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Abstract— This paper investigates the problem of protecting
a safe zone against rogue drone intrusion when the defender
has noisy observations. The conventional strategies were not
sufficient to achieve high mission success rates, prompting the
introduction of a concept called defense margin. The proposed
strategy improves upon the Pure Pursuit (PP) strategy by
incorporating the defense margin strategy, offering better per-
formance compared to using either strategy alone. Simulation
results demonstrate the effectiveness of the proposed strategy,
resulting in higher mission success rates.

I. INTRODUCTION

With the rapid growth of the drone market, incidents
and concerns involving malicious drones have risen. These
incidents range from flight disruptions to privacy violations
and terror attacks [1], [2]. The need for measures to protect
property and assets from unauthorized aerial intrusions has
become increasingly important.

Jamming with Electromagnetic Pulse (EMP) is a widely
studied method for neutralizing drones [3]. However, the
use of EMPs can cause unintended harm to electronics
and communication, leading to restrictions on their use at
the consumer level in many countries. Physical interception
using aerial capturing measures, such as net guns and birds,
is, therefore, the preferred method of neutralization [4]. Of
these methods, deploying a defender drone using a net gun is
considered a scalable option due to its reliability and safety.

Guarding a safe zone against invasive drones is a challeng-
ing problem, especially considering the noise present in the
measurements of the flying vehicles [5]. The defender faces
a difficult decision between improving observation accuracy
and interception by approaching the attacker or maintaining
the security of the safe zone. This dilemma poses a challenge
for the defender, making it tricky to protect the safe zone.

A. Related works

A protective mission against a rogue drone is a variant of
the Pursuit-Evasion game in which the evader tries to enter
the safe zone while avoiding interception by the pursuer [6].
Given the initial positions of both agents, the barrier curves
that mark off the dominant regions of the defender and
attacker can be found, which determines the outcome of the
game. Then, a minimax optimization problem is formulated
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as in [7] (and references therein) to derive an optimal strategy
for each agent via the Hamilton-Jacobi-Bellman-Isaacs (HJI)
equation. This problem has been extended to multi-agent
scenarios [8], [9].

In a typical Pursuit-Evasion game setup, the defender
attempts to minimize the time to capture the evader. When
the state of the attacker is known in the Euclidean space,
the optimal strategy for the defender is given by a straight
line which can be obtained by solving the HJI equation,
assuming a smooth value function designed based on the
distance to the evader [10]. Since the strategy is optimal, the
game is guaranteed to become more favorable to the defender
if the attacker deviates from its optimal behavior. Our work
departs from the conventional problem setting by addressing
a more practical scenario, where the attacker’s state mea-
surement is noisy, and its behavioral model is unknown.
Additionally, our problem setting amplifies measurement
noise with distance [5], presenting the defender with an
added complication: it must approach closer to the attacker to
obtain more precise observations, while not deviating too far
away from the safe zone. This formulation deviates from the
differential game approach, by instead focusing on balancing
the possibly countering objectives of pursuing and defending
under the presence of uncertainty.

A mission to track and defend a drone also resembles
the close-in jamming problem introduced in [11]. This work
addresses the problem of jamming a rogue drone with
observational uncertainty. However, this work differs from
ours in that it assumes only a limited number of possible
control actions for agents and mainly focuses on controlling
the jamming intensity instead of a protective mission.

B. Statement of Contributions

We propose a method to address the dilemma faced by
the defender in the protective mission when observing the
attacker subject to noise. Our main contributions are:

1) Novel problem formulation of a protective mission
assuming a noisy observation and unknown strategy
of the attacker;

2) Providing a metric that can be computed in a closed
form to quantify defense performance for a protective
mission in the presence of uncertainty;

3) Designing an adaptive defense strategy and proving its
efficacy analytically and empirically.

C. Notations

We use ∥ · ∥ to represent the Euclidean norm and E[·] to
denote the expectation of a random variable. In Section III-B,
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we employ zazb to indicate the line segment connecting the
endpoints of vectors za and zb. Finally, za ⊥ zb and za ∥ zb
respectively denote perpendicular and parallel vectors.

II. PROBLEM FORMULATION

We investigate the task of protecting a designated safe
zone using a single defending drone, referred to as the
defender, against a single attacking drone, referred to as the
attacker1. We focus on devising a defender strategy that can
effectively counter an attacker with an unknown strategy and
noisy observation. We present a fundamental framework for a
one-on-one defender-attacker scenario, which can be directly
extended to multi-agent scenarios as done in [12], [13].

A. State-space representation

The mission takes place in R2 space, where the zone of
interest, denoted as ΩI ⊂ R2, defines the area where the
observation of a drone is deemed to have a rogue intent.
The safe zone, denoted as ΩS ⊂ ΩI , encompasses the area
that the defender aims to protect. We approximate ΩI and
ΩS with their respective minimal circular hulls, with radii
RΩI

and RΩS
centered at the origin O.

The attacker and the defender configurations at time t are
expressed as xjt ∈ R2 for j ∈ {a, d}. The discrete-time
dynamics of the attacker and the defender can be written as:

xjt+1 = xjt + ujt , j ∈ {a, d}.

Here ujt ∈ Uj
t ⊂ R2 for j ∈ {a, d} is the deterministic

control input of each agent, and uat is unknown to the
defender at all times. Moreover, Ua

t and Ud
t denote a set of

admissible controls of the attacker and the defender at time t.
This is a commonly used discretized single integrator model
in PE games [7]–[9], which differs from the more restrictive
double-integrator dynamics assumption [14].

In this paper, we assume ∥uat ∥ ≤ ∥udt ∥ = 1 for all t,
such that the control input is normalized. This implies that
an attacker can be as fast as a defender, which is a relaxed
assumption compared to many other works that assume the
defender to strictly outpace the attacker [15], [16].

The attacker is considered to be intercepted by the de-
fender if the distance ∥et∥ ≜ ∥xat − xdt ∥ is less than the
maximum capturing distance τ . Technically, the attacker is
intercepted if ∥et∥ ≤ τ . The maximum capturing distance is
determined by the net gun specifications.

B. Attacker detection model

When dealing with a noisy target, different models have
been proposed, such as the Brownian motion model [17]
and the ellipsoid model [18]. In this work, we adopt the
uncertainty model from [19], where we assume to receive
independent and noisy state observations of the attacker
at each time step. Since we have no information about
the attacker’s behavioral model, commonly used filtering

1Defender and attacker are analogous to the pursuer and evader in
the Pursuit-Evasion game setup. We intentionally used a distinct term to
emphasize the different objectives of our problem setup.

methods, such as the Kalman filter and its variations [20],
cannot be employed to reduce the variance of the noise.

An observation of xat at time t is denoted as yt ∈ R2,
and is subject to a zero-mean Gaussian noise with covariance
matrix σ2

t I2 as in [11], where σ2
t ∈ R≥0 represents a variance

of a Gaussian distribution, and I2 ∈ R2×2 represents an
identity matrix. Formally, the following model is adopted to
express the observational uncertainty:

yt = xat + wt

wt ∼ N (0, σ2
t I2).

(1)

Furthermore, σt is modeled by adopting the uncertainty
model proposed in [19]:

σ2
t = βb + βd∥et∥2 + βv(1− νt).

Parameters βb, βd, βv are non-negative real values character-
ized by the sensor and the estimation model. Specifically,
they represent the variance coefficient for baseline, distance,
and visibility, respectively. Visibility νt ∈ [0, 1] relates the
blockage of the sight to the variance of the uncertainty, such
that νt = 0 if the sight is fully blocked by an obstacle,
and νt = 1 if the sight is not blocked at all. Any values
in-between represent partial blockage of the sight.

In this paper, we will consider an environment without
any obstacles such that νt ≡ 1, and zero baseline variance
βb = 0. Then, we can rewrite (1) as

yt = xat + wt

wt ∼N (0, β∥et∥2I2),
(2)

where β is a short hand notation for βd.

C. Joint defense and tracking problem

Formally, the defender’s mission is to prevent the attacker
from landing at the safe zone ΩS for all time or to intercept
the attacker before it reaches the safe zone. Specifically, the
problem is to find a sequence of discrete control inputs udt
for all t such that it satisfies

xat /∈ ΩS ∀t ∈ [ti, tf ] or
∃tc ∈ [ti, tf ] : (x

a
t /∈ ΩS ∀t ∈ [ti, tc]) ∧ (∥etc∥ ≤ τ),

(3)

subject to

xjt+1 = xjt + ujt , j ∈ {a, d}
∥uat ∥ ≤ ∥udt ∥ = 1 ∀t ∈ [ti, tf ]

yt = xat + wt

wt ∼ N (0, β∥et∥2I2),

(4)

where ti, tf , tc respectively denote the initial time of
observation, terminal time that can be chosen by the user,
and the capturing time. Note that this problem is not limited
to the interception problem, but extends to a more general
class of a defense problem in which the defender can win
by protecting the safe zone for a sufficiently long runtime.
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III. METHOD

We propose a solution that enhances the PP strategy with
the Defense Margin (DM) strategy to solve our problem.
In Section III-A, we introduce and discuss the advantages
and limitations of the PP strategy, along with other popular
guidance laws. In Section III-B, we evaluate the DM strategy
and its ability to complement the PP strategy. Finally, in
Section III-C, we present our proposed Adaptive Defense
Margin (ADM) strategy.

A. Pure Pursuit strategy

Popular strategies utilized in PE games are Constant Bear-
ing (CB), Line of Sight (LoS), and PP guidance laws [21].
Having only access to the instantaneous positional estimate
of the attacker, the PP strategy is a reasonable strategy to
be considered among the above three. CB is not a suitable
strategy because it assumes the knowledge of the attacker’s
instantaneous velocity as well as its position [22], whereas
the defender only has access to the noisy observation of the
attacker in our problem. On the other hand, LoS is known to
be infeasible in missions with observational uncertainty un-
less there are external or additional measures to complement
the noisy observation [23].

The idea of the PP strategy is to always steer the defender
directly to the observation of the attacker (3). Formally, the
defender’s control input is designed by

udt =
yt − xdt
∥yt − xdt ∥

, (5)

where udt is normalized to meet the constraint (4).
In this work, we analyze the conditions under which the

PP strategy is effective and determine when it becomes
less reliable under uncertainty. The following definitions and
theorems provide the necessary background to describe these
conditions analytically.

Definition 1. Consider the n-dimensional stochastic
discrete-time system

ζt+1 = f(ζt, χt, χ), ζ(t0) = ζ0. (6)

The trivial solution of the system is said to be stochasti-
cally stable or stable in probability, if ∀ϵ, h > 0, ∃δ =
δ(ϵ, h, t0) > 0 such that P{|ζt| < h} ≥ 1 − ϵ for t ≥ t0
when |ζ0| < δ. Otherwise, it is stochastically unstable [24].

Consider the Lyapunov function V : Rn → R, with
V (0) = 0. Its discrete increment is expressed as follows:

∆V (ζt) = V (ζt+1)− V (ζt). (7)

Using this definition and discrete-time Lyapunov functions
and their increments, the following theorems can be stated.

Theorem III.1. If there exists a positive definite function
V (ζt) ∈ C2(Dr), such that

E[∆V (ζt)] ≤ 0 (8)

for all ζt ∈ Dr, then the trivial solution of (6) is stochasti-
cally stable in probability [24].

In the following, we present the condition that ensures
interception when using the PP strategy.

Theorem III.2. Assume ∥et∥ >
√
2 and ∥wt∥ < ∥et∥. The

error et is stochastically stable under the PP strategy (5), if
the following condition holds:

e⊤t u
a
t + 1

∥et + uat ∥
≤ E[cosα], (9)

where

cosα ≜
(et + wt)

⊤(et + uat )

∥et + wt∥ ∥et + uat ∥
, α ∈ (−π

2
,
π

2
).

Proof. We use the Lyapunov function to provide a condition
under which stability can be guaranteed.

Define a Lyapunov function V (et) as

V (et) = e⊤t et. (10)

Plugging the uncertain observation model (2) into the PP
control (5) yields

udt =
yt − xdt

∥yt − xdt ∥
=

et + wt

∥et + wt∥
(11)

Plugging (11) into (7) and rearranging it yields

∆V (et) = V (et+1)− V (et)

= −2
e⊤t (et + wt)

∥et + wt∥
+ 2e⊤t u

a
t +

(et + wt)
⊤(et + wt)

∥et + wt∥2

+ ua⊤t uat − 2
(et + wt)

⊤uat
∥et + wt∥

Rearranging and taking expectation on both sides with
∥uat ∥ ≤ 1, ∥et∥ >

√
2 and ∥wt∥ < ∥et∥ yields

E[∆V (et)] ≤ −2∥et + uat ∥E[cosα] + 2e⊤t u
a
t + 2.

Rearrange this to satisfy (8), and we obtain (9).
Remark 1. In practice, an actual capturing distance would
ensure the fulfillment of the normalized constraint, τ >

√
2,

considering the update rate and speed limit of a vehicle [25].

The theorem states that the PP strategy leads to an
interception in expectation when the uncertainty wt is small
and the attacker is heading towards the defender. Therefore,
to make effective use of the PP strategy, the defender should
pursue a complementary strategy until it is close enough to
the attacker and is positioned between the safe zone and the
attacker, so the attacker cannot steer away from the defender
and simultaneously advance toward the safe zone.

B. Defense Margin Strategy

Definition 2. The safe reachable set Lxa
t

is the set of
positions reachable by the attacker before the defender [18].

Following the assumption in (4) that the defender is
equivalently fast as the attacker, we can express Lxa

t
as

Lxa
t
= {l ∈ R2| ∥l − xat ∥ ≤ ∥l − xdt ∥}.

We subsequently define lxa
t
∈ Lxa

t
as the closest point in

the reachable set to the safe zone: lxa
t
= arg inf l∈Lxa

t
∥ΩS −

l∥, where ∥ΩS − l∥ ≜ infωS∈ΩS
∥ωS − l∥, for a given l. We
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can follow the same notations to represent the estimation of
Lxa

t
and lxa

t
as Lyt and lyt , respectively.

Definition 3. Defense margin ρxa
t

is the norm of lxa
t
:

ρxa
t
= ∥lxa

t
∥.

Note that if ρxa
t
≤ RΩS

, there exists a strategy for the
attacker to win regardless of the defender’s strategy.

We define the defense margin strategy (DM strategy) as

udt =
ly − xdt

∥ly − xdt ∥
. (12)

Note that the strategy is defined with respect to lyt

instead of xat . Intuitively, this strategy implicitly attempts to
accomplish the first goal of (3) by forcing the attacker to take
a detour to reach the safe zone. Technically, the probability
of reducing an actual defense margin is optimal, due to the
certainty equivalence of the model (2).

Lemma III.3. The defense margin ρxa
t

can be measured as:

ρxa
t
=

1

2

∥xat ∥2 − ∥xdt ∥2

∥xat − xdt ∥
.

Proof. By construction, (x
d
t+xa

t

2 )·(xat −xdt ) = lxa
t
·(xat −xdt ).

Rearranging for ∥lxa
t
∥ yields the result.

Next, we provide an analytical proof to explain that (12)
outperforms (5) in terms of ρxa

t
, implying that the DM

strategy can provide the defensive property whereas the PP
strategy provides the interception property.

Theorem III.4. Assume ∥e(t)∥ >
√
2 and ∥xat ∥ > ∥xdt ∥.

For static attacker state vector xat+1 = xat with uncertainty
wt = 0 ∀t, the following inequality holds for one step
change of the defense margin:

∆ρxa
t
|udDM ≥ ∆ρxa

t
|udPP , (13)

where ∆ρxa
t
|udDM and ∆ρxa

t
|udPP respectively denote

ρxa
t+1

− ρxa
t

following (12) and (5).

Proof. Step 1) Coordinate Transformation At time t, given
xat and xdt , we do a rigid coordinate transformation Φ :
x → x̂ such that xdt → x̂dt = [0, 0]⊤, xat → x̂at = [r, 0]⊤,
where r = ∥e(t)∥ and the center of the safe zone ΩS will
correspondingly be transformed to [p, q]⊤. The assumption
∥xat ∥ > ∥xdt ∥ is translated to p < r

2 in these coordinates.
Rigid transformation only allows rotation and is followed

by translation, and therefore preserves the Euclidean distance
between every pair of points. In these transformed coordi-
nates, the two strategies are simplified as udPP = [1, 0]⊤, and
udDM = [cosψ, sinψ]⊤. Subsequently, xdt+1 = [1, 0]⊤ for PP
strategy, and xdt+1 = [cosψ, sinψ]⊤ for DM strategy.

Now ρx̂a
t

lies precisely on the perpendicular bisector
of the line segment x̂at x̂

d
t . Consequently, ∠ρx̂a

t
x̂dt x̂

a
t =

∠ρx̂a
t
x̂at x̂

d
t = ψ, where ψ ∈ (−π

2 ,
π
2 ). Formally, p =

r
2 − ρx̂a

t
< r

2 and q = r
2 tanψ.

Step 2) Change in Defense Margin for PP strategy

For xdt+1 = [1, 0]⊤, we have ρx̂a
t+1

= r+1
2 − p. Thus,

∆ρx̂a
t
|udPP = ρx̂a

t+1
− ρx̂a

t

= (
r + 1

2
− p)− (

r

2
− p) =

1

2
.

Step 3) Change in Defense Margin
Similarly, we have the line that bisects x̂dt+1 and [r, 0]⊤:

r − cosψ

sinψ
(x− r + cosψ

2
)− (y − sinψ

2
) = 0.

Consequently, we have

ρx̂a
t+1

|udDM =
|r2 − 1 + 2q sinψ − 2p(r − cosψ)|

2
√

(r − cosψ)2 + sin2 ψ
. (14)

Here we will find the lower bound of ρx̂a
t+1

|udDM and
assert that it is greater or equal to 1

2 to complete our proof.
First observe that we only need to consider for ψ ∈ [0, π2 ),

since ρx̂a
t+1

is symmetrical with respect to x̂-axis. Every
result we obtain can therefore be identically proved for
ψ ∈ (−π

2 , 0]. Subsequently, q ≥ 0. Note that q = 0 or
ψ = 0 is a trivial case which yields udPP ≡ udDM .

The numerator of (14) can be lower-bounded by the
following:

r2 − 1+2q sinψ − 2p(r − cosψ)

> r2 − 1 + 2q sinψ − 2p(r − cosψ)|p = r

2

= −1 +
r

cosψ
> 0 ∀ψ ∈ [0,

π

2
).

Here we used ψ ∈ [0, π2 ), r >
√
2, q = tanψ, and p < r

2 .
Hence, we can ignore the absolute operator for the remainder
of the proof.

Then, we have

ρx̂a
t+1

|udDM >
r2 − 1 + 2q sinψ − r(r − cosψ)

2
√
(r − cosψ)2 + sin2 ψ

=
r − cosψ

2 cosψ
√

(r − cosψ)2 + sin2 ψ
.

Here, the last equality again used p < r
2 and q = r

2 tanψ.
Furthermore,

r − cosψ

2 cosψ
√

(r − cosψ)2 + sin2 ψ
≥ 1

2

holds whenever r >
√
2. Note that equality holds only

when ψ = 0. Due to the rigidity of the transformation
Φ(x, y), we can obtain ρxa

t+1
|udDM ≥ ρxa

t+1
|udPP directly

from ρx̂a
t+1

|udDM ≥ ρx̂a
t+1

|udPP .

The DM strategy outperforms the PP strategy in terms of
the actual defense margin when no uncertainty is present,
as demonstrated by this theorem. The property under noisy
conditions is empirically verified via neural network analysis
in Section IV. It should be noted here that the defense margin
may not always be non-decreasing under the presence of
uncertain observations. Numerous cases, as demonstrated in
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Section IV, highlight that the DM strategy fails to defend
against an intelligent attacker due to its passivity and lack of
interception attempts.

C. Adaptive Defense Margin Strategy

We discussed the limitations of using the PP and the DM
strategy in Sections III-A and III-B. We next introduce an
adaptive convex combination of both to solve our problem.

We introduce a weight parameter λt and define the Adap-
tive Defense Margin (ADM) strategy as follows:

udt = cλt
y − xdt

∥y − xdt ∥
+ c(1− λt)

lµ − xdt
∥lµ − xdt ∥

, (15)

where c is a normalizing constant that makes ∥udt ∥ = 1. Note
that λt ≡ 1, and λt ≡ 0 restores the PP and the DM strategy.

The intuition is to follow the DM strategy until it gets to
a favorable position to apply the PP strategy. The problem
is to construct adequate λt that effectively balances DM and
PP strategy in the evolving dynamics of the mission. We
first define the reliability of an observation yt, which we can
measure without precise knowledge of xat .

Definition 4. Let ŵt be an estimate of the uncertainty wt,
expressed as ŵt ∼ N (0, β(∥yt − xdt ∥2I2). The reliability
of the observation yt is denoted as Pt and is expressed as
Pt = F (k, k) + F (−k,−k) − F (−k, k) − F (k,−k). Here
F (·, ·) : R × R → R is the cumulative distribution function
(CDF) of a multivariate Gaussian distribution ŵt, and k is
the characterizing length of the reliability square.

We propose the parameterization λt = Pt, which considers
the reliability of each observation. Rewriting (15), we obtain

udt = cPt
y − xdt

∥y − xdt ∥
+ c(1− Pt)

lµ − xdt
∥lµ − xdt ∥

. (16)

This strategy transitions from the PP approach as the
attacker approaches the safe zone, shifting towards the DM
method to prepare for worst-case scenarios when the attacker
is further away. This continuous transition is governed by
a reliability parameter that allows the defender to balance
the risk of deviation from the safe zone with the need for
accurate observations to optimize interception.

IV. SIMULATION AND RESULTS

Here we evaluate the effectiveness of three defense strate-
gies (PP, DM, and ADM) against three attacker strategies:
Linear, Spiral, and Intelligent. While the Linear and Spiral
strategies follow pre-defined straight and curved paths, the
Intelligent attacker mirrors the ADM strategy:

uat =
ξd1 + d2

∥ξd1 + d2∥
, d1 = −(x̂dt − xa), d2 = −xat ,

where ξ is a tuning parameter. In all scenarios we fixed
∥uat ∥ = 1 for all t. Figure 1 provides a visual represen-
tation of the trajectories followed by the attackers under
each behavior. The simulation parameters used in this work
are: tf = ∞, RΩI

= 50, RΩS
= 10, τ = 2, xdti ∼

[U [0, 20],U [−π, π]]⊤, xati ∼ [U [45, 50],U [−π, π]]⊤, β =

(d) (e) (f)

(g)

ADM

DM

PP

D
ef

en
de

r S
tra

te
gy

Attacker Strategy
Linear Spiral Intelligent

(h) (i)

(a) (b) (c)

Fig. 1. This figure shows the trajectories of the attacker and defender
under different behavior scenarios. The outer circle represents ΩI , and
the green circle represents ΩS . Red and blue lines represent the attacker
xa
t and defender xd

t trajectories, respectively, over time. Homogeneous
initial positions of the attacker and defender are assumed. The defender
successfully defends the safe zone in all cases except for (b), (c), and (f).

0.05, ξ = 2, and k = 0.5, where U [c1, c2] denotes a uniform
distribution with support on the interval [c1, c2].

Figure 1 shows that the PP guidance law is ineffective in
defending the safe zone against spiral (b) and intelligent (c)
attacker behavior. The DM strategy also proved ineffective
against an intelligent attacker (f), as demonstrated by a
scenario in which the defense margin steadily decreases due
to the lack of interception attempts. However, the ADM
strategy successfully defended against all types of attackers.

Fig. 2. Defense margin as a function of a timestep. The mission is
considered to have failed if ρxa

t
= RΩS

= 10. Trajectories that ended
before failing imply that the defender has intercepted the attacker.

We can also interpret the results using ρxa
t
. The cases (b),

(c), and (f) of Figure 1 for which the defender fails to defend
the safe zone can be clearly observed in Figure 2. Noticeably
for Figure 2 (b) and (c), ∆ρxa

t
|udDM ≥ ∆ρxa

t
|udPP as

in (13). The failure in Figure 2 (c) can be attributed to
the passive nature of the strategy. Concretely, the defender
avoids taking proactive measures to intercept the attacker and
instead retreats until the attacker enters the capturing radius.

Figure 3 depicts the defense performance from 1,000
trials for each scenario. As the attacker behavior complexity
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Fig. 3. Winning percentage of each strategy against different attacker
strategies. Each percentage result is obtained by counting successful mis-
sions out of 1,000 randomly initialized scenarios.

increases, the PP strategy’s performance declines, while the
ADM strategy performs better. Some of the failure cases of
the ADM strategy against non-intelligent attackers can be
explained by the randomness of the initial conditions [7].

We extend Theorem III.4 by using a Neural Network
to approximate ∆ρxa

t
and relaxing the assumption of the

absence of uncertainty. We then analyze the results obtained.

Definition 5. Assume uat = − xa
t

∥xa
t ∥

. A strategy udA is said
to be safer than strategy udB with respect to the noise wt ∼
N (0, β∥et∥2I2) defined in (2), if ∆(ρxa

t
)|ud

A
≥ ∆(ρxa

t
)|ud

B
,

where udA and udB rely on uncertain observation of xat .

We trained two fully connected neural networks,
∆ρx̂a

t
|udPP and ∆ρx̂a

t
|udDM , using training data collected

from simulations of linear attacker behavior to obtain Fig-
ure 3. The networks take (xat , x

d
t ) as inputs and return

predictions of ∆ρxa
t
|udPP and ∆ρxa

t
|udDM , respectively. We

used a two-layer neural network with 100 nodes in each
layer, an Adam optimizer, and a learning rate of 0.001.
To test the models, we randomly generated 100,000 test
data samples (xaq , x

d
q) uniformly sampled from the same

distribution of the training dataset. The result shows that

∆ρxa
t
|udPP = −0.132 < ∆ρxa

t
|udDM = −0.028,

confirming that the DM strategy outperforms the PP strategy
in terms of defense margin even in the presence of uncer-
tainty wt. Moreover, this result also highlights the possibility
of the defense margin shrinking in some conditions, indicat-
ing the importance of having an adaptive defense strategy.

V. CONCLUSION

This work proposes a defense strategy for protective
missions in the presence of uncertain measurements. The
proposed strategy combines the PP and DM strategies based
on the reliability of the observations, which is inversely
correlated to the distance from the attacker. Analytical proof
and empirical demonstration are provided.

Future research may expand upon the proposed methodol-
ogy by integrating obstacle-present environments and investi-
gating its implications against a variety of attacker behaviors.
Additionally, conducting a more in-depth analysis including
multi-agent scenarios can be analyzed.
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