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Abstract— In this paper, we propose a framework for the
semiglobal practical safe stabilization of nonlinear continuous-
time systems based on limited amount of information. This
approach requires the availability of a continuous-time control
law ensuring global asymptotic stability and a robust safety
condition. Following an emulation-based approach, we intro-
duce time sampling and quantizations on the input and state
signals. We show that sufficiently high sampling frequency
and small quantization error guarantee safety preservation and
practical state stabilization to an arbitrarily small neighborhood
of the origin while keeping the state within a safe region
during the whole system evolution, which is essential in safety-
critical applications. Numerical simulations on a glucose control
problem in a non-ideal setting show the effectiveness of the
approach.

I. INTRODUCTION

Safety-critical systems are complex control systems char-
acterized by high performance goals and tight computational
constraints, often in presence of limited resources [1]. Ex-
amples in engineering and industry are given by air traffic
control [2], nuclear plants [3], electrical vehicles [4] and
biomedical applications [5].

From a system-theoretical viewpoint, the safety property
can be formalized in terms of forward invariance in a pre-
scribed set [6] and can be characterized by means of barrier
functions (or certificates) [7], which play a similar role as
Lyapunov functions with respect to stability [8]. The control
versions of the two notions, called Control Lyapunov Func-
tions (CLF) [9] and Control Barrier Functions (CBF), can be
jointly applied in the context of optimization-based control,
as shown e.g. in the excellent survey paper [10]. More
recently, the safe stabilization problem has been tackled in
[11] in the more complex case of time-delay systems. In both
papers [10], [11], the safe stabilization problem is treated in
absence of digital non-idealities (sampling and quantization),
which we aim at addressing in this work. In this regard, the
recent conference paper [12] tackles the problem of sampled-
data practical safety, without considering stability and in
absence of quantization, with a different approach (using
approximate discrete-time models) than the one followed in
this work.
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In this paper, we pursue the goal of safe digital (sampled
and quantized) control and consider this problem in the
framework of the stabilization in the sample-and-hold sense
[13], [14], following an emulation-based approach [15]. In
more detail, as a first step, a globally asymptotically stabi-
lizing state-feedback control law is designed or is assumed
to be known, jointly guaranteeing safety of the closed-
loop system with respect to a prescribed set when applied
in a continuous-time fashion, i.e. ignoring network and/or
digital non-idealities and assuming perfect measuring and
actuation capabilities. Such an ideal setting is then embedded
into a completely digital framework, accounting for time
sampling and quantization of input and state [16], [17], so
that the communication among the different components of
the control loop is characterized by exchange of limited
information [18] over a finite bandwidth, a problem also
tackled in Networked Control Systems [19], preserving to
some extent the properties of the closed-loop system.

With respect to classical nonlinear state-feedback design,
the proposed solution considers at once the two most im-
portant digital non-idealities (sampling and quantization),
which, to the best of our knowledge, have not been jointly
considered so far to tackle stabilization and safety problems
in a unified setting. We also show that a major difference in
dealing with safety with respect to stability in digital control
is that it can be enforced exactly on a prescribed set C (which
is crucial in safety-critical applications) by assuming a robust
safety condition in continuous time, i.e. ensuring invariance
on an subset C̄ approximating C with arbitrary precision.

The paper is organized as follows. Section II recalls
some notation and basic notions. Section III sets up the
model formulation and assumptions. Section IV includes the
main result of the paper, regarding the safe stabilization
in the sampled-and-hold sense of nonlinear systems with
quantization. Section V shows an example of application of
the developed method to the important problem of glucose
control and hypoglycemia management in diabetes. Section
VI offers concluding remarks and ideas for future work.

Notation and preliminaries: R denotes the set of real
numbers, R+ denotes the set of non-negative reals [0,+∞),
Rn denotes the n-dimensional euclidean space, Z+ denotes
the set of non-negative integer numbers. The symbol | · |
stands for the Euclidean norm of a real vector. For a given
positive integer n and a given positive real h, the symbol
Bn
h denotes the subset {x ∈ Rn : |x| ≤ h}. Given a set

A ⊆ Rn, we denote by δA its boundary.
Let us here recall that a continuous function γ : R+ → R+

is: of class P0 if γ (0) = 0; of class P if it is of class P0 and
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γ (s) > 0, s > 0; of class K if it is of class P and strictly
increasing; of class K∞ if it is of class K and unbounded.
Furthermore, a continuous function γ : R → R is of extended
class K if it is strictly increasing with γ (0) = 0. It is odd if
γ(−x) = −γ(x) for all x ∈ R.

Throughout the paper, GAS stands for Globally Asymp-
totically Stable or Global Asymptotic Stability.

II. CONTINUOUS-TIME CHARACTERIZATIONS OF
STABILITY AND SAFETY NOTION

It is convenient to recall here the following Lyapunov
stability theorem (see Theorem 4.18 in [8], and references
therein).

Theorem 1: A system described by

ẋ(t) = f̄(x(t)), (1)

with f̄ : Rn → Rn locally Lipschitz and satisfying f̄(0) = 0,
is GAS if there exists a smooth function V : Rn → R+,
functions α1, α2 of class K∞ and α3 of class K, such that
the following conditions hold for all x ∈ Rn:

α1 (|x|) ≤ V (x) ≤ α2 (|x|) , (2)
∂V

∂x
f̄ (x) ≤ −α3 (|x|) . (3)

The safety property of a system in the form (1) with
respect to a set is equivalent to the definition of a forward
invariant set for the system (1).

Definition 1: [10] The set C is forward invariant for a
system in the form (1) if, for every x0 ∈ C, x(t) ∈ C for
x(0) = x0 and all t ≥ 0. A system in the form (1) is safe
with respect to the set C if the set C is forward invariant for
(1).

Safety can be characterized in a similar way to the stability
property, by means of the so-called Barrier functions (see
[10] and references therein), which we recall hereafter.

Theorem 2: (adapted from [10]) A system described by
Eq. (1), with f̄ : Rn → Rn locally Lipschitz and satisfying
f̄(0) = 0, is safe with respect to a set C defined as the
sub-level set of a smooth function H : Rn → R, i.e. C =
{x ∈ Rn : H(x) ≤ 0}, with ∂H(x)

∂x ̸= 0 for all x ∈ δC, if
there exists a function α of extended class K, such that the
following condition holds for all x ∈ Rn:

∂H

∂x
f̄ (x) ≤ −α (H(x)) . (4)

We highlight that in [10] and in some other previous work,
safety is usually characterized with respect to a super-level
set of a function h(x) ≥ 0, i.e. C = {x ∈ Rn : h(x) ≥ 0},
and by the invariance condition

∂h

∂x
f̄ (x) ≥ −α (h(x)) ,

which is equivalent to (4), by defining the opposite function
H(x) = −h(x), and assuming that α is an odd function.
Our choice (in line with the one in [20]) allows to write
symmetrical notation for safety and stability conditions, in

particular with the same direction (≤) of the inequalities in
(3) and (4), respectively.

In order to fill, later in this paper, the gap between
continuous-time and sampled-data guarantees, we need to
enforce a robust safety property in continuous time. In
particular, if C is a sub-level set of a smooth function H(x),
i.e. C = {x ∈ Rn : H(x) ≤ 0}, we can impose a stronger
invariance condition with respect to (4), i.e. there exists
H̄ ∈ R+ such that

∂H

∂x
f̄ (x) ≤ −α(H(x) + H̄), (5)

which is equivalent to imposing safety in the set C̄ defined
as the sub-level set of function H(x) + H̄ , i.e.

C̄ = {x ∈ Rn : H(x) ≤ −H̄}. (6)

III. MODEL FORMULATION AND ASSUMPTIONS

We consider a continuous-time system

ẋ(t) = f(x(t), u(t)), x(0) = x0, (7)

where: x0, x (t) ∈ Rn; u (t) ∈ Rm is the input signal,
assumed piecewise-continuous; n and m are positive inte-
gers; f is a locally Lipschitz function from Rn×Rm to Rn,
satisfying f (0, 0) = 0.

We introduce here the following assumption, which en-
sures the existence of a continuous-time control law globally
asymptotically stabilizing the closed-loop system and also
ensuring safety of the same system with respect to a subset
C̄ ⊆ C, approximating the original prescribed safe set C with
arbitrarily good accuracy.

Assumption 1: There exist a locally Lipschitz state feed-
back k : Rn → Rm, a smooth function V : Rn → R+, and
a smooth function H : Rn → R satisfying ∂H(x)

∂x ̸= 0 for
all x ∈ δC̄, with C̄ = {x ∈ Rn : H(x) ≤ −H̄}, for some
H̄ ∈ R+, such that

α1 (|x|) ≤ V (x) ≤ α2 (|x|) , (8)
∂V

∂x
f(x, k(x)) ≤ −α3 (|x|) , (9)

∂H

∂x
f(x, k(x)) ≤ −α4

(
H(x) + H̄

)
, (10)

for any x ∈ Rn, for some some class-K∞ functions α1, α2,
some class-K function α3, and some extended class-K odd
function α4.
Note that, by virtue of Assumption 1, Theorems 1–2 hold for
the closed-loop system ẋ(t) = f̄(x(t)) := f(x(t), k(x(t)),
implying from (3)–(4) that the closed-loop system (7) with
u(t) = k(x(t)) is GAS and safe with respect to C̄.

We also define, for all x ∈ Rn, u ∈ Rm, the quantities

D+V (x, u) :=
∂V (x)

∂x
f(x, u), (11)

D+H(x, u) :=
∂H(x)

∂x
f(x, u), (12)

denoting the directional derivatives D+V : Rn × Rm → R,
D+H : Rn × Rm → R of the functions V and H along
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the dynamics f , respectively. Hence Eqs. (9)–(10) can be
rewritten as

D+V (x, k(x)) ≤ −α3 (|x|) , (13)

D+H(x, k(x)) ≤ −α4

(
H(x) + H̄

)
. (14)

The reader can refer to the recent paper [20] for the
construction of state feedbacks as in Assumption 1, by
compatible CLFs and CBFs, as well as for a related literature
overview and discussion.

IV. SAFE SAMPLE-AND-HOLD QUANTIZED
STABILIZATION

We recall here the notion of partition of [0,+∞) [13].
Definition 2: A partition π = {ti}i∈Z+ of [0,+∞) is a

countable, strictly increasing sequence ti, with t0 = 0, such
that ti → +∞ as i → +∞. The diameter of π, denoted
diam (π), is defined as supi≥0 ti+1 − ti. The dwell time of
π, denoted dwell (π), is defined as infi≥0 ti+1 − ti. For any
positive real a ∈ (0, 1], δ > 0, πa,δ is any partition π with
aδ ≤ dwell (π) ≤ diam (π) ≤ δ.
The real a ∈ (0, 1], in Definition 2, is introduced in order to
allow for non-uniform sampling and to guarantee a minimum
inter-event time between two consecutive sampling instants
at least equal to aδ (absence of Zeno behavior) [17].

We now define input and state quantizer operators as:

[·]µu
: Rm → Qu [·]µx

: Rn → Qx (15)

where Qu and Qx are suitable finite subsets of Rm and
Rn, respectively. These quantizers are characterized by the
following implications (see [11], [12]):

|u| ≤ Eu → |u− [u]µu
| ≤ µu (16)

|x| ≤ Ex → |x− [x]µx
| ≤ µx (17)

for some positive reals Eu, Ex, and µu, µx, called ranges
and error bounds of the quantizers, respectively [17], [18].

In the following, we consider the following more compact
notation for the sake of readability:

ux(t) = k([x(t)]µx
) (18)

u∗(t) = [ux(t)]µu
(19)

Next, the quantized sampled-data controller is presented.
For given positive reals r, R, with 0 < r < R, let E, Ē,
EU , ĒU be positive reals such that:

0 < r < R < E, α1 (E) > α2 (R) , (20)
Ē = E + 1, EU = sup

x∈Bn
Ē

|k(x)|, ĒU = EU + 1, (21)

where functions α1 and α2 are defined in (8).
We further impose the sub-linearity condition:

α4(s) ≤ s ∀s ≥ 0, (22)

where function α4 is defined in (10).

Furthermore, let L, KV and KH be positive reals such
that the following inequalities hold:

|k(x1)− k(x2)| ≤ L|x1 − x2|, (23)
|D+V (x1, u1)−D+V (x2, u2)| ≤ KV (|x1−x2|+|u1−u2|) ,

(24)
|D+H(x1, u1)−D+H(x2, u2)| ≤ KH (|x1−x2|+|u1−u2|) ,

(25)

∀x1, x2 ∈ Bn
E , ∀u1, u2 ∈ Bm

ĒU
, where the maps D+V and

D+H are defined in (11)–(12).

We here state the main result of the paper.
Theorem 3: Let C = {x ∈ Rn : H(x) ≤ 0} be a

prescribed safe set, whose points are characterized by the
safety condition H(x) ≤ 0, with ∂H(x)

∂x ̸= 0 for all x ∈ δC.
Let a ∈ (0, 1]. Then, ∀ r,R ∈ R+, with 0 < r < R, for any
E, EU , satisfying (20)–(21), there exist positive reals δ, T ,
µu, µx such that: for any partition πa,δ = {tj , j = 0, 1, ...}
of [0,+∞), for any input and state quantizers with error
bounds µu, µx and ranges EU , E, respectively, for any
x0 ∈ Bn

R ∩ C, the solution of system (7) starting from
x(0) = x0 and with the sampled-data quantized control law
u(t) = u∗(tj), t ∈ [tj , tj+1), j = 0, 1, ... (see (19)), exists
∀t ≥ 0 and, furthermore, satisfies:

|x(t)| ≤ E ∀t ≥ 0; |x(t)| ≤ r ∀t ≥ T ; (26)
x(t)∈ C ∀t ≥ 0. (27)

Proof: Taking into account Assumption 1 and Theo-
rems 1–2, let V : Rn → R+ and H : Rn → R be smooth
functions, let α1, α2 be functions of class K∞, α3 be a
function of class K, α4 be an extended class-K function
fulfilling (22), and let H̄ ∈ R+ s.t. conditions (8)–(10) hold.

Let r, R, be any positive reals, 0 < r < R. Let a ∈ (0, 1]
be arbitrarily fixed. Let x0 ∈ Bn

R ∩ C, let e1, e2 be positive
reals satisfying e2 < e1 < r and α1 (r) > α2 (e1), and let
E be a positive real satisfying the inequalities in (20)–(21),
where the increased bounds Ē and ĒU are defined to account
for the further uncertainty involved in the quantization of
state and input, respectively. In particular, it can be readily
seen that x ∈ Bn

E implies that [x]µx
∈ Bn

Ē
, finally leading to

u∗ ∈ Bm
ĒU

(see also [17]).
Taking into account that V and H are smooth functions,

let M , L, KV , KH be positive reals such that conditions
(23)–(25) and the following inequality hold:

|f (x1, u1)| ≤ M, (28)

∀x1 ∈ Bn
E , ∀u1 ∈ Bm

ĒU
. Let η = α3(e2). Let δ, µu, µx be

positive reals such that:

0 < δ ≤ 1, e2 + δM < e1, R+ δM < E, (29)
0 < µu ≤ 1, 0 < µx ≤ 1, (30)

α1 (r)>α2 (e1)+
2

3
ηδ,

η

3
≥KV (Mδ + µu + Lµx) , (31)

KH (Mδ + µu + Lµx) ≤ α4

(
H̄

2

)
. (32)
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Let us consider a partition πa,δ = {tj}j∈Z+ (see Definition
2). Following the reasoning developed e.g. in [14], [17], it
results that the solution exists in [0,+∞) (Claim 1 in [17])
and that x(t) ∈ Bn

E , t ≥ 0.
We here provide only the safety part of the proof, omitting

the stability part, which is a particular case of the one given
in [17] for systems with state delays (see also Corollary 1
of the same paper). Let

B (t) = H (x (t)) , (33)

at all times t, where x(t) is the solution of the closed-loop
system described by the state equation (7) with control law
u(t) = u∗(tj), t ∈ [tj , tj+1), j = 0, 1, ... (see (19)).

The statement x(t) ∈ C is equivalent to H(x(t)) =
B(t) ≤ 0, hence our goal is to show, for any j ≥ 0, that
B(tj) ≤ 0 implies B(t) ≤ 0 for all t ∈ (tj , tj+1], hence
preserving safety at all times.

Then, for any fixed t ∈ (tj , tj+1], j ≥ 0, for some t⋆ ∈
[tj , t], by virtue of the Mean Value Theorem for integrals,
one can write:

B(t)= B(tj) +

∫ t

tj

D+H(x(θ), u∗(tj))dθ

= B(tj) +D+H(x(t⋆), u∗(tj))(t− tj)

≤ B(tj) +D+H(x(tj), k(x(tj)))(t− tj) (34)

+|D+H(x(t⋆), u∗(tj))−D+H(x(tj), k(x(tj)))|(t− tj).

By conditions (14) and (25) and the definition of B(t), we
have:

D+H(x(tj), k(x(tj))) ≤ −α4(B(tj) + H̄), (35)

|D+H(x(t⋆), u∗(tj))−D+H(x(tj), k(x(tj)))|
≤ KH (|x(t⋆)− x(tj)|+ |u∗(tj)− k(x(tj))|) (36)

≤ KH

(
|x(t⋆)− x(tj)|+ |u∗(tj)− ux(tj)|

+ |ux(tj)− k(x(tj))|
)

where

|x(t⋆)− x(tj)| ≤ M(t⋆ − tj) ≤ Mδ (37)

is implied by (28) and by t⋆ − tj ≤ δ. Furthermore:

|u∗(tj)− ux(tj)| = | [ux(tj)]µu
− ux(tj)| ≤ µu, (38)

|ux(tj)− k(x(tj))| = |k([x(tj)]µx
)− k(x(tj))|

≤ L|x(tj)− [x(tj)]µx
| ≤ Lµx. (39)

So, by accounting that t− tj ≤ δ ≤ 1 in agreement with the
first inequality in (29), we get from (34):

B(t) ≤ B(tj)− α4(B(tj) + H̄) +KH (Mδ + µu + Lµx) .
(40)

Accounting that B(tj) ≤ 0 and H̄ > 0, we can distinguish
two alternative cases:

a) B(tj) + H̄ ≤ 0,
b) B(tj) + H̄ > 0, implying −H̄ < B(tj) ≤ 0,

where case b) can be further decomposed into
b1) −H̄ < B(tj) ≤ − H̄

2 ,

b2) − H̄
2 < B(tj) ≤ 0 implying −B(tj)− H̄ < − H̄

2 .
Next we prove that B(t) ≤ 0 in all cases, starting from (40),
and exploiting (22) and (32).

Case a). Since α4 is an odd function, we can write

B(t) ≤ B(tj)− α4(B(tj) + H̄) +KH (Mδ + µu + Lµx)

= B(tj) + α4(−B(tj)− H̄) +KH (Mδ + µu + Lµx)

≤ B(tj)−B(tj)− H̄ +KH (Mδ + µu + Lµx)

= −H̄ +KH (Mδ + µu + Lµx)

≤ −α4

(
H̄

2

)
+KH (Mδ + µu + Lµx) ≤ 0. (41)

Case b1).

B(t) ≤ B(tj)− α4(B(tj) + H̄) +KH (Mδ + µu + Lµx)

< B(tj) +KH (Mδ + µu + Lµx)

≤ −H̄

2
+KH (Mδ + µu + Lµx)

≤ −α4

(
H̄

2

)
+KH (Mδ + µu + Lµx) ≤ 0. (42)

Case b2).

B(t) ≤ B(tj)− α4(B(tj) + H̄) +KH (Mδ + µu + Lµx)

= B(tj) + α4(−B(tj)− H̄) +KH (Mδ + µu + Lµx)

< B(tj) + α4

(
−H̄

2

)
+KH (Mδ + µu + Lµx)

≤ −α4

(
H̄

2

)
+KH (Mδ + µu + Lµx) ≤ 0. (43)

So we proved that B(t) ≤ 0 ∀t ≥ 0, concluding the proof.

V. APPLICATION TO SAFE DIGITAL GLUCOSE CONTROL

We consider the following compact model of the glucose-
insulin system

Ġ(t) = −KxgiG(t)I(t) +
Tgh

VG
+

vg(t)

VG
(44)

İ(t) = −KxiI(t) +
TiGmax

VI
φ(G(t)) +

vi(t)

VI
(45)

where G(t) [mmol/L] and I(t) [pmol/L] are the plasma
glucose and insulin concentrations, respectively, vi(t)
[(pmol/kgBW)/min] is the exogenous intra–venous insulin
delivery rate (i.e. the insulin control input) and φ(G) =
(G/G∗)γ

1+(G/G∗)γ models the endogenous pancreatic insulin deliv-
ery rate. The model (44)–(45) is a modified version of the de-
lay differential model [21], already exploited in [22], where
we neglect the delay in the function φ and we consider an
additional glucose control input vg(t) [(mmol/kgBW)/min]
in the glucose dynamics. This additional input is an emer-
gency treatment consisting in a rate of fast-acting carbo-
hydrates (for example provided by a sugar cube) useful to
prevent the occurrence of hypoglycemic episodes in type-
2 diabetic patients in the context of the Artificial Pancreas
[23]. Such dangerous conditions, characterized by too low
levels of blood glucose concentrations, can lead to short-
term issues including, in the worst cases, coma and death.
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For lack of space, we omit an explanation of the meaning of
parameters and the choice of their numeric values, for which
the interested reader is referred to [24].

The system equilibrium (Gb, Ib) with zero input satisfies

Tgh

VG
−KxgiGbIb = 0, (46)

TiGmax

VI
φ(Gb)−KxiIb = 0. (47)

We assume Gb = 8.85 to be corresponding to the basal
value of a diabetic patient (Gb > 7) and we want to
practically stabilize the closed-loop system to an euglycemic
(healthy) equilibrium Geu = 5, which uniquely determines
the corresponding insulinemia equilibrium value Ieu and the
constant stationary input v̄i,eu, as follows:

Tgh

VG
−KxgiGeuIeu = 0 =⇒ Ieu =

Tgh

VGKxgiGeu
= 81.12

(48)

−KxiIeu +
TiGmax

VI
φ(Geu) +

v̄i,eu
VI

= 0 =⇒ (49)

v̄i,eu = VIKxiIeu − TiGmaxφ(Geu) = 0.7706.

To recast the system in the form (7) with the desired
equilibrium at the origin for the error variables, we set
x1 = G(t) − Geu, x2 = I(t) − Ieu, u1(t) = vg(t),
u2(t) = vi(t)−v̄i,eu, x(t) =

[
x1 x2

]T
, u(t) =

[
u1 u2

]T
,

to get (we omit time dependencies):

ẋ = f(x, u) = f̃(x) +

[
u1/VG

u2/VI

]
, (50)

with

f̃(x) =

[
f̃1(x)

f̃2(x)

]
(51)

=

 −Kxgi(x1 +Geu)(x2 + Ieu) +
Tgh

VG

−Kxi(x2 + Ieu) +
TiGmax

VI
φ(x1 +Geu) +

v̄i,eu
VI

.
In the following, we exploit the additional control input

to preliminarily construct a stabilizer in the form u2 =
k̄2(x, u1), depending on input u1 (to design later with safety
guarantees), allowing to ensure GAS of the closed-loop
system for any value of u1. This will allow to decouple
the design of the state-feedback safe stabilizer u = k(x) =[
k1(x) k2(x)

]T
with k2(x) := k̄2(x, k1(x)), so that the

design of the safe sub-controller u1 = k1(x) can be indipen-
dently computed without affecting the stability guarantees.

To this end, the quadratic CLF V (x) = xTPx and a mod-
ification of Sontag’s universal controller [25] are employed
to ensure closed-loop GAS (in agreement with Theorem 1),
simplyfying the design already proposed in [21] in presence
of state delay, hence obtaining

k̄2(x, u1) =

{
−a(x,u1)+

√
a2(x,u1)+b4(x)

b(x) if b(x) ̸= 0

0 if b(x) = 0
(52)

with

a(x, u1) = 2(1 + η)xTP

[
f̃1(x) +

u1

VG

f̃2(x)

]
+ xT ηµPx,

b(x) = 2(1 + η)xTP

[
0
1
VI

]
,

and matrix P and parameters chosen as in [21].
We now proceed with the design of the safety sub-

controller k1(x), for which we define a safe set C defined by
the condition G(t) ≥ Ghypo at all times t, where Ghypo =
3.3 is a hypoglycemic value. In the system variables, we get

x1+Geu= G(t)≥Ghypo=⇒H(x) := Ghypo−Geu−x1 ≤ 0

so that the safe set C =
{
x ∈ R2 : x1 +Geu ≥ Ghypo

}
is

the sublevel set of the CBF H(x). This implies

D+H(x, u)=
[
−1 0

]
f(x, u) = −

(
f̃1(x) +

u1

VG

)
. (53)

We set α4(s) = k4s, with k4 ∈ (0, 1], which is of extended
K, is odd and satisfies the sublinearity assumption (22). To
obtain a sub-controller guaranteeing robust safety, we choose

k1(x) = −VGf̃1(x)− VGk4x1 (54)

≥ −VGf̃1(x)− VGk4x1 − VGk4(Geu −Ghypo − H̄)

= −VGf̃1(x) + VGk4
(
H(x) + H̄

)
,

with H̄ ∈ [0, Geu − Ghypo], so that condition (14) is
satisfied. Since Assumption 1 holds with the choice k(x) =[
k1(x) k̄2(x, k1(x))

]T
, with k1 and k̄2 defined in (54) and

(52), respectively, then Theorems 1–2 hold for the closed-
loop system ẋ(t) = f̄(x(t)) := f(x(t), k(x(t)), implying
that the hypotheses of Theorem 3 hold, and safe digital
control described in Section IV can be applied.

In the following, we show a 3-hour simulation of the
closed-loop system, starting from constant initial condition
equal to the basal pair (Gb, Ib), with feedback k applied both
in its pure stabiling version (k1(x) = 0) and following the
safe stabilizing approach developed above. Only the positive
part of the computed control laws is considered, since it is
not possible to deliver negative glucose and insulin rates.
The design parameters are chosen equal to δ = 5 [min],
µx = 0.05, µu = 0.005, H̄ = 0.5, k4 = 0.1. Preliminary
simulations on the closed-loop system show that, in nominal
conditions, the target state (Geu, Ieu) is reached from the
initial state (Gb, Ib) without any glucose undershoots, so
the safety controller does not take an active role. So, in
the following we show how the safe digital stabilizer is
more robust and reliable than the classical digital stabilizer
with respect to the hypoglycemia management in non-ideal
working conditions.

In Figs. 1–2 we consider a random variation of the
parameters (up to ±25% of the nominal values, sampled
from a uniform distribution) in the simulated patient with
respect to those exploited in the computation of the control
law. In this case, we can observe that the digital stabilizer is
not able to counteract the hypoglycemic behavior, differently
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Fig. 1. State variables: glycemia (top panel), insulinemia (bottom panel).
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Fig. 2. Control input (digital stabilizer vs. safe digital stabilizer): glucose
delivery rate (top panel), insulin delivery rate (bottom panel).

from its safe counterpart exploiting the additional glucose
input, which also leads to a faster practical convergence to
the healthy target state.

VI. CONCLUSIONS AND OPEN ISSUES

In this work, we addressed the topic of digital (sampled
and quantized) safe stabilization of nonlinear systems. In
the spirit of the emulation-based approach, we assumed the
existence of a controller ensuring global asymptotic stability
and robust safety in continuous time, and derived conditions
for jointly preserving stability (in a semiglobal practical
sense) and safety of the closed-loop system at all times, in
spite of the presence of digital non-idealities. Preliminary
validation results of the proposed framework in a non-ideal
setting are encouraging for its application in safety-critical
control systems. The extension of this framework to the
emulation of output-feedback controllers and to the infinite-
dimensional case of nonlinear time-delay systems, by also
including event-based design, will be object of future work.
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