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Abstract— The problem of estimating the state of a dynamical
system using sensor measurements becomes challenging when
some of the measurements are modified by unknown inputs,
which can arise due to sensor faults, modeling errors, or
adversarial data injection attacks. To solve this problem, several
authors have developed robust state estimation algorithms by
assuming that the unknown input follows a known dynamical or
probabilistic model. However, to the best of our knowledge, the
stability of the existing algorithms under arbitrary unknown
input sequences (which may violate the assumed dynamical
or probabilistic model) has not been studied in the literature.
In this paper, we address this limitation by proposing and
analyzing a class of robust state estimation algorithms which
unifies the existing algorithms. We derive stability guarantees
that are applicable to a wider range of unknown input se-
quences, including (but not limited to) the ones considered in
the literature. Through a numerical example, it is demonstrated
that the proposed robust state estimation method achieves
better state estimation performance than the existing algorithms
in the presence of unknown inputs.

I. INTRODUCTION

State estimation refers to the problem of reconstructing
the state of a dynamical system by processing noisy sensor
measurements. In many practical applications, the measure-
ments obtained from some of the sensors may be corrupted
by a variety of unknown inputs, which can occur due to
sensor bias (due to malfunction or miscalibration of sensors),
multipath errors in range-based sensors, and adversarial data
injection attacks [1], [2]. A seminal work in the field is the
Simultaneous Input and State Estimation (SISE) algorithm
[3]–[5], in which the robust state estimation algorithm is
derived by combining a Kalman filter with a minimum-
variance estimator to estimate the unknown input. While
the SISE algorithm is derived under the assumption that no
prior knowledge about the unknown input is available, other
works have considered the case where the probability density
function (pdf) of the unknown input is known. In the latter
case, the system state and the unknown input can be jointly
estimated using Bayesian estimation theory [6]. It has been
shown that the SISE algorithm arises as a special case of
the Bayesian approach, when the unknown input is modeled
using a flat (uninformative) pdf [7]–[9].

In each of the above works, the input is assumed to
be independent and identically distributed (i.i.d.) at each
timestep. An alternative scenario is that of a constant or
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a slowly-varying input, in which case the input at a given
timestep is correlated with the estimated input at the previous
timestep. Based on this observation, the authors in [10], [11]
and [12] proposed robust state estimation algorithms wherein
the unknown input is mitigated through batch processing of
a finite history of measurement data.

In the algorithms discussed thus far, the unknown input
estimator does not maintain an internal state, i.e., the input
is re-estimated at each timestep. We refer to this approach
as static input estimation. In contrast, dynamic (recursive)
estimation of the unknown input uses a dynamical model to
propagate the estimated input between successive measure-
ment updates. Dynamic input estimation has been considered
in [13]–[15], and [16], under the assumption that the input
evolves according a known dynamical model. It is shown
numerically in [1] that dynamic unknown input estimation
can perform better than the SISE algorithm even when a
dynamical model of the input is not available. However, the
authors do not discuss the stability of the dynamic input
and state estimation algorithm, or analyze its convergence
properties in a mathematically rigorous way.

As the dynamics of the state estimation error and the
estimated input are coupled, a rigorous stability analysis of
this class of algorithms is necessary before they can be imple-
mented. Moreover, as the dynamical model of the unknown
input may not be known in practice, it is desirable to design
a new robust state estimation algorithm that can adaptively
reconstruct the system state under a wide range of unknown
input scenarios. To this end, we propose a class of robust
state estimation algorithms which unifies and generalizes the
above algorithms, including the ones based on static input
estimation and those based on dynamic input estimation. By
conducting a stochastic stability analysis of the algorithm,
the conditions for its stability are derived in terms of the
system matrices and design parameters, which facilitates the
design of new robust state estimation algorithms based on a
combination of the above approaches. Through a numerical
example, it is shown that the proposed robust state estimation
method can adaptively mitigate the impact of unknown inputs
on the state estimation performance when the probabilistic
or dynamical model of the input is not available.

Notation: In the paper, I and 0 denote the identity matrix
and the matrix of all zeros, respectively, of appropriate
dimensions. K and KL are classes of comparison functions,
whose definitions can be found in [17]. For matrices A and
B, A ≻ B (A ≽ B) means that A − B is positive definite
(semidefinite). Tr(·) denotes the trace of a matrix and ∥·∥
denotes the 2-norm and induced 2-norm for vectors and
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matrices, respectively.

II. A CLASS OF ROBUST STATE ESTIMATORS

Consider the following stochastic discrete-time linear time-
varying models for the system state and measurements:

x(k + 1) = Akx(k) + v(k) (1)
y(k) = Ckx(k) +Dku(k) + w(k) (2)

where x(k) ∈ Rnx and y(k) ∈ Rny are the system state and
measurement at timestep k, respectively, and nx and ny de-
note their dimensions. The initial condition x(0) is assumed
to have a multivariate Gaussian distribution with mean x0

and variance Σx,0. The unknown input is denoted as u(k) ∈
Rnu . v(k) ∈ Rnx and w(k) ∈ Rny are the process and
measurement noise, sampled from zero mean white Gaussian
noise processes having the covariance matrices Σv,k and
Σw,k, respectively, at timestep k. The matrix Dk ∈ Rny×nu

is assumed to be known; the column space of Dk can encode
the known vulnerability of sensors to unknown inputs [2].
Without loss of generality, we may assume that ny ≥ nu

and that the columns of Dk are linearly independent ( [3]).
It is also assumed that (Ak, Ck) satisfies the time-varying
observability condition [18, Definition 4.2]. Furthermore, it
is assumed that E[u(k)v(k)⊤] = E[u(k)w(k)⊤] = 0. Note
that this assumption is weaker than the one used to derive the
Simultaneous Input and State Estimation (SISE) algorithm
[8, Assumption 2]. In particular, our assumption allows for
u(k) to be a function of the state x(k), whereas in [8] it is
assumed that u(k) is independent of x(k).

The objective of robust state estimation is to obtain an
accurate estimate of the system state at timestep k using the
observed measurement data till timestep k. Furthermore, it is
desirable to process the measurement data recursively, rather
than in a batch, in order to minimize the computational effort
required at each timestep. To this end, consider the following
recursions for the robust state estimation algorithm:

x̂(k + 1) = Akx̂(k) +AkKk

(
y(k)− Ckx̂(k)−Dkû(k)

)
(3)

û(k) = Ekû(k − 1) + Fk

(
y(k)− Ckx̂(k)

)
(4)

where x̂(k) is the estimate of the system state x(k). Ek and
Fk are designed such that û(k) tracks the unknown input
u(k). The algorithm is initialized as û(−1) = û(0) = 0
and x̂(0) = x̂0, where x̂0 ∈ Rnx is the initial guess of
x(0), which is chosen independently of the process and
measurement noise.

The intuition behind this update model is twofold: (i) as
shown in Table I, several existing robust state estimators
(including the SISE algorithm) use the recursions (3) and
(4), and (ii) when an accurate estimate of the unknown input
is available, it can be subtracted from the measurements
as in (3), resulting in a Kalman filter-like algorithm. The
main difference between the algorithms in Table I is in the
assumptions or constraints that they place on the unknown
input, u(k). In the following section, we derive the conditions
on the design matrices Kk, Ek and Fk which guarantee the
stability of this class of algorithms.

III. SUFFICIENT CONDITIONS FOR STABILITY

Let e(k) := x(k) − x̂(k) denote the state estimation
error. Using equations (1) to (4), the state estimation error
dynamics can derived as

e(k + 1) = Ak(I −KkF̃kCk)e(k) + v(k)

−AkKk

(
F̃kDku(k) + F̃kw(k)−DkEkû(k − 1)

) (5)

where F̃k = I − DkFk. On the other hand, (4) can be
rewritten as

û(k) = Ekû(k − 1) + Fk

(
Cke(k) +Dku(k) + w(k)

)
(6)

Thus, the dynamics of the estimated input, û(k), is coupled
with that of the state estimation error.

To study the joint stability of e(k) and û(k), define
η(k) :=

[
e(k)⊤ û(k − 1)⊤

]⊤
. Using (5) and (6), the

dynamics of η(k) can be written concisely in the block
matrix form, as

η(k + 1) =

[
Ak(I −KkF̃kCk) AkKkDkEk

FkCk Ek

]
︸ ︷︷ ︸

Gk

η(k)

+

[
−AkKkF̃kDk

FkDk

]
︸ ︷︷ ︸

Hk

u(k) +

[
−AkKkF̃k

Fk

]
︸ ︷︷ ︸

Lk

w(k) +

[
I
0

]
︸︷︷︸
Mk

v(k)

(7)

which is a stochastic linear time-varying system subject to
the input u(k). To derive the stability conditions for this
system, the following lemmas are introduced.

Lemma 1 (Input-to-State Stability in Probability [20]):
Let {ζk}k≥0 denote the trajectory of a stochastic dynamical
system subject to a sequence of bounded inputs, denoted
as {υ(k)}k≥0. Suppose there exist continuous functions
{Vk(·)}k≥0 satisfying

v∥ζk∥2 ≤ Vk(ζk) ≤ v̄∥ζk∥2 (8)

for some v̄, v > 0, and

E [Vk+1(ζk+1)|ζk]− Vk(ζk) ≤ µ− αVk(ζk) + σ
(
∥υ(k)∥

)
(9)

for some µ ≥ 0, α ∈ (0, 1] and σ ∈ K, then for any ϵ > 0,
there exist β(·, k) ∈ KL and γ ∈ K, such that for all k,

P
(
∥ζk∥ < β

(
∥ζ0∥, k

)
+ γ

(
sup
k′<k

∥υ(k′)∥
))

≥ 1− ϵ (10)

Lemma 2 (Almost-Sure Exponential Stability [18]): If, in
addition to the conditions of Lemma 1, υ(k) ≡ 0, then there
exists µ̃ ≥ 0 such that the following holds almost-surely for
all k:

E
[
∥ζk∥2

]
≤ µ̃+

v̄

v
E
[
∥ζ0∥2

]
(1− α)k (11)

Lemma 1 ensures the stability of a stochastic dynamical sys-
tem under arbitrary unknown but bounded input sequences,
even when the input is state-dependent. Usually, a bound
on the unknown input may arise as a physical constraint
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TABLE I: Appropriate choices of Ek and Fk based on the unknown input model

No. Unknown Input Model
Design Matrices

Remarks and Reference
Ek Fk

1. u(k) ≡ 0 0 0 Equivalent to the Kalman filter

2. Arbitrary† 0
(D⊤

k R−1
k Dk)

−1D⊤
k R−1

k

where Rk = CkPkC
⊤
k +Σw,k

Corresponds to the SISE algorithm [3]

3.
Uniformly Bounded†

∥u(k)∥ ≤ ū
0

(
1
ū2 I +D⊤

k R−1
k Dk

)−1
D⊤

k R−1
k

Corresponds to L2-regularized (ridge) esti-
mation of u(k) [9]

4.
Zero-mean Gaussian†

u(k) ∼ N (0,Σu,k)
0

(
Σ̂−1

u,k +D⊤
k Σ−1

w,kDk

)−1
D⊤

k Σ−1
w,k Σ̂u,k is updated using a Riccati equation [6]

5.
Gaussian Random Walk
u(k + 1) = u(k) + ṽ(k)

(I − FkDk)
(
Σ̂u,kD

⊤
k + Σ̂ux,kC

⊤
k

)
Σ−1

w,k See [16], as well as [13], [19]

6.
General Linear Model

u(k + 1) = Φku(k) + ṽ(k)
Φk(I −Nk) See reference for Nk and Fk Assumes that Φk is known [14]

† Also require that E
[
u(k)e(k)⊤

]
= 0, where e(k) = x(k)− x̂(k).

of the sensor, or can be explicitly enforced by using a
residual test [2]. In addition, Lemma 2 may be used to ensure
that the robust state estimation algorithm is exponentially
stable in the absence of unknown inputs, which is essential
for designing robust state estimation algorithms that do not
compromise the state estimation performance. Note that,
given (11), E∥ζk∥ can also be bounded by using Jensen’s
inequality, as E ∥ζk∥ ≤

√
E[∥ζk∥2].

It is shown in Theorem 1 that both notions of stability
can be satisfied simultaneously using the same discrete-time
dynamic Lyapunov equation. To prove Theorem 1, we make
the assumption that the entries of each of the matrices Gk,
Hk and Lk are finite and uniformly bounded.

Theorem 1: If there exist bounded sequences of positive
definite matrices {Pk}k≥0 and {Qk}k≥0, such that

G⊤
k Pk+1Gk − Pk ≼ −Qk (12)

then the trajectory of system (7) is both input-to-state stable
in probability as well as almost-surely exponentially stable
in the absence of inputs.

Proof: Consider a quadratic Lyapunov function as a
candidate for satisfying conditions (8) and (9), Vk(η(k)) =
η(k)⊤Pkη(k). The value of the Lyapunov function at
timestep k + 1 is

Vk+1

(
η(k + 1)

)
= η(k + 1)⊤Pk+1η(k + 1) (13)

By substituting (7) in (13) and taking the conditional expec-
tation, we have

E
[
Vk+1

(
η(k + 1)

)∣∣η(k)]
= E

[
η(k)⊤G⊤

k Pk+1Gkη + 2η(k)⊤G⊤
k Pk+1Hku(k)

+ u(k)⊤H⊤
k Pk+1Hku(k) + w(k)⊤L⊤

k Pk+1Lkw(k)

+ v(k)⊤M⊤
k Pk+1Mkv(k)

∣∣ η(k)] (14)

Let ∆Vk := E
[
Vk+1

(
η(k + 1)

)∣∣η(k)] − Vk

(
η(k)

)
. Using

(12) in (14), we get

∆Vk ≤E
[
− η(k)⊤Qkη(k) + 2η(k)⊤G⊤

k Pk+1Hku(k)

+ u(k)⊤H⊤
k Pk+1Hku(k) + w(k)⊤L⊤

k Pk+1Lkw(k)

+ v(k)⊤M⊤
k Pk+1Mkv(k)

∣∣ η(k)] (15)

As it is assumed that the entries of all the matrices are finite
and bounded, the equivalence of matrix norms can be used
to establish upper bounds (in terms of the induced 2-norm)
for the terms in (15). Thus, we have

∆Vk ≤ −λmin(Qk)∥η(k)∥2 (16)

+ 2∥G⊤
k Pk+1Hk∥∥η(k)∥∥u(k)∥+ ∥H⊤

k Pk+1Hk∥|∥u(k)∥2

+ E
[
w(k)⊤L⊤

k Pk+1Lkw(k) + v(k)⊤M⊤
k Pk+1Mkv(k)

]
By rearranging the terms, we have

∆Vk ≤ − 1
2λmin(Qk)∥η(k)∥2 (17)

+
(
∥H⊤

k Pk+1Hk∥+ 2
λmin(Qk)

∥G⊤
k Pk+1Gk∥2

)
∥u(k)∥2

−
(√λmin(Qk)

2 ∥η(k)∥ −
√

2
λmin(Qk)

∥G⊤
k Pk+1Gk∥∥u(k)∥

)2
+ E

[
w(k)⊤L⊤

k Pk+1Lkw(k) + v(k)⊤M⊤
k Pk+1Mkv(k)

]
In order to evaluate the last term of (17), note that

E
[
v(k)⊤M⊤

k Pk+1Mkv(k)
]

= E
[
Tr

(
v(k)⊤M⊤

k Pk+1Mkv(k)
)]

(18)

= Tr
(
M⊤

k Pk+1Mk E[v(k)v(k)⊤]
)

(19)

= Tr(M⊤
k Pk+1MkΣv,k) (20)

Furthermore, for matrices Z1 and Z2, Tr(Z⊤
1 Z2) is the

Frobenius inner product for matrices, so we can use the
Cauchy–Schwarz inequality to establish that

Tr(Z⊤
1 Z2) ≤ ∥Z1∥F ∥Z2∥F (21)

where ∥Z∥F =
√
Tr(Z⊤Z) is the Frobenius norm. Using

(20) and (21) in (17), we see that the condition

∆Vk ≤ µ− αVk(η(k)) + σ(∥u(k)∥) (22)

is satisfied with

µ = nxv̄σ̄v +
√
nxnynu l̄

2v̄σ̄w, α =
q

2v̄

σ(∥u(k)∥) =
(
∥H⊤

k Pk+1Hk∥+
2

q
∥G⊤

k Pk+1Gk∥2
)
∥u(k)∥2

where l̄, σ̄v and σ̄w are the uniform bounds (in ∥·∥) of
Lk, Σv,k and Σw,k, respectively, and we have used the
equivalence of matrix norms to replace ∥·∥F with ∥·∥.
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In the proof, it is assumed that E[u(k)|η(k)] = u(k),
which means that u(k) does not have any randomness of
its own. This assumption is satisfied even if u(k) is state-
dependent; for instance, we may have u(k) = g

(
x(k)

)
,

where g : Rnx → Rnu is a continuous function. When
u(k) has additional randomness, the randomness of u(k)
can be subsumed in the measurement noise, w(k). Thus, the
assumption E[u(k)|η(k)] = u(k) is not restrictive, and can
accommodate state-dependent and random unknown inputs.

In order to design a stable state estimator, it is desirable to
rewrite (12) in terms of the system and design matrices. To
accomplish this, we may restrict Pk to be block diagonal, as
shown in Corollary 1, to obtain a more conservative stability
condition.

Corollary 1: If there exist bounded sequences of posi-
tive definite matrices {P1,k}k≥0, {P2,k}k≥0, {Q1,k}k≥0 and
{Q2,k}k≥0, such that

Φ11 ≼ 0, Φ22 − Φ⊤
12Φ

−1
11 Φ12 ≼ 0 (23)

where

Φ11 = Ã⊤
k P1,k+1Ãk + C⊤

k F⊤
k P2,k+1FkCk − P1,k +Q1,k

Φ12 = Ã⊤
k P1,k+1AkKkDkEk + C⊤

k F⊤
k P2,k+1Ek

Φ22 = E⊤
k D⊤

k K
⊤
k A⊤

k P1,k+1AkKkDkEk + E⊤
k P2,k+1Ek

− P2,k +Q2,k

and Ãk = Ak(I −KkF̃kCk), then the trajectory of system
(7) is bounded in the sense of Lemmas 1 and 2.

Proof: We use the following result for positive defi-
niteness of block matrices [21, p. 298]:[

Z11 Z12

Z⊤
12 Z22

]
≽ 0 ⇐⇒

Z11 ≽ 0, and

Z22 − Z⊤
12Z

−1
11 Z12 ≽ 0

(24)

Consider a block-diagonal form for the matrices Pk and Qk

in Theorem 1, i.e.,

Pk =

[
P1,k 0
0 P2,k

]
Qk =

[
Q1,k 0
0 Q2,k

]
Substituting these matrices in the stability condition (12) and
using the identity (24), we obtain (23).

IV. ESTIMATOR DESIGN PROCEDURE

While Ek and Fk are designed to track the unknown input,
the Kalman gain Kk is designed based on the minimum mean
squared error (MMSE) criterion, where the mean squared
error (MSE) is

E[∥e(k)∥2] = Tr
(
Σx,k

)
where Σx,k := E

[
e(k)e(k)⊤

]
. In the MMSE design crite-

rion, Kk is chosen to minimize the MSE at the next timestep.
However, a rigorous application of the MMSE design cri-
terion requires the dynamical model or prior distribution
of the unknown input. When the model of the unknown
input is not known, a consistent, sub-optimal estimator may
be designed instead, by substituting the unknown terms
with their corresponding upper bounds [22]. The following

propositions show how a stable robust state estimator can be
designed by combining the MMSE design criterion with the
results of the previous section:

Proposition 1: Let Kk be computed such that the follow-
ing MMSE design criterion is satisfied:

Kk = argmin
Kk

Tr(Σx,k+1) (25)

There exist ē, f̄ > 0 such that, given ∥Ek∥ ≤ ē and ∥Fk∥ ≤
f̄ , the robust state estimation algorithm (3) and (4) is stable
in the sense of Lemmas 1 and 2.

Proof: Recall that F̃k = I−DkFk. The upper bound f̄
of the proposition can be chosen to be small enough to ensure
that F̃k is full rank, and thus, (Ak, F̃kCk) is observable.
Using Lemma 3.1 of [18], it can be shown that if (Ak, F̃kCk)
is observable and Kk is chosen as per (25), then there exists
α̃ > 0 satisfying

(Ak −AkKkF̃kCk)
⊤Σ−1

x,k+1(Ak −AkKkF̃kCk)− Σ−1
x,k

≼ −α̃Σ−1
x,k (26)

Consider now the matrix inequality,

C⊤
k F⊤

k P2,k+1FkCk +Q1,k ≼ α̃Σ−1
x,k (27)

Observe that adding (27) to (26) results in the first LMI
of (23), where the matrices P1,k of Corollary 1 are chosen
as Σ−1

x,k. This shows that (27) is a sufficient condition for
satisfying the first LMI of (23), for the given choice of
Kk. Moreover, as Q1,k can be chosen as any small (in
terms of ∥·∥) positive definite matrix, (27) can always be
satisfied by choosing a small enough Fk. In fact, (27) gives
a conservative upper bound on ∥Fk∥ for ensuring the stability
of the robust state estimation algorithm.

Similarly, observe that the second LMI of (23) may be
trivially satisfied when Ek ≡ 0. Thus, given the choice of
Kk as (25), for each feasible choice of P2,k, Q1,k and Q2,k,
there exist corresponding upper-bounds (in ∥·∥) for Ek and
Fk which guarantee the satisfaction of both the LMIs of
Corollary 1.

Proposition 2: Let Kk be computed as (25), then a nec-
essary condition for the stability (in the sense of Lemmas 1
and 2) of the robust state estimation algorithm (3) and (4) is
that (Ak, F̃kCk) must be observable.

Moreover, if Ek ≡ 0, then the foregoing condition is both
sufficient and necessary for stability.

Proof: (Sufficiency) Note that by setting Ek to 0, the
second LMI of (23) is satisfied by arbitrarily small (in terms
of ∥·∥) choices of P2,k and Q2,k. Thus, the LMI (27) can
be satisfied by choosing a small Q1,k as well, with the
only requirement on Fk being that (Ak, F̃kCk) should be
observable.

(Necessity) In the case of the SISE algorithm, observe that
the matrix Fk in this case (given in the second entry of Table
I) is such that DkFk is a projection onto the range space of
Dk. F̃k = I − DkFk is a projection onto the orthogonal
complement of the range space of Dk, which filters out the
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unknown input from the innovation vector. More generally,
the recursions (3) and (4) can be rewritten as

x̂(k + 1) = Ak(I −KkF̃kCk)x̂(k) +AkKkF̃ky(k)

−AkKkDkEkû(k − 1) (28)

i.e., the measurement is pre-multiplied by F̃k. Observe
that (28) resembles a Kalman filter-like recursion, wherein
the observation matrix Ck is replaced with F̃kCk. As any
information about the state which is in the kernel of F̃k is
discarded, the estimation performance of the algorithm (3)
and (4) is dominated by that of the Kalman filter designed
for the system (Ak, F̃kCk), which is the best possible linear
estimator for this system. When (Ak, F̃kCk) is not observ-
able, the Kalman filter is not stable, so neither is any other
linear estimator which uses the same measurement data. We
have shown the contrapositive of the desired result.

V. NUMERICAL EXAMPLE

In this section, we numerically simulate the proposed
algorithm to demonstrate how dynamic input estimation can
improve the overall performance of robust state estimators.
Consider the simulation scenario of a vehicle, whose state is
a concatenated vector comprising of 2D position and velocity
vectors. The vehicle traverses in a straight line, makes a left
turn and continues straight. Its motion is described by the
dynamical model (1), with

Ak =



[
I2 hI2

0 I2

]
if k = 1, 2, . . . , 450, 551, . . . , 1000[

I2 hI2

0 R

]
if k = 451, . . . , 550

Σv,k = diag(
[
0.005 0.005 0.25 0.25

]
)

where h = 0.01s is the sampling period, I2 is the 2 × 2
identity matrix, R is the rotation matrix which rotates by
0.9◦, and diag(·) embeds a vector into the diagonal entries
of a diagonal matrix. The vehicle is able to measure its
position and velocity using GPS and inertial navigation
system (INS) sensors, respectively (at 100Hz each), where
the GPS measurements are subject to an unknown time-
varying bias. Every 15 timesteps, an additional set of position
measurements is available, for e.g., through communication
with a base station. Thus, the measurement model is given
by (2), with

Ck =


[
I2 0 I2

0 I2 0

]⊤

if k = 15, 30, . . .

I4 otherwise

Dk =

[
I2
0

]

Σw,k =

{
diag([1 1 5 5 25 25]) if k = 15, 30, . . .

diag([1 1 5 5]) otherwise

The unknown input u(k) is given by

u(k) =
[
5
(
cos πk

1000 − 1
)

5 sin πk
1000

]⊤

i.e., the unknown input is 0 at k = 0, and grows in magnitude
as k increases. In Figure 1, the solid black line depicts the
locus of (i.e., the set of points traced by) u(k) as k varies
from 1 to 1000, which is a semicircle of radius 5m.

The position and velocity of the vehicle are estimated
using the Kalman Filter (KF), the SISE algorithm and the
regularized SISE (R-SISE) algorithm given in the third entry
of Table 1 (with ū chosen as 10), which are special cases of
the class of algorithms analyzed in the preceding sections.
In addition, we design a new Dynamic Input and State
Estimation (DISE) algorithm by combining the Ek of the
fifth algorithm in Table I with Fk chosen as per the R-SISE
algorithm. For these choices of Ek and Fk, it can be seen
that ∥Ek∥ ≤ 1 and ∥Fk∥ is proportional to ū. By setting
ū to 1.25, we ensure the stability of the algorithm (as per
Proposition 1) while ensuring that F̃k is full rank, making
(Ak, F̃kCk) observable (as per Proposition 2). The initial
state of the vehicle is x(0) = [0m 0m 25ms−1 0ms−1]⊤,
and the initial estimate of the algorithms is sampled from the
multivariate Gaussian distribution centred at x(0), having the
covariance diag([20 20 10 10]).

Figure 1 shows the estimates of the input u(k) computed
by each algorithm. The Kalman filter is considered as a
special case of the proposed recursion (3) and (4), with
Ek, Fk = 0, and therefore its estimate of u(k) is 0 at all
timesteps. It can be seen that DISE can track the unknown
input best. SISE underperforms in this regard, as it does not
account for the slowly-varying dynamics of the unknown
input. As R-SISE computes a regularized estimate of the
unknown input, it underestimates the input. Figure 2 shows
the true trajectory of the vehicle as well as the estimated
trajectory computed using each algorithm; the state estimates
computed by SISE and DISE track the true system state quite
well, whereas the estimates of KF and R-SISE are biased.

Fig. 1: The locus of the unknown input vectors u(k) =
[u1(k) u2(k)]

⊤, plotted alongside the estimated inputs û(k).

Further insight about the performance of these algorithms
can be gained through Fig. 3, which shows the MSE of
each algorithm averaged over 1000 Monte Carlo trials. It
can be seen that DISE is able to adapt to the variation in
the unknown input; when the unknown input is small, DISE
incorporates the GPS measurements in its estimate, leading
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Fig. 2: The true trajectory of the vehicle, plotted alongside
the state estimates computed by each algorithm.

to faster convergence speed. As the unknown input grows
larger, DISE is able to achieve state estimation performance
close to the SISE algorithm (which completely filters out
GPS measurements). In this way, dynamic input estimation
is able to adapt from one unknown input scenario to another,
whereas SISE and R-SISE are effective when the assump-
tions placed on the unknown input are met.

Fig. 3: The mean squared error (MSE) of each algorithm,
averaged over 1000 Monte Carlo trials.

VI. CONCLUSION

In this paper, we proposed a class of robust state estimation
algorithms which subsumes various existing algorithms. In
addition, new robust state estimation algorithms can be
designed using the proposed approach, which combines the
advantages of existing algorithms to handle a wider range of
unknown inputs. Various stability conditions were derived,
characterizing the convergence properties of the proposed
class of algorithms both in the presence and absence of un-
known inputs. A simulation scenario was used to demonstrate
the practicality of our analysis for designing robust state
estimation algorithms. Future work on this topic will focus
on deriving the stability conditions under unbounded inputs.

REFERENCES

[1] P. V. Patil, K. Kumaran, L. Vachhani, S. Ravitharan, and S. Chauhan,
“Robust state and unknown input estimator and its application to robot
localization,” IEEE/ASME Transactions on Mechatronics, 2022.
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