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Abstract— A mixed H2/H∞ control problem under a sparsity
constraint is investigated for multi-agent control systems (MAS)
to provide robustness against model uncertainty and to reduce
the communication cost. First, proximal alternating linearized
minimization (PALM) is employed to develop a centralized
social optimization algorithm, which is guaranteed to converge
to a globally optimal sparse controller. Next, we investigate
a noncooperative game that accommodates different control
performance criteria of the agents and propose a best-response
dynamics algorithm based on PALM. A special case of this game
produces a partially distributed social optimization solution. We
validate the proposed algorithms using a network with open-
loop-unstable nodes and demonstrate superiority of the PALM-
based method to a previously investigated sparsity-constrained
mixed H2/H∞ controller.

I. INTRODUCTION

Recently, sparse controller designs for model uncertainties
have been proposed for multi-agent control systems (MAS)
to reduce the communication cost, which can be very high in
practical control systems due to exchange of large volumes
of feedback data [1]–[3]. Moreover, differential games have
been investigated where each player aims to optimize its
individual objective using an associated control policy as in,
e.g., power systems [4] or autonomous transportation net-
works [5]. However, combination of the sparsity constraint
and H2/H∞ objectives to create a holistic framework for
sparse control of uncertain multi-agent systems is missing,
and existing designs cannot be readily extended to meet these
combined objectives.

In this paper, we investigate controller designs that aim to
reduce H2 cost under H∞ and sparsity constraints for MAS
under norm-bounded parametric uncertainties [2], [6]. First,
we present an algorithm to compute a centralized, socially-
optimal, sparse H2/H∞ controller. Next, we develop a
noncooperative game, where each agent designs its own part
of the feedback matrix, and present a numerical algorithm to
find an Approximate Local Equilibrium (ALE) of this game.
Finally, we adopt the proposed game to obtain a partially
distributed implementation of the social optimization. We
validate the proposed algorithms using numerical simulations
and prove convergence of the centralized algorithm. While
existence of an ALE or convergence to it are not guaranteed
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due to the non-convex optimization objective, we provide
numerical examples and conditions for convergence for the
proposed noncooperative game algorithm.

In this paper, we utilize the proximal alternating linearized
minimization (PALM) [7], which has been shown to be ef-
fective for optimization for nonconvex nonsmooth problems
[8] and was used in [7] in a sparsity-constrained output-
feedback co-design problem. We demonstrate that PALM
significantly outperforms the greedy gradient support pursuit
(GraSP), which was employed in our earlier work [6].

The rest of the paper is organized as follows. Section
II presents the system model with parametric uncertainty
and develops and analyzes a centralized PALM algorithm.
Section III describes a MAS with parametric uncertainty,
proposes a noncooperative game, develops partially dis-
tributed numerical algorithms for this game and for social op-
timization, and discusses their complexity and convergence
properties. Section IV demonstrates effectiveness of the
proposed algorithms using numerical simulations. Section V
outlines future directions and concludes the paper. Table I
contains frequently used notation.

II. PALM ALGORITHM FOR CENTRALIZED,
SPARSITY-CONSTRAINED MIXED H2/H∞ CONTROL

A. System model

Consider the following linear time-invariant system with
model uncertainty

ẋ(t) = (A+∆A)︸ ︷︷ ︸
Â

x(t) + (B+∆B)︸ ︷︷ ︸
B̂

u(t) +B2w2(t)

z2(t) = C2x(t) +D2u(t)

y(t) = Cx(t), (1)

where x(t)∈Rn×1 is the state vector, u(t)∈Rm×1 is the
control input vector, w2(t)∈Rm2×1 is the exogenous input,
z2(t)∈Rp2×1 is the performance output, y(t)∈Rp×1 is the
measured output, A and B are the nominal state and control
input matrices, respectively, while ∆A and ∆B model their
respective uncertainties. Without loss of generality, we make
the following assumptions:

Assumption 1: (i) The pair (A,B) is stabilizable, (C,A)
is detectable.
(ii) ∆A and ∆B have the form [2]

[∆A ∆B] = B1∆δ[C1 D1], (2)

where B1∈Rn×m1 , C1∈Rp1×n, D1∈Rp1×m are known ma-
trices, and ∆δ∈Rm1×p1 is an unknown matrix, which is
norm-bounded, satisfying ∆δT∆δ ⪯ 1/γ2I for any scalar
γ > 0.
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Assumption 2: Matrices C2, D2 have the following form:

C2 =

[
C1

2

0pu
2×n

]
,D2 =

[
0px

2×m

D2
2

]
. (3)

where C1
2 ∈ Rpx

2×n, D2
2 ∈ Rpu

2×m.
Assumption 1(i) is necessary for the existence of an output
feedback controller that stabilizes the closed loop system
(1). Assumption 1(ii) specifies the structure of uncertainty
we consider in this paper, i.e., the unknown but bounded
uncertainty widely considered in other research work e.g.
[2]. Assumption 2 limits our focus to a common LQR
control scenario where the H2 cost is determined only by the
energies of the state signal and control input signal. Using the
above assumptions, the system (1) can be expressed as the
feedback interconnection of the following two subsystems:

Σ :


ẋ(t) = Ax(t) +Bu(t) +B1w1(t) +B2w2(t)

z1(t) = C1x(t) +D1u(t)

z2(t) = C2x(t) +D2u(t)

y(t) = Cx(t) (4)

ΣK :
{
w1(t) = ∆δz1(t), (5)

where z1(t) ∈ Rp1×1, w1(t) ∈ Rm1×1.

B. Sparsity-constrained mixed H2/H∞ control

To find a sparse static controller u(t)= − Ky(t) that
stabilizes the uncertain system in (4)-(5), we formulate the
following sparsity-constrained mixed H2/H∞ problem

min
K

||Tz2w2
(K)||2,

s.t. ||Tz1w1
(K)||∞ < γ, card(K) ≤ s, (6)

with the plant model satisfying (1), where Tziwi
(K) repre-

sents the closed-loop transfer function from wi to zi.
We denote the H2 objective function in (6) by J(K).

Using the impulse response definition of H2 norm, the H2

norm square in (6) can be written as

J(K) := ||Tz2w2
(K)||22 =

∫ ∞

t=0

zT2 z2dt (7)

=

∫ ∞

t=0

[
xTQx+ uTRu

]
dt.

where the last equation holds due to the Assumption 2, and

Q = (C1
2)

TC1
2 ⪰ 0, R = (D2

2)
TD2

2 ≻ 0 (8)

C. Centralized PALM algorithm

First, we replace the variable K in problem (6) by two
variables K ∈ Rm×n and F ∈ Rm×n where K = F and
K and F represent the feedback matrices satisfying the H∞
and cardinality constraints, respectively. Second, we relax the
assumption K = F and solve the optimization problem:

min
K,F

J(K) +
ρ

2
||K− F||2F ,

s.t. T∞(K) < γ, card(F) ≤ s, (9)

where the penalty term ρ/2||K−F||2F is used to regularize
the difference between K and F. If the regularization param-
eter ρ > 0 is chosen large enough, then F (9) is sufficiently

close to K (6) in Frobenius norm. In (9) and the rest of
the paper, we use T∞(K) as the short-hand notation for
||Tz1w1(K)||∞. Furthermore, the constrained optimization
problem (9) can be transformed into the following uncon-
strained optimization problem by converting the inequality
constraints into indicator functions:

min
K,F

Φ(K,F) := J(K) + g(K) + f(F) +H(K,F). (10)

where

g(K) =

{
0, T∞(K) < γ

+∞, otherwise.
(11)

f(F) =

{
0, card(F) ≤ s

+∞, otherwise.
(12)

H(K,F) =
ρ

2
||K− F||2F . (13)

Algorithm 1 describes the proposed centralized PALM al-
gorithm. In Steps 2 and 3 of Algorithm 1, F-minimization
(17) and K-minimization (18) are performed, respectively.
Plugging (12),(16) into (17), the F -minimization reduces to
(see eq. (4.20)- (4.28) of [9] for detailed derivations)

Fk+1 =argmin
F

||F− Zk||2F
s.t. card(F) ≤ s, (14)

TABLE I: Notation

Term Definition
M≻0(⪰0) Matrix M is positive definite (semidefinite)
M≺0(⪯0) M is negative definite (semidefinite)
σmax(M) maximum singular value of M
||K||F Frobenius norm of the matrix K, defined by√

trace(KTK).
card(K) Cardinality of matrix K, defined by the number of

nonzero elements in K.
∇KJ(K) The gradient of the scalar function J(K) with re-

spect to the matrix K. Assuming K ∈ Rm×n,
∇KJ(K) is given by a m×n matrix with the elements
[∇KJ(K)]ij = ∂J/∂Kij .

[K]s The matrix obtained by preserving only the s largest-
magnitude entries of the matrix K and setting all other
entries to zero.

Algorithm 1 PALM algorithm for the mixed H2/H∞ control
algorithm with sparsity constraint

Given s: sparsity constraint, γ: H∞-norm bound.
1. Initialization:
K0: any stabilizing feedback gain with T∞(K0) < γ.
F0: any stabilizing feedback gain F0.
γ1, γ2: constants greater than 1.
Compute a := γ1ρ, b := γ2ρ.
for k = 1, 2, ...kmax until ||Kk+1 − Kk||F < ϵ1 or
||Fk+1 − Fk||F < ϵ2 do

// 2. F-minimization step
2.1 Compute Zk := Fk − 1

a∇FH(Kk,Fk)
2.2 Prune Zk: Fk+1 := [Zk]s.
// 3. K-minimization step
3.1 Compute Xk := Kk − 1

b∇KH(Kk,Fk+1).
3.2 Update Kk+1: Kk+1 := KPROXOP(Kk,Xk, b).

end for
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where Zk is computed in 2.1 in Algorithm 1. As shown in
[7], [8], the solution to (14) is [Zk]s (see Table I), which is
Step 2.2 of Algorithm 1. The K-minimization step reduces
to

Kk+1 =argmin
K

(J(K) +
bk
2
||K−Xk||2F︸ ︷︷ ︸

h(K)

)

s.t. T∞(K) < γ, (15)

where Xk is computed in 3.1 in Algorithm 1. The mini-
mization of (15) is performed in the subroutine KPROXOP in
Algorithm 4.7 of [9], which utilizes the LMI condition in [6]
to find an improving feasible direction of K. The derivation
of the Algorithm 1 and KPROXOP is contained in Chapters
4.2.2 to 4.2.3 in [9].

D. Proof of Global Convergence of Algorithm 1

Definition 1 (Proximal Map): Given a proper, lower
semicontinuous function σ : Rd → (−∞,∞],x ∈ Rd, t > 0,
the proximal map associated with σ at point x [10]:

proxσt (x) = arg min
u∈Rd

{
σ(u) +

t

2
||u− x||2

}
. (16)

Algorithm 1 minimizes (10) by alternating the minimization
on the proximal maps associated with the variables K and
F:

Fk+1 ∈ proxfak

(
Fk − 1/ak∇FH(Kk,Fk)

)
(17)

Kk+1 ∈ proxJ+g
bk

(
Kk − 1/bk∇KH(Kk,Fk+1)

)
(18)

where ak and bk are positive constants that are
greater than the Lipschitz constants of ∇FH(Kk,F) and
∇KH(K,Fk+1), respectively. The definitions of Lips-
chitz continuous/Lipschitz constant, proper function, lower-
semicontinuous function can be found in Definitions B.3.1,
1.2.2 and 1.2.3 of [9], respectively.

Theorem 1 (Convergence of Algorithm 1): The sequence
(Fk,Kk) generated by (17)-(18) globally converges to a
critical point of Φ in (10).

Remark 1: The definition of a critical point is given in
[8]. Achieving a critical point of Φ is a necessary condition
for achieving optimality in (9).

The proof of Theorem 1 is based on Lemmas 1–2 and [8].
To simplify notation, we define g̃(K) ≜ J(K) + g(K) (see
(7), (11)).

Lemma 1: g̃ : Rm×n → (−∞,∞] and f : Rm×n →
(−∞,∞] (12) are proper and lower semicontinuous func-
tions, and H : Rm×n × Rm×n → R (13) is a continuously
differentiable function, i.e., H ∈ C1.

Proof: Since |J(K)| < ∞ if K is stabilizing, the
function J is proper. In addition, since J(K) is continuous
in K [11], it is lower semicontinuous. Similar arguments
show that g(K) and f(F) are proper and g(K) is lower
semicontinuous. Thus g̃(K) is proper and lower semicontin-
uous. Moreover, f(F) is lower semicontinuous [8]. Finally,
the gradient of H(K,F) (see eq. (4.25) in [9]) is continuous
in K,F. Thus, H ∈ C1.

Assumption 3: Function J is a semi-algebraic function
[8].

Lemma 2: The properties (i–iv), which are stated as
assumptions in [8], hold for the proposed optimization
(10): (i) infRm×n,Rm×n Φ > −∞, infRm×n f > −∞, and
infRm×n g̃ > −∞, where Φ is given by (10).
(ii) The partial gradients ∇KH(K,F) and ∇FH(K,F)
are globally Lipschitz with Lipschitz constants L1(F) and
L2(K) [8].
(iii) There exist bounds λ−

i , λ+
i , i = 1, 2 such that

inf{L1(F
k) : k ∈ N} ≥ λ−

1 , inf{L2(K
k) : k ∈ N} ≥ λ−

2

sup{L1(F
k) : k ∈ N} ≤ λ+

1 , sup{L2(K
k) : k ∈ N} ≤ λ+

2

(iv) ∇H ≜ (∇KH,∇FH) is Lipschitz continuous [10] on
bounded subsets of Rm×p × Rm×p.
(v) Under Assumption 3, the objective function Φ of (10) is
a Kurdyka-Łojasiewicz (KL) function [8].

Proof: The proof is contained Lemma B.5.3–B.5.4 of
[9] and is omitted due to space constraints.

Remark 2: The definitions of semi-algebraic set and func-
tion, and Kurdyka-Łojasiewicz (KL) function can be found
in Definitions B.4.4 and B.4.3 of [9], respectively. Moreover,
a broad class of functions satisfy the semi-algebraic property,
which aids the proof of Lemma 2 and supports Assumption
3 [8].

Using the arguments in [8], we can show that if Lemmas
1–2 hold, then the sequence generated by PALM algorithm
globally converges to a critical point [8] of Φ. This confirms
convergence of Algorithm 1 to a sparsity-constrained mixed
H2/H∞ controller, which corresponds to a critical point of
Φ under mild assumptions on the functions J and g.

III. SPARSITY-CONSTRAINED NONCOOPERATIVE GAMES
FOR MULTI-AGENT CONTROL

A. Multi-agent model and the noncooperative game

Consider a network of N agents, where agent i employs
control strategy ui(t)∈Rqi×1, corresponding to its sub-block
of the overall feedback matrix K, i=1...N . Thus, (1) can be
represented as

ẋ(t)=(A+∆A)x(t)+

N∑
i=1

(
B(i)+∆B(i)

)
ui(t)+B2w2(t)

y(t) = Cx(t)

ui(t) = −Kiy(t), i = 1, ..., N. (19)

where A∈Rn×n, B(i)∈Rn×qi represent the nominal values
of the state and control matrix, respectively, for the i-
th control input. Due to the offline design of the sparse
controller, we assume all agents know A and B(i) for
i=1, ..., N . The uncertain matrices ∆A ∈ Rn×n and
∆B := [∆B(1),∆B(2), ...,∆B(N)] satisfy (2), where
∆B(i)∈Rqi×n. Note that B(i) is the column block of B

in (1), with
∑N

i=1 B(i)ui=Bu, and Ki ∈ Rqi×p is the row
block of K associated with the rows corresponding to the
control inputs for agent i. Thus, (19) can be expressed in the
form (4–5), with the first equation in (4) replaced by

ẋ(t) = Ax(t)+

N∑
i=1

B(i)ui(t)+B1w1(t)+B2w2(t). (20)
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Let K−i denote the set of strategies j ̸= i, j = 1, ..., N .
When agent i chooses its strategy Ki in (19) given K−i, we
refer to the resulting feedback gain matrix K as {Ki;K−i}.

In (20), the single performance output z2 in (1) is replaced
by N individual performance outputs of the agents z2,(i).
Assuming that each performance output z2,(i) = C2,(i)x +
D2,(i)ui has a form that satisfies (3), the H2-cost from w2

to agent i’s performance output can equivalently be defined
as the individual LQR cost of agent i:

Ji(K) =

∫ ∞

t=0

[
xT (t)Qix(t) + uT

i (t)Riui(t)
]
dt

s.t. w1(t) = 0,w2(t) = δ(t) (21)

where Qi ∈ Rn×n ⪰ 0 and Ri ∈ Rqi×qi ≻ 0 are weight
matrices for state and control input of agent i, respectively,
and w2(t) is an impulse disturbance.

Given other players’ strategies K−i, the set of feasible
strategies for player i, which guarantee stability of the
uncertain system (19) with at most s communication links
overall, must satisfy

Gi(K−i) = {Ki| card({Ki;K−i}) ≤ s,

T∞({Ki;K−i}) < γ}. (22)

Given K−i, player i solves the following optimization:

min
Ki

Ji({Ki;K−i})

s.t. Ki ∈ Gi(K−i). (23)

We define a relaxed version of the Nash Equilibrium termed
Approximate Local Equilibrium (ALE), which is similar to
the smoothed local equilibrium concept in [12]. In ALE, any
player i cannot make ϵ-deviations to improve its utility given
other players’ strategies. ALE is computationally tractable
since it is quantified by the projected gradient, which is
suitable for constrained optimization problems. Thus ALE is
a more practical equilibrium concept for the proposed game
than the Generalized Nash Equilibrium (GNE) [13].

Definition 2 (Projected Gradient [12]): Let η > 0. The
projected gradient of cost Ji onto the constraint set Gi(K

∗
−i)

of player i is defined as

∇Gi(K∗
−i),η

Ji({Ki;K
∗
−i})

=
1

η
(Ki −ΠGi(K∗

−i)
[Ki − η∇KiJi({Ki,K

∗
−i})]), (24)

where the operator ΠK(·) denotes projection onto set K.
Definition 3 (Approximate Local Equilibrium): A set of

strategies (K∗
1,K

∗
2, ...,K

∗
N )) is an ϵ-approximate local equi-

librium if

||∇Gi(K∗
−i),η

Ji({Ki;K
∗
−i})|| < ϵ, ∀i = 1, 2, ..., N. (25)

Note that when ϵ=0 in (25), the ALE point achieves a
necessary condition for GNE [12].

B. PALM algorithm for computing an ALE

Algorithm 2 employs the best-response (BR) dynamics
(23) to find an ALE. Recall Algorithm 1 where the tuple
K,F was iteratively optimized to solve the penalized opti-
mization (10). Similarly, given K−i, player i’s optimization

(23) can be written in the penalized form using indicator
functions as

min
Ki,F

Φi(Ki,F;K−i), with (26)

Φi(Ki,F;K−i) := Ji({Ki;K−i}) + h({Ki;K−i})
+ f(F) +H({Ki;K−i},F) (27)

where h(·) and f(·) are given by (11,12) and the ma-
trix {Ki;K−i} is defined after (20). In (26), Ki ∈
Rqi×n represents the feedback gain of agent i that satisfies
T∞({Ki;K−i}) < γ and F ∈ Rm×n is the system-
wide sparse feedback gain matrix that satisfies the global
sparsity constraint. The global constraint is appropriate since
the agents share the communication network. In the BR
dynamics, in each round the players take turns to minimize
their own respective Φi functions over Ki and F. The
equilibrium point is achieved when no player can improve
its Φi using Ki and F while Kj is fixed for j ̸= i.

The minimization (26) is similar to (10). Thus, modified
Algorithm 1 is used in line 9 of Algorithm 2 to solve
(26). Given its Kl

i, F
l at iteration l, the following proximal

operators are employed by player i in the minimization of
line 9 in Algorithm 2.
F-minimization: Compute the proximal point Zk for Fk:

Zk = Fk − 1

a
∇FH(Kk,Fk)

= Fk − γ

a
(Fk − {Kk

i ;K−i}) (28)

Solve for the proximal operator:

Fk+1 = argmin
F

a

2
||F− Zk||2F , s.t.card(F) ≤ s, (29)

and get Fk+1 = [Zk]s, similarly to Step 2 of Algorithm 1.
K-minimization: Compute the proximal point Xk

i for Ki:

Xk
i = Kk

i − 1

b
∇Ki

H(Kk
i − (Fk+1)i)

= Kk
i − ρ

b
(Kk

i − (Fk+1)i). (30)

Solve for the proximal operator:

Kk+1
i = argmin

Ki

{
Ji({Ki;K−i}) +

b

2
||Ki −Xk

i ||2F
}

s.t. T∞({Ki;K−i}) < γ. (31)

Similarly to (15), we solve (31) by applying the KPROXOP
subroutine (see Algorithm 1). In the player i’s optimization
to solve line 9 of Algorithm 2, its individual control strat-
egy is first updated in the K-minimization step. Then this
player informs all players to jointly update their strategies in
the F-minimization. Each player sends the updated control
strategies to the other players. In summary, Algorithm 2 has
partially distributed computation where the players update
their control strategies individually but require the nominal
system knowledge and communicate with the other players.

Finally, we note that partially distributed implementation
of the social optimization (6) is obtained using the noncoop-
erative game above where each agent’s utility (23) is replaced
with the objective J(K) in (7) expressed as (32), where R(i)
denotes the submatrix of R that represents the weight matrix
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for ui(t) and Qi = Q+CT (
∑

j ̸=i K
T
j R(j)Kj)C.

J(K) = J({Ki,K−i}) = (32)∫ ∞

0

[xT (Q+CT (
∑
j ̸=i

KT
j R(j)Kj)C)x+uT

i R(i)ui]dt.

Similarly to GNE, existence of ALE and convergence of
Algorithm 2 are not guaranteed due to the nonconvex opti-
mization objectives [13]. If Algorithm 2 converges to an ALE
(25) at iteration l, ϵ is approximated by 1

η ||∆Kl
i||, where η

is the step size determined in the KPROXOP subroutine in
Algorithm 1. Finally, the numerical complexity of Algorithms
1 and 2 is dominated by the K-minimization step (Step
3 of Algorithm 1 and line 9 of Algorithm 2), which has
polynomial complexity on the number of variables in the
feedback matrix [14].

IV. NUMERICAL RESULTS

We consider a standard example of an uncertain network
model [15], [16] that consists of N connected nodes dis-
tributed randomly on a L by L square units area. Each node
is an unstable second-order system coupled with other nodes
through an exponentially decaying function of the Euclidean
distance l̂(i, j) where i, j = 1, ..., N [15]. The state-space
representation of node i is given as:[

ẋ1i

ẋ2i

]
=Âii

[
x1i

x2i

]
+
∑
j ̸=i

e−l̂(i,j)

[
x1j

x2j

]
+

[
0
1

]
(ui + wi).

(33)
Similarly to the system (1), the state matrix Â ∈ R2N×2N

includes parametric uncertainty, with matrix A denoting the
known nominal value of the state matrix. The state matrices
within each node are given by Âii, i = 1, ..., N and
the Euclidean distances between nodes i and j, l̂(i, j) are
modeled as

Âii = Aii +Aii ⊙
[
θ11 θ12
θ21 θ22

]
l̂(i, j) = l(i, j) · (1 + δi,j),∀i, j = 1, ..., N (34)

Algorithm 2 PALM algorithm for computing ALE (25)

1: Given s: global sparsity constraint, γ: H∞-norm bound.
2: Initialization:
3: K0: any stabilizing feedback gain with T∞(K0) < γ.
4: F0: any stabilizing feedback gain F0.
5: for l = 1...lmax until ||F1 − Fl−1||F < ϵ3 do
6: Kl := Kl−1, Fl := Fl−1

7: for i = 1...N do
8: // Solve using (28–31) with Kl

i, F
l as the initial

values:
9: K̂i, F̂ = argminKi,F Φi(Ki,F;K

l
−i)

10: // Update Kl and Fl:
11: Kl = {K̂i;K

l
−i}

12: Fl = F̂
13: end for
14: end for
15: Output: KALE(s) := Fl.

where Aii and l(i, j) are the nominal values, and δij and
θmn∀m,n = 1, 2 are independent random perturbations,
uniformly distributed in the range ±20%. The operator ⊙
denotes element-wise multiplication. The input matrix B̂ is
known exactly, i.e., B̂ = B = 1N ⊗ [0 1]T , where ⊗
denotes the Kronecker product. In this simulation study, we
collected 200 random samples of Â. To guarantee closed-
loop stability of (33), we numerically compute the worst-case
Â as Âworst = argmaxÂ σmax(Â − A). Using the sin-
gular value decomposition, we obtain USV T=Âworst−A.
Normalizing S by σmax(S), we set B1 =

√
σmax(S)U ,

C1 =
√
σmax(S)V

T in (2). Due to this normalization,
γ = 1.

We set L = 2, N = 5. Thus, A ∈ R10×10, B ∈ R10×5.
The output matrix C = I10. The dense feedback matrix
K has card(K) = 50 while the completely decentralized
feedback controller has card(K) = 10. We set Q = 100 · I
and R = I in (8). The noncooperative game with the
agents’ utilities in (21) has two players, where player 1 is
in charge of the control inputs in nodes 1 and 3 and player
2 is in charge of the control inputs in nodes 2, 4, 5. The
parameters ρ = 1000 (9), and ϵ1 = ϵ2 = 10−4, ϵ3 = 10−3

in Algorithms 1 and 2 were chosen experimentally to aid
accuracy and convergence. The performance index matrices
Qi,Ri, i = 1, 2 for the LQR cost in (21) satisfy:

xTQ1x+uT
1 R1u1=100

∑
i=1,2

(xi1−xi3)
2+

∑
j=1,3

u2
j (35)

xTQ2x+ uT
2 R2u2 = 100

∑
j=2,4,5

(x2
1j + x2

2j)+
∑

j=2,4,5

u2
j .

First, we present simulation results for the social opti-
mization problem (6). We compare the following controllers:
K∗

PALM(s) computed by Algorithm 1, K∗
PALM−SG(s) com-

puted by Algorithm 2 with the agents’ objectives (32),
K∗

GraSP(s) computed from the GraSP algorithm in [6], and
the dense mixed H2/H∞ controller using the simple gradient
method in [17].

Figure 1 illustrates the optimal LQR cost J in problem
(6) and the associated H∞ norm vs. sparsity constraint s.
From Figure 1(a), we observe that the LQR costs of all
sparsity-constrained methods decrease as s is relaxed and
approach that of the dense controller. However, the PALM-
based methods have similar LQR costs and outperform
significantly the GraSP algorithm in [6]. At convergence,
GraSP algorithm determines the sparsity structure given by
the greedy selection step and does not necessarily find the
critical point of the problem in (6) achieved by the PALM
method (Theorem 1).

Next, we investigate performance of the noncooperative
game solved using Algorithm 2. Let KALE(s)={KALE

1 (s),
KALE

2 (s)} denote the feedback gain matrices for the two
players produced by Algorithm 2 when the sparsity constraint
is given by s. Figure 2(a) shows the errors in consecutive
steps of player i’s strategic variables Ki,Fi for i = 1, 2 vs
iteration l in Algorithm 2. We observe that both ||∆Ki||F
and ||∆Fi||F decrease significantly within the first 10 it-
erations, and saturate to approximately 10−2 as l grows,
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Fig. 2: Performance of Algorithm 2 for noncooperative games. (a)
Errors in consecutive steps of Kl

i and Fl
i for players i = 1, 2 vs.

step l for s = 25. (b) T∞(KALE(s)) vs. the sparsity constraint
s at ALE. (c) Ji(K

ALE(s)) vs. sparsity constraint s at ALE. (d)
The sparsity pattern (nonzero elements) of KALE(s) for different
s values.

resulting in the saturation of the penalized cost function
Φi in line 9 of Algorithm 2. While ||∆Ki||F does not
decrease to zero to reach a necessary condition for a GNE,
the saturation point represents an ALE (25). Figure 2(b)
shows that T∞(KALE(s)) < 1 for 15 ≤ s ≤ 45, indicating
that the strategies in KALE(s) are guaranteed to stabilize the
uncertain system (33). Figure 2(c) illustrates the individual
LQR costs Ji (21) when KALE(s) is applied. Note that the
LQR cost of each player achieved at the equilibrium point
decreases with s, demonstrating the trade-off between the
selfish LQR cost and the global shared sparsity constraint.
Finally, Figure 2(d) illustrates the non-zero elements of the
feedback matrix for several s-values, demonstrating that the
feedback matrix tends to that of the decentralized controller
but still retains some “important” links between the nodes as
the communication cost grows.

V. CONCLUSION

The PALM method was employed to solve the sparsity-
constrained mixed H2/H∞ control problem for multi-agent
systems. First, a centralized social-optimization algorithm
was investigated. Second, we developed a noncooperative
game with partially distributed computation. The proposed

algorithms were validated using an open-loop-unstable net-
work dynamic system. It was demonstrated that the central-
ized PALM method outperforms the GraSP-based method for
most sparsity levels and converges both theoretically and in
simulation results. Moreover, our numerical results illustrate
convergence of the proposed best-response-dynamics algo-
rithm for the noncooperative game to an approximate local
equilibrium point for most sparsity constraint values. Finally,
the performance of the game-based partially distributed al-
gorithm for social optimization closely approximates that of
the centralized algorithm.
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