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Abstract— This letter considers integral line-of-sight (LOS)
guidance for curved path following for underactuated marine
vehicles. The proposed guidance scheme renders the resulting
closed-loop system input-to-state stable (ISS) with respect to a
function of the vehicle’s velocities. Moreover, if the forward and
sideways velocities are proportional, we show that the origin
of the closed-loop system is uniformly globally asymptotically
stable (UGAS). Remarkably, these results are derived without
the standard assumption of a small crab angle. Furthermore,
we discuss how the path parameter should be selected to ensure
that the along-track error remains zero for all time, and we show
the connection between selecting the path parameter through
differential equations and optimization. Finally, we demonstrate
the effectiveness of the proposed approach through numerical
simulations of an underwater vehicle.

I. INTRODUCTION

Line-of-sight (LOS) guidance laws are ubiquitous in the
literature on path following for underactuated marine vehicles.
There are two main types of LOS guidance laws: static feed-
back proportional LOS guidance laws and dynamic feedback
integral LOS (ILOS) guidance laws. As the names suggest,
the latter includes an integral state while the former is a
purely static state feedback control law. There is an exten-
sive amount of literature on the subject of LOS guidance
for marine vehicles, and the reader is referred to the recent
survey [1] and the references therein. The following review
is limited to LOS guidance algorithms with integral action.

The classical ILOS guidance law for marine vehicles is in-
troduced in [2]. This work proves global asymptotic path fol-
lowing under the assumption that the path is a straight line and
that the integral gain is sufficiently small relative to the for-
ward velocity. The guidance law is tested experimentally with
an uncrewed semi-submersible vehicle and an autonomous
underwater vehicle (AUV) in [3], [4]. Another application of
the classical ILOS guidance law is found in [5], where it is
used in the control system of an underwater snake robot.

The adaptive ILOS (AILOS) guidance law is presented in
[6]. The AILOS guidance law differs from the classical ILOS
guidance law in that the integral state update is structurally
different. The work shows global asymptotic path following
under the assumption that the vehicle crab angle is small
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Council of Norway through the Centres of Excellence funding scheme,
project No. 223254, NTNU AMOS.

♯ H. M Schmidt-Didlaukies and E. A. Basso contributed equally to this
work and should be considered co-first authors

The authors are with the Department of Engineering Cybernetics, Norwe-
gian University of Science and Technology, NO-7491 Trondheim, Norway
{henrik.schmidt,erlend.a.basso,kristin.y.pettersen}@ntnu.no

and constant. The restriction placed on the integral gain is
independent of the vehicle velocity, which suggests that the
guidance law is applicable to vehicles operating in different
speed regimes. An equivalent guidance law is given in [7], but
global asymptotic path following is not proven for nonzero
crab angles.

An extended-state-observer-based LOS (ELOS) guidance
law is proposed in [8]. Under the assumption of a small crab
angle, the authors provide an input-to-state stability (ISS)
[9] result for the closed-loop system with respect to the
crab angle estimation error. However, since the crab angle
estimation error is not shown to converge, global asymptotic
path following for a constant crab angle is not proven. More
recently, the work [10] introduced the adaptive LOS (ALOS)
guidance law. Unlike previous approaches, the integral state
represents an estimate of the crab angle directly. However,
since the integral state is not bounded, the resulting control
law can exhibit unwinding. The latter problem is addressed
in [11], where a projection operator is employed to ensure
that the integral state is bounded. Semi-global tracking of the
guidance law is proven. However, no relationship between the
region of attraction and the control gains or system parameters
is given.

When analyzed in a kinematic setting, all of the aforemen-
tioned LOS guidance approaches ensuring global asymptotic
path following have one major assumption in common, which
is the small crab angle assumption. While this may be a rea-
sonable assumption for ships for which the speed of the vehi-
cle is significantly larger than the ocean current speed, it is not
necessarily true for smaller uncrewed vehicles such as torpedo-
shaped underwater vehicles. Moreover, the small crab angle
assumption is easily violated if the reference paths are curved.

The main contributions of this letter are twofold: 1) We
discuss how the path parameter should be selected to ensure
that the along-track error remains zero at all times. In par-
ticular, we show the relationship between selecting the path
parameter through an ordinary differential equation (ODE)
and through an optimization problem, and we discuss the
practical effects this can have for implementation purposes.
2) We introduce a novel ILOS-type guidance law. A key
advantage of the proposed guidance law compared to most
other approaches in the literature is that the integral state
is bounded. Additionally, we provide an ISS result for the
closed-loop system with respect to a function of the vehicle
velocities. As a result, if the forward and sideways velocities
are proportional, we show that the origin of the closed-loop
system is uniformly globally asymptotically stable (UGAS).
A key novelty in the proof is that we show UGAS without
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assuming that the crab angle is small. Moreover, we also
provide novel upper bounds on the cross-track error, which
can be employed to estimate an upper bound on the allowed
curvature of the path. Together, these bounds can ensure that
all maximal solutions to the path selection ODE are complete.

This letter is organized as follows. Section II introduces
the kinematic model of a vehicle operating in the plane, sev-
eral concepts related to paths, and the problem statement. In
Section III, we demonstrate how the path parameter can be se-
lected to ensure that the along-track error remains zero for all
time. Moreover, we discuss the connection between selecting
the path parameter through an ODE and through an optimiza-
tion problem. Section IV presents the novel projection-based
ILOS guidance algorithm and the associated stability proofs.
Finally, Section V presents a case study that demonstrates the
effectiveness of the results in simulation for an autonomous
underwater vehicle.

Notation: The Euclidean inner product in Rn is written
⟨x, y⟩, and the Euclidean norm is denoted |x| = ⟨x, x⟩1/2.
The unit circle is defined by S := {x ∈ R2 : |x| = 1}, and
the group of planar rotations by SO(2) := {R ∈ R2×2 :
RTR = I,detR = 1}. A unit vector z ∈ S maps to a rotation
matrix through the map R : S → SO(2) defined by R(z) :=(
z Sz

)
, where S :=

(
0 −1
1 0

)
. Lastly, atan2 : R2 \ {0} →

(−π, π] denotes the four-quadrant inverse of tan.

II. MODELING, PATHS, AND PROBLEM STATEMENT

Let p ∈ R2 denote the horizontal position of a marine
vehicle and let u = (u1, u2) ∈ R2 denote the forward and
sideways velocities, u1 and u2, respectively. The kinematic
differential equation is given by

ṗ = R(z)u = u1z + u2Sz, (p, z, u) ∈ R2 × S× U, (1)

where z ∈ S represents the orientation of the vehicle and is
considered a control input. Moreover, U := {u ∈ R2 : u1 ≥
ρ}, where ρ > 0 is a lower bound on the forward velocity.
Observe that if the sideways velocity u2 is identically equal to
zero, then (1) reduces to a unicycle model, which is often used
to model a marine vehicle in transit, see e.g. [12], [13]. Hence,
the sideways velocity u2 can also be considered a disturbance,
perturbing the model away from the ideal unicycle model.

In this letter, a path is a continuous mapping γ : R → R2.
It should be remarked that mathematicians typically refer
to such an object as a curve, while the notion of a path is
reserved for a curve whose domain is a compact interval. A
formal introduction to the geometry of curves is found in
[14]. Continuity of γ in itself is not enough to derive the
results presented in this letter. The notion of regularity we
require is provided by the following definition.

Definition 1. Let r ≥ 1. A path γ : R → R2 is Cr regular if
• it is Cr;
• it holds that γ′(θ) ̸= 0 for all θ ∈ R;
• the arc length ℓ : R → R, defined by

ℓ(θ) :=

∫ θ

0

|γ′(η)|dη, (2)

satisfies ℓ(R) = R.

Regularity in the sense of Definition 1 entails that γ is Cr

and that its arc length ℓ is a Cr diffeomorphism from R to R.
As a consequence, the arc length reparametrization of γ, that is
θ 7→ γ(ℓ−1(θ)), is itself a Cr regular path. If a path is C1, then
ℓ exists and the last condition in Definition 1 is equivalent to

lim
θ→−∞

ℓ(θ) = −∞, lim
θ→∞

ℓ(θ) = ∞. (3)

A simple set of sufficient conditions for γ to be Cr regular is
that γ is Cr and that there exists ϵ > 0 such that |γ′(θ)| ≥ ϵ
for all θ ∈ R.

If a path is C1 regular, then there exists a continuous tangent
vector field with unit length, τ : R → S, defined by

τ(θ) :=
γ′(θ)

|γ′(θ)|
. (4)

Furthermore, if γ is C2 regular, then a continuous signed
curvature κ : R → R can be defined by

κ(θ) :=
⟨τ ′(θ), Sτ(θ)⟩

|γ′(θ)|
. (5)

Finally, we note that if γ is parametrized by arc length, that is
if ℓ(θ) = θ or equivalently |γ′(θ)| = 1, then the tangent and
signed curvature have the simpler expressions τ(θ) = γ′(θ)
and κ(θ) = ⟨γ′′(θ), Sγ′(θ)⟩, respectively.

The path following problem is to ensure that

lim
t→∞

|p(t)− γ(θ(t))| = 0. (6)

In order to solve the path following problem, we make the
coordinate transform

ε(p, θ) := R(τ(θ))T(p− γ(θ)), (7)

where ε represents the position error p − γ(θ) in the path-
tangential frame. The components of ε are denoted ετ and
εc and represent the along-track and cross-track errors, re-
spectively. We can rewrite (7) component-wise as

ετ (p, θ) := ⟨p− γ(θ), τ(θ)⟩, (8)
εc(p, θ) := ⟨p− γ(θ), Sτ(θ)⟩. (9)

A core idea in LOS guidance is to ensure that the along-
track error ετ is zero by an appropriate selection of the path
parameter θ. Then, (6) reduces to limt→∞|εc(p(t), θ(t))| =
0, and the dimension of the workspace R becomes the same
as the dimension of the input space S.

Problem Statement:

1) Select the path parameter t 7→ θ(t) such that the along-
track error ετ (p(t), θ(t)) = 0 for all t ≥ 0.

2) Design a control law z = µ(p, θ, α), where α ∈ R is
an integral state, such that the closed-loop system is
ISS with respect to a suitable function of u. Moreover,
if u1 ∝ u2 then εc(p(t), θ(t)) → 0.



III. PATH PARAMETER SELECTION

Consider the set of vehicle positions and path parameters
such that the along-track error vanishes,

M = {(p, θ) ∈ R3 : ετ (p, θ) = 0}. (10)

If the path is C2 regular, then M is a C1 two-dimensional em-
bedded manifold. This is seen by noting that the derivative of
ετ with respect to (p, θ) does not vanish on M . In particular,

∇ετ (p, θ) =

(
τ(θ)

|γ′(θ)|(κ(θ)εc(p, θ)− 1)

)
(11)

for all (p, θ) ∈ R3. The tangent space to M , TM : M ⇒ R3,
is therefore characterized by

TM (p, θ) := {ν ∈ R3 : ⟨∇ετ (p, θ), ν⟩ = 0}. (12)

Suppose now that the vehicle travels with velocity ṗ =
v. We select the path parameter by means of a differential
relation θ̇ = λ(p, θ, v) such that (v, λ(p, θ, v)) ∈ TM (p, θ)
for all (p, θ) ∈ M and all v ∈ R2. The resulting system
describing the path parameter selection process can be stated
as

ṗ = v

θ̇ =
1

1− κ(θ)εc(p, θ)

⟨τ(θ), v⟩
|γ′(θ)|

 (p, θ) ∈ O ∩M,v ∈ R2

(13)

where

O := {(p, θ) ∈ R3 : κ(θ)εc(p, θ) < 1}. (14)

Remark 1. Similar expressions for λ as given in (13) are
also given in works such as [15], [16]. Constraining solutions
to lie in the set O ∩M avoids the singularity encountered
when the vehicle is situated at a center of curvature, that
is, at points (p, θ) ∈ M such that κ(θ)εc(p, θ) = 1. The
points (p, θ) ∈ M such that κ(θ)εc(p, θ) > 1 are also not
considered because the vehicle would have to pass through
the singularity to reach the path from these points.

While the system (13) describes an exact differential ap-
proach to the path parameter selection problem, it is not
suitable for practical implementation. In particular, even if θ
could be initialized such that (p, θ) ∈ M , the states would
drift out of M due to measurement errors and numerical
inaccuracies. However, the following proposition relates the
path parameter selection problem to an optimization problem.

Proposition 1. Let γ be a C2 regular path. If (p, θ∗) ∈ O∩M ,
then θ∗ is a minimum of the function θ 7→ |p− γ(θ)|.

Proof. Consider the C2 function hp(θ) :=
1
2 |p−γ(θ)|2, which

has the same minima as the function in question. We find that

h′
p(θ) = −⟨p− γ(θ), γ′(θ)⟩, (15)

h′′
p(θ) = |γ′(θ)|2 − ⟨p− γ(θ), γ′′(θ)⟩. (16)

A sufficient condition for θ∗ to be a minimum of hp is that
h′
p(θ∗) = 0 and h′′

p(θ∗) > 0 [17, Theorem 2.4]. Since the path

is regular, h′
p(θ∗) = 0 is equivalent to ετ (p, θ∗) = 0, and by

(10), to (p, θ∗) ∈ M . Furthermore, for any C2 regular path,

τ ′(θ) = |γ′(θ)|κ(θ)Sτ(θ) = γ′′(θ)

|γ′(θ)|
− ⟨γ′′(θ), τ(θ)⟩τ(θ)

|γ′(θ)|
,

(17)

such that, for (p, θ) ∈ M ,

⟨p− γ(θ), γ′′(θ)⟩ = |γ′(θ)|2κ(θ)εc(p, θ). (18)

It follows that if (p, θ∗) ∈ M , then h′′
p(θ∗) > 0 is equivalent

to κ(θ∗)εc(p, θ∗) < 1, and by (14), to (p, θ∗) ∈ O. Conse-
quently, the second order optimality conditions h′

p(θ∗) = 0
and h′′

p(θ∗) > 0 are equivalent to (p, θ∗) ∈ O ∩M .

For practical implementation purposes, a consequence of
Proposition 1 is that we can choose the path parameter by
solving an optimization problem at every discrete update step.
In this way, we avoid the problem of θ drifting such that
(p, θ) /∈ M . Moreover, for typical paths such as straight lines
and circles, the minimizer of θ 7→ |p − γ(θ)| has a local
closed-form solution as a function of p. However, solving an
unconstrained optimization problem for the path parameter
does not necessarily guarantee that the solution t 7→ θ∗(t)
is continuous. For instance, whenever the solution to the
optimization problem becomes set-valued, a discontinuity can
occur. When the path consists of straight line and circular
segments, continuity of t 7→ θ∗(t) can be ensured locally by
introducing a memory variable, which accounts for which
path segment one is currently on.

The second result pertaining to (13) concerns the existence
of solutions. It turns out that solutions are guaranteed to exist
locally if v is locally integrable. Furthermore, the complete-
ness of maximal solutions can be guaranteed if the cross-track
error remains sufficiently small relative to the path curvature.

Proposition 2. Let γ be a C2 regular path. If v is locally
integrable, then there exists a solution to (13) from every
initial condition in O∩M . Moreover, every maximal solution
to (13) whose range is confined to a set

Cr = {(p, θ) ∈ R3 : κ(θ)εc(p, θ) ≤ r}, (19)

where r < 1, is complete.

Proof. Since γ is C2 regular, we can without loss of gener-
ality assume that γ is parametrized by arc length, such that
|γ′(θ)| = 1. Let x := (p, θ) and denote the flow map in (13)
by f : O × R2 → R3. Since f is continuous and t → v(t)
is measurable, it holds that t 7→ f(x, v(t)) is measurable for
every x ∈ O. Furthermore, for every compact set K ⊂ O,
there exists k > 0 such that x ∈ K implies |f(x, v)| ≤ k|v|.
Since t 7→ k|v(t)| is locally integrable, the local existence
of solutions follows from [18, Theorem 5.1]. Every solution
t 7→ x(t) satisfies d

dtετ (x(t)) = 0 almost everywhere in its
domain, such that solutions starting in M remain in M . If a
maximal solution is confined to Cr for r < 1, then

|x(t)| ≤ |x(0)|+
(
1 +

1

1− r

)∫ t

0

|v(η)|dη (20)



for every t in the solution’s domain. Since v is locally inte-
grable, finite escape does not occur, and such solutions must
be complete.

IV. INTEGRAL LINE-OF-SIGHT GUIDANCE

Define a set-valued projection operator as in [19] by

Proj(σ, φ, a) :=

{
sσ :

s = 1 if σ ∈ T[−a,a](φ)

s∈ [0, 1] if σ /∈ T[−a,a](φ)

}
(21)

where the tangent cone T[−a,a] : [−a, a] ⇒ R is defined by

T[−a,a](φ) :=


[0,∞), if φ = −a

(−∞,∞), if φ ∈ (−a, a)

(−∞, 0], if φ = a

(22)

Consider the following projection-based ILOS guidance law

α̇ ∈ Proj

(
kεc(p, θ)√

∆2 + (εc(p, θ) + α)2
, α, α

)
, (23a)

µ(p, θ, α) =
∆τ(θ)− (εc(p, θ) + α)Sτ(θ)√

∆2 + (εc(p, θ) + α)2
, (23b)

where ∆ > 0 is the lookahead-distance, k > 0 represents an
integral gain and α ∈ R denotes the maximum absolute value
of the integral state. The control law (23b) can be rewritten as

µ(p, θ, α) = R(τ(θ))ζ(p, θ, α), (24)

where ζ is the integral line-of-sight vector defined by

ζ(p, θ, α) :=
1√

∆2 + (εc(p, θ) + α)2

(
∆

−(εc(p, θ) + α)

)
.(25)

The angle representing µ on the interval (−π, π] is equivalent
to the sum of the angles corresponding to the unit vectors ζ
and τ , mapped to the interval (−π, π]. However, operating
with angles and their sums can be error-prone for implemen-
tation purposes. We advocate an implementation based on
(23b) or (24), and then mapping the unit vector to an angle
in (−π, π] using the atan2 function if needed.

Remark 2. With the angle interpretation of µ, the control
law (23) is similar to AILOS as defined in [6] and the ILOS
algorithm in [4]. The key difference is the introduction of the
projection operator Proj, which prevents integral wind-up by
ensuring that the integral state α is bounded. Moreover, in
an AILOS approach, the differential equation for the integral
state α is proportional to the forward speed u1, which can
be undesirable due to noisy velocity estimates.

It might not be clear as to how one would implement the set-
valued projection operator in (21). However, as discussed in
[19], it turns out that we may use the discontinuous projection

Proj(σ, φ, a) :=

{
σ, if σ ∈ T[−a,a](φ)

0, if σ /∈ T[−a,a](φ)
(26)

for implementation purposes. Additionally, if the differential
equation (23a) is integrated using e.g. a forward Euler scheme,

employing Proj is equivalent to integrating the first argument
in (23a) and saturating α at ±α.

Applying the control law (23) to (1) and defining x1 :=
εc(p, θ) results in the closed-loop cross-track error dynamics

ẋ1 =
−(x1 + α)u1 +∆u2√

∆2 + (x1 + α)2

− |γ′(θ)|κ(θ)ετ (p, θ)λ(p, θ, v).
(27)

Assume that γ is a C2 regular path and that the path parameter
can be selected such that it satisfies (13) with

v = u1µ(p, θ, α) + u2Sµ(p, θ, α), (28)

where µ is given by (23b). As a result, the along-track error
ετ is zero at all times and the cross-track error dynamics
are independent of θ. Thus, by defining x2 := α− r, where
r ∈ [−α, α] is the desired value of the integrator state α, we
arrive at the error dynamics

ẋ1 =
−(x1 + x2)u1 +∆u2 − ru1√

∆2 + (x1 + x2 + r)2

ẋ2 ∈ Proj

(
kx1√

∆2 + (x1 + x2 + r)2
, x2 + r, α

)


x ∈ X,

u ∈ U,

(29)

where X := R× [−α− r, α− r].

Theorem 1. If ρ > k, then the origin is ISS for the system
(29) with respect to the input ξ1(u) := |u2− r

∆u1|. Moreover,
if u is such that ξ1(u) ≤ ξ1 for some ξ1 ≥ 0, then the set

Ω1 :=
{
x ∈ X : (x1 + x2)

2 + x2
2 ≤

( ∆ξ1
min(ρ−k,k)

)2}
(30)

is forward invariant, and every solution t 7→ x(t) with initial
condition x0 ∈ Ω1 satisfies

|x1(t)| ≤
√
2∆ξ1

min(ρ− k, k)
. (31)

Proof. We consider the ISS Lyapunov function candidate
V1(x) :=

1
2 (x1 + x2)

2 + 1
2x

2
2. Then,

V̇1(x, u) =
−(u1−ks)(x1+x2)

2−ksx2
2+(x1+x2)(∆u2−ru1)√

∆2+(x1+x2+r)2
. (32)

If the integrator is not saturated, then s = 1, and

V̇1(x, u) =
−(u1−k)(x1+x2)

2−kx2
2+(x1+x2)(∆u2−ru1)√

∆2+(x1+x2+r)2
. (33)

If the integrator is saturated, then s ∈ [0, 1], and either x1 >
0 and x2 = α − r ≥ 0, or x1 < 0 and x2 = −α − r ≤ 0.
In both cases, the product x1x2 is nonnegative, such that
(x1 + x2)

2 ≥ x2
2. Consequently,

(u1 − ks)(x1 + x2)
2 + ksx2

2 ≥ (u1 − k)(x1 + x2)
2 + kx2

2,

for all s ∈ [0, 1], from which it follows that

V̇1(x, u) ≤ −(u1−k)(x1+x2)
2−kx2

2+(x1+x2)(∆u2−ru1)√
∆2+(x1+x2+r)2

(34)

for all (x, u) ∈ X × U . Letting χ ∈ (0, 1), it follows that

V̇1(x, u) ≤ −2(1−χ)min(ρ−k,k)V1(z)√
∆2+4V1(z)+2r2

(35)



for all x ∈ X such that V1(x) ≥ 1
2

( ∆ξ1(u)
χmin(ρ−k,k)

)2
. This

shows ISS of (29). Forward invariance of Ω1 follows from
noting that Ω1 is a sublevel set of V1 and that V̇1(x, u) ≤ 0
for all x ∈ X \ Ω1. The bound (38) follows from inspection
of Ω1.

Corollary 1. If u1 ∝ u2 and the conditions of Theorem 1
hold, then the origin is UGAS for (29).

Proof. If u1 ∝ u2, then u2

u1
is constant. Hence, we may

choose r = ∆u2

u1
and the claim follows from Theorem 1.

Assuming that u1 and u2 are proportional is equivalent to
assuming that the crab angle β = atan2(u2, u1) is constant,
which is also assumed in the work on AILOS [6]. However,
the work in [6] is based on the additional assumption that
the crab angle is small, i.e., that u2

u1
is small.

The results in Theorem 1 and Corollary 1 also hold in the
case where α is not saturated. A potentially sharper bound
than (31), which exploits the saturation of the integrator, is
given by the following proposition.

Proposition 3. The compact set A = {x ∈ X : x1 = 0}
is ISS for (29) with respect to the input ξ2(u) := |u2

u1
|+ α

∆ .
Moreover, if u is such that ξ2(u) ≤ ξ2 for some ξ2 ≥ 0, then
the set Ω2 := {x ∈ X : |x1| ≤ ∆ξ2} is forward invariant.

Proof. We use V2(x) :=
1
2x

2
1 as an ISS Lyapunov function

candidate. Then, V̇2(x, u) =
−u1x

2
1+x1(∆u2−(x2+r)u1)√
∆2+(x1+x2+r)2

. For

χ ∈ (0, 1), we have that V̇2(x, u) ≤ −ρ(1−χ)x2
1√

∆2+2x2
1+2α2

for all

(x, u) ∈ X × U satisfying |x1| ≥ ∆ξ(u)/χ, proving ISS.
Forward invariance of Ω2 follows from noting that Ω2 is a
sublevel set of V2 and that V̇2(x, u) ≤ 0 for all x ∈ X \
Ω2.

Remark 3. Analogous results to Theorem 1, Corollary 1,
and Proposition 3 can be derived for an AILOS version of
(23), which utilizes, inspired by [6], the alternative integrator
update law

α̇ ∈ Proj

(
u1k0εc(p, θ)√

∆2 + (εc(p, θ) + α)2
, α, α

)
(36)

in place of (23a), where k0 ∈ (0, 1) is an integral gain.
Specifically, the origin of the resulting error system is ISS
with respect to the input ξ3(u) = |u2

u1
− r

∆ |. If ξ3(u) ≤ ξ3,
then the set

Ω3 :=
{
x ∈ X : (x1 + x2)

2 + x2
2 ≤

( ∆ξ3
min(1−k0,k0)

)2}
(37)

is forward invariant. Furthermore, analogously to the bound
(31) in Theorem 1, solutions t 7→ x(t) to the resulting closed-
loop system starting in Ω3 satisfy

|x1(t)| ≤
√
2∆ξ3

min(1− k0, k0)
. (38)

The conclusions of Corollary 1 and Proposition 3 hold without
modification for the AILOS version of (23).

Theorem 1 and Proposition 3 yield bounds on the cross-
track error, provided that we initialize the system close enough

to the path. These bounds can then be used to estimate an
upper bound on the allowed curvature of the path to ensure
that the path parameter can always be selected such that it
satisfies (13). In other words, such that maximal solutions to
(13) are complete as shown in Proposition 2. We can also
think of the bounds in Theorem 1 and Proposition 3 as the
maximum cross-track error incurred during operation of the
vehicle under the given conditions.

V. CASE STUDY

The simulation model is a 6-degree-of-freedom model of
the Remus 100 AUV from Kongsberg Maritime. In particular,
the equations of motion of the vehicle are given by [20,
Eqs. (8.1-8.2)] with model parameters taken from [21]. The
control law (23) provides the desired heading for a lower-
level heading autopilot, while the depth is kept constant
by a proportional-integral controller which provides a pitch
reference to a lower-level pitch autopilot. Finally, the roll
motion is uncontrolled and passively stable.

We consider two cases; a straight-line path and a curved
path in the form of a lemniscate. In both cases, we imple-
mented (23) with and without the Proj operator, and we
denote these versions as the saturated and unsaturated ver-
sions of (23), respectively. In both simulations, the propeller
revolution is set to 550 revolutions per minute (rpm), which
corresponds to a forward velocity of approximately 0.9m/s
in calm waters. The first simulation case is a simple straight-
line example. The reference path is given by the x-axis and
the vehicle is initialized at p0 = (−50m, 0). We include the
effects of an ocean current with speed 0.2m/s coming from
the north. The parameters in (23) are chosen as ∆ = 15m,
k = 0.5, α = tan(βmax)∆, where βmax = 13 π

180 represents
the maximum crab angle when the cross-track error is zero.

Fig. 1. The reference path γ and North-East trajectories p and p̃ obtained
by setting the desired heading reference according to (23) with (red) and
without (blue) the Proj operator, respectively.

From Fig. 1, we observe that for the saturated version, the
initial overshoot is considerably smaller and the second over-
shoot is nonexistent. The second overshoot is a consequence
of integral windup, as seen in the topmost left plot in Fig. 2,
where the integral state becomes excessively large during
the initial transient in the unsaturated approach. The lower
left plot in Fig. 2 shows that by not saturating the integral
state, the desired heading becomes smaller, and is hence
more aggressive in the sense that it steers the vehicle straight
towards the path, effectively lowering the lookahead distance.



Fig. 2. The integral states α and α̃ and the desired heading ψ and ψ̃
with (red) and without (blue) the use of the Proj operator, respectively.
The leftmost plots correspond to the straight-line simulation case, while the
rightmost plots correspond to the lemniscate simulation case.

The second simulation case is a lemniscate, which is a
self-intersecting closed curved path. The vehicle is initialized
at p0 = (0, 50m), the ocean current speed is 0.3m/s and is
coming from the south. The parameters in (23) are chosen
as in the previous case except ∆ = 10m and k = 0.7.

Fig. 3. The reference path γ and North-East trajectories p and p̃ obtained
by setting the desired heading reference according to (23) with (red) and
without (blue) the Proj operator, respectively.

Similarly to the straight-line case, we observe in Fig. 3 that
the transient behavior is significantly improved by employing
the Proj operator in the control law. From Fig. 3 and the
topmost right plot in Fig. 2, we see that the integral state
of the unsaturated guidance law winds up during the sharp
turns against the current, which results in overshoots on the
straighter path segments near the origin. Despite the improved
performance in the vicinity of the center of the lemniscate,
both guidance laws still deviate significantly from the path
when turning in following sea. This is due to the strong
currents and large curvature of the path.

VI. CONCLUSIONS

This letter has presented a novel ILOS guidance scheme
that results in a closed-loop system with ISS properties with
respect to a function of the vehicle velocities. It has been
shown that the origin of the closed-loop system is UGAS
when the forward and sideways velocities are proportional.
Importantly, and contrary to the state of the art, these global
stability results have been established without requiring that
the crab angle is small. Furthermore, we have discussed how
to select the path parameter to ensure that the along-track error

remains zero for all time, and we have shown the connection
between selecting the path parameter through an ODE and
through optimization.
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