3 Hexa-rotor’s angular rate
µ = [µx, µy, µz]

⊺ ∈ R3 Torque vector considered as con-
trol input for the position dynamics Σ

g Gravity constant
J ∈ R3×3 Hexa-rotor’s inertia matrix
m Hexa-rotor mass
p = [x, y, z]⊺ Hexa-rotor’s position vector in I

R ∈ SO(3) Rotation matrix from B to I representing the
Hexa-rotor’s orientation

uτ = [uτx , uτy , uτz ]
⊺ ∈ R3 Torque vector considered as

control input for the attitude dynamics Π
v = [ẋ, ẏ, ż]⊺ Hexa-rotor’s velocity vector in I

The hat map (̂·) : R3 → so(3) is defined by âb = a × b,
∀ a, b ∈ R3, and then Ω̂ ∈ so(3) is the skew-symmetric
matrix of Ω; the inverse of the hat map is the vee map (·)∨ :
so(3)→ R3.

II. PROBLEM FORMULATION

A. Preliminaries
Definition 1 (The Riemann–Liouville fractional differinte-
gral, [26], [27]). Consider the real-valued function f(x). The
Riemann-Liouville fractional derivative is defined by,

aD
α
xf(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

f(t)

(x− t)α+1−n
dt (1)

where a, x are the lower and upper limits, n ∈ N, (n− 1 <
α < n), and Γ(z) is the gamma function defined by,

Γ(z) =

∫ ∞

0

τz−1e−τdτ.

And the Riemann-Liouville fractional integral is defined by,

aD
−α
x f(x) = aI

α
x f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt. (2)

B. Mathematical model
The Hexa-rotor has six fixed tilted motors as shown in Fig.

1, numbered clockwise as i = 1, 2, 3, 4, 5, 6. In addition, each
motor is tilted at specific angles (αi, βi), which determine
the orientation of the motor frame Mi relative to the Hexa-
rotor body frame B. The mathematical model in the 6-DOF
of the Hexa-rotor is as follows, [28]:

ṗ = υ (3a)
Σ :

{
υ̇ = gê3 −

1

m
Rµ+∆υ(t) (3b)

Ṙ = RΩ̂ (4a)
Π :

{
Ω̇ = −J−1 (Ω× JΩ) + J−1uτ +∆Ω(t). (4b)

The structure of the control input vector in (3b) is µ =
(µ1, µ2, µ3)

⊺, which opens up the possibility of having a
component of the total thrust in the x− y plane, even when
R = I3×3, i.e. when the aerial robot is in hover flight mode.
On the other hand, for conventional Hexa-rotors where all
the rotors point upwards, the input control vector has a fixed
structure µ = (0, 0, T )⊺, where T is the total thrust.
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Fig. 2: Block diagram of the proposed fractional-order con-
trol.

III. MAIN RESULT

To stabilize the fully-actuated Hexa-rotor’s dynamics, we
must control subsystems Σ and Π, [29]. In our previous work
[30], we achieved controlling the attitude subsystem Π. This
paper focuses on ameliorating previous work with a powerful
controller that rejects aggressive exogenous disturbances.
Thus, the proposed controller is separated into the attitude
control law to stabilize the error dynamics of subsystem Σ
and the fractional-order position controller to stabilize the
error dynamics of subsystem Π, which is the core of the
contribution.

A. Attitude control

Theorem 1 (Attitude control, [30]). Consider the attitude
system Π in (4). And let us define the errors related to attitude
dynamics by:

eR =
1

2

(
Re,r −R⊺

e,r

)∨
= [eR(1), eR(2), eR(3)]

⊺,

eΩ = Ω−R⊺
e,rΩd = [eΩ(1), eΩ(2), eΩ(3)]

⊺,

ΨSO(3) =
1

2
Tr(I3×3 −Re,r),

(5)

where the right attitude error is Re,r = R⊺
dR, where Rd

is the reference angular position, and I3×3 is the identity
matrix of dimension 3. Then, the control law

uτ = −J (kReR + kΩeΩ + k3υR + k4υΩ) + Ω× JΩ

− J(Ω̂R⊺
e,rΩd −R⊺

e,rΩ̇d).
(6)

with vector signals

υR =

|eR(1)|1/2 sgn eR(1)|eR(2)|1/2 sgn eR(2)
|eR(3)|1/2 sgn eR(3)

 , υΩ =

|eΩ(1)|1/2 sgn eΩ(1)|eΩ(2)|1/2 sgn eΩ(2)
|eΩ(3)|1/2 sgn eΩ(3)


(7)

exponentially stabilizes the zero equilibrium points (5).

Proof. The proof of this result can be seen in our previous
contribution [30].

B. Position control

For the fully-actuated Hexa-rotor position dynamics Σ, we
define the error vectors given by,

ep = p− pd, ev = v − ṗd, (8)

where pd is the desired position trajectory and (ṗd, p̈d) are
their the first and second time-derivatives, respectively. They

are computed analytically, when possible, or even using
advanced differentiator techniques to mitigate the problem
of noisy signal derivatives, [31].

Assumption 1. The external disturbances in system (Σ,Π)
are bounded as follows,

∥∆v(t)∥2 ≤ ρ1∥s∥2, ∥∆Ω(t)∥2 ≤ ρ2∥eΩ∥, (9)

where s is defined in (13), (∥ · ∥2) is the Euclidean norm,
and ρ1, ρ2 ∈ R>0.

We are ready to present the main result in the following
theorem.

Theorem 2. Consider that system Σ satisfies Assumption
1. Also consider the fractional-order integral operator Iα

defined in (2). Then, the fractional control law,

− 1

m
Rµ = −K1I

α
(
|s| 12 sgn s

)
−K2s− gê3 + p̈d − Λev

(10)
and fractional-order differential equation in s,

Dα+1s = −K1

|s1| 12 sgn s1|s2|
1
2 sgn s2

|s3|
1
2 sgn s3


︸ ︷︷ ︸

|s|
1
2 sgn s

−K2D
α

s1
s2
s3


︸ ︷︷ ︸

s

(11)

where α ∈ (0, 1), (K1,K2,Λ) ∈ R3×3 ≻ 0, globally
exponentially stabilizes the error equilibrium point (8).

Proof. Let us begin by computing the first-time derivatives
of the error vectors in (8) by,

ėp = ev, ėv = gê3 −
1

m
Rµ+∆υ(t)− p̈d. (12)

Now, we propose the following sliding surface s ∈ R3,

s = ev + Λep = [s1, s2, s3]
⊺ (13)

whose time-derivative along the solutions of (12) is:

ṡ = gê3 −
1

m
Rµ+∆υ(t)− p̈d + Λev. (14)

Now, we are ready to proceed with the stability analysis [32].
Let us consider the candidate Lyapunov function V = s⊺Ps
with P ≻ 0 whose time-derivative along the solutions of (14)
is given by,

V̇ = ṡ⊺Ps+ s⊺P ṡ

=

(
gê3 −

1

m
Rµ+∆υ(t)− p̈d + Λev

)⊺

Ps

+ s⊺P

(
gê3 −

1

m
Rµ+∆υ(t)− p̈d + Λev

)
.

(15)
Notice that when we applied the fractional integral of order
α to (11) [33], [34], the result is:

Iα
(
Dα+1s = −K1|s|

1
2 sgn s−K2D

αs
)

D1s = −K1I
α|s| 12 sgn s−K2D

0s

ṡ = −K1I
α|s| 12 sgn s−K2s.

(16)
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By equating the previous equation with (14), assuming that
the disturbance ∆v(t) is unknown, and solving for − 1

mRµ,
we get the control law defined in (10). We then substitute
(10) in (15) to get,

V̇ =
(
−[Iα(|s| 12 sgn s)]⊺K⊺

1 − s⊺K⊺
2 +∆v(t)

⊺
)
Ps

+ s⊺P
(
−K1[I

α(|s| 12 sgn s)]−K2s+∆v(t)
)

= −[Iα(|s| 12 sgn s)]⊺K⊺
1Ps− s⊺PK1[I

α(|s| 12 sgn s)]
− s⊺K⊺

2Ps− s⊺PK2s+∆v(t)
⊺Ps+ s⊺P∆v(t).

(17)
Moreover, notice that

Iα(|si|
1
2 sgn si) =

1

Γ(α)

∫ si

0

(si − τ)α−1|τi|
1
2 sgn τidτ

=

√
πs

α+ 1
2

i

2Γ
(
α+ 3

2

)︸ ︷︷ ︸
bi

si

(18)
where bi > 0. Without loss of generality and for the sake of
simplicity, we adopt α = 1/2 in the subsequent analysis.
Then, Iα(|s| 12 sgn s) = Bs, where B = [b1, b2, b3] ∈
R3×3 ≻ 0. It follows that (17) can be simplified as,

V̇ = −s⊺BK⊺
1Ps− s⊺PK1Bs

+ s⊺ (−K⊺
2P − PK2) s+ 2∆v(t)

⊺Ps.
(19)

Since −K2 is negative definite, then −K⊺
2P − PK2 =

−Q, where Q ≻ 0. Also, consider the first inequality of
Assumption 1. Then, it follows that,

V̇ ≤ −s⊺ (2BK⊺
1P +Q− 2ρ1P )︸ ︷︷ ︸

R

s,
(20)

where we choose 2BK⊺
1P +Q > 2ρ1P . Furthermore, since

λmin{P}∥s∥22 ≤ V ≤ λmax{P}∥s∥22,
−λmax{R}∥s∥22 ≤ V̇ ≤ −λmin{R}∥s∥22

(21)

we conclude that V̇ ≤ − λmin{R}
λmax{P}V , and since V is radially

unbounded it follows that s exponentially converges to zero.
This implies that the sliding surface (13) is reduced to ėp =
−Λep. Thus, the error equilibrium point (8) is GES.

IV. SIMULATIONS

A. MATLAB Simulink numerical simulations

Simulations with MATLAB Simulink were conducted
using different orders of integration α for the proposed
fractional-order control. Once a suitable set of parameters
was selected for our control, it was compared to a PID
control, simulated in MATLAB. Due to space limitations,
these simulation appears in the supplementary material,
which contains a detailed document describing the simulation
results and the MATLAB Simulink files.

B. SITL simulation

In this subsection, we present the implementation of the
proposed fractional-order controller in the PX4 firmware
through Software in the Loop simulation. These simulations
run in a virtual environment in Gazebo, using a 3D model
for the fully-actuated Hexa-rotor shown in Fig. 1.

1) Fractional-order integrator computation: Since the
PX4 firmware is programmed in C++, any control addition
should be developed using the same programming language.
However, this is a challenging task mainly due to the
complex computation of the fractional-order integral. For
this reason, we use Oustaloup’s method to obtain a numeri-
cal approximation. This method uses conventional transfer
functions to represent a band-limited approximation of a
fractional-order operator. When attempting to approximate a
fractional integrator of order α using a conventional transfer
function, it is necessary to calculate the poles and zeros of
the transfer function through the use of the following, [35]:

Gp(σ) =

N∏
k=−N

σ + ω′
k

σ + ωk
,

ωk =

(
bωh

d

) α+2k
2N+1

, ω′
k =

(
dωb

b

) α−2k
2N+1

,

(22)

where N is the order of approximation in the valid frequency
range (ωb, ωh), with b, d ∈ R as fixed parameters. The
transfer function Gp(σ) depends on the frequency domain’s
complex variable σ.

Thus, to make this process practical, the algorithm is
decomposed into two steps: 1) compute the continuous-
time transfer function of the fractional-order integral and 2)
solve its equivalent state-space equations to get the integrated
value. Please refer to Algorithm 1 for an overview of the
procedures explained next.

The first step is conducted in MATLAB, and the second
is conducted through an integrator block in C++. In MAT-
LAB, we create a zero-pole-gain model with the Oustaloup
approximation of the fractional-order integrator Iα through
(22). Then, the transfer function Gp can be converted to its
state-space representation:

ẋ = Ax+Bu, y = Cx+Du, (23)

where, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, and D ∈ R
are constant and strictly depend on the fractional integration
order that is being used in the approximation. The input
variable u is the signal to be integrated, defined in (13),
and the output variable y is the fractional-order integrated
signal equivalent to the Iα(u). Then, we begin with the
second step to compute y from the state-space model through
C++ in the PX4 firmware. First, we need to take the state-
space matrices (A,B,C,D) as constant parameters for the
control algorithm. The process for computing a fractional-
order integrated value involves first integrating ẋ to obtain
x, which is then used to compute y. Once y is obtained, it
can be used in the fractional control law (10), substituting the
term Iα(|s| 12 sgn s). Finally, solving µ from (10) generates
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control input for the UAV system. Besides, when a different
fractional order is utilized, repeating the first step from the
outset becomes necessary.

Algorithm 1 Computation of fractional-order integral oper-
ator for implementation in the PX4 Firmware.

Require: α, s
Ensure: Fractional-order integral y

Initialize d,b, N , wb, wh, k, x, t, tprev , ẋ, ẋprev with
default values.
wkp ← (wh/wb)̂((k+N+0.5−0.5∗α)/(2∗N+1))∗wb

wk ← (wh/wb)̂((k+N +0.5+0.5∗α)/(2∗N +1))∗wb

K ← (d ∗ wh/b)̂α
Gp ← zpk(−wkp′ ,−wk′ ,K) ∗ tf([d, b ∗ wh, 0], [d ∗ (1 −
α), b ∗ wh, d ∗ α]) ▷ zero-pole-gain form function
G← tf(Gp) ▷ convert to transfer function
A,B,C,D ← tf2ss(G) ▷ convert to state-space
while True do

u← sqrt(|s|) ∗ sgn(s) ▷ s from (13)
ẋ← A ∗ x+B ∗ u
y ← C ∗ x+D ∗ u ▷ y is equivalent to Iα(u)
∆t← t− tprev
∆x← (ẋ+ ẋprev) ∗∆t/2 ▷ integer-order integration
x← ∆x
ẋprev ← ẋ
tprev ← t
t← t+ 1

end while

2) Results: In the following, we present the results from
the software in the loop (SITL) simulation, where the pro-
posed control is programmed into the PX4 firmware and
tested in a virtual environment in Gazebo. The fully-actuated
Hexa-rotor’s virtual model is shown in Fig. 3.

(a) (b)

(a)

(a) (b)

(b)

Fig. 3: a) The fully-actuated Hexa-rotor model in a Gazebo
virtual environment. b) Hexa-rotor flying during the SITL
experiment.

The simulation consists of a hover flight of the Hexa-rotor
in the x = y = 0 coordinates, achieving an altitude of 2.5 m
from the x = y = z = 0 position. An external disturbance
of 4 sin (0.5t) for the x axis and 3 sin (0.1t) for the y axis
is applied to verify the position controller’s performance.
We also compare the performance of our fractional-order
position controller and the PID controller, commonly used
in UAVs and coded by default in the PX4 firmware. This
comparison is shown in Fig. 4. It can be seen that the
behavior of the UAV while applying the proposed fractional-
order control (black line) is considerably more stable than the

0

1

2 4

2

20

3

0-2
-2

2
0.2 0.2

2.5

0 0
-0.2 -0.2

Fig. 4: In SITL simulations, we monitored the position states
of the fully-actuated Hexa-rotor. The UAV’s position trajec-
tory was visualized with two lines: black for our proposed
fractional-order control and red for the standard PID control
in PX4 firmware. Analyzing these results provides evidence
of our control strategy’s advantages.

0 10 20 30 40 50 60 70

-4

-2

0

Fig. 5: Fractional-order position control obtained during the
SITL simulation of the fully-actuated Hexa-rotor.

position with the PID control (red line). In the case of the
proposed control, the error obtained does not exceed the 0.2
m in both axes. On the contrary, the PID control does not
provide enough robustness against disturbances, with an error
reaching more than 1 m and, in certain moments, even 4 m.
Finally, Fig. 5 depicts the control signals obtained during the
hovering flight applying the proposed control approach. It is
observed that the control inputs are continuous and relatively
smooth without any chattering effect.

V. CONCLUSIONS

In this research, we have presented the design of a
fractional-order control system for the position dynamics of
a fully-actuated Hexa-rotor. Our proposed control system is
demonstrated to be well-suited for increasing the system’s
robustness against disturbances. Furthermore, the proposed
control law provides global exponential stability to the er-
ror equilibrium of the positioning system. Furthermore, we
perform MATLAB and software-in-the-loop simulations in
a virtual environment using Gazebo to emulate the PX4
firmware in which the control algorithm is programmed.
Finally, to demonstrate the superiority of our proposed
control system, we also compare it with the performance
of the PID control system. Note that PID is the standard
controller programmed in the PX4-firmware used for various
UAVs worldwide in the drones and robotics communities.
The results show that the fractional-order control system is
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significantly more robust for the position states of the Hexa-
rotor than the standard PX4-firmware controller (the PID).

This work enhances our previous results in this research
subject: [30], [36]. We plan to conduct real flight experiments
using a fully-actuated Hexa-rotor constructed in the lab.

The implemented PX4 code for this paper is available in
our GitHub repository, where the reader can find supple-
mentary material, including additional simulations with their
corresponding files.
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