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Abstract— This paper investigates the cooperative output
regulation problem of multi-agent systems. Each agent is
modeled as a general linear system with input saturation,
and the network topology among agents is represented by a
directed graph containing a directed spanning tree. A dis-
tributed dynamic control law based on composite nonlinear
feedback (CNF) control technique is developed, which consists
of a distributed dynamic compensator and a controller with
a linear feedback law leading to small damping ratio and a
nonlinear feedback law making the system to be highly damped
as the tracking error decreases to reduce the overshoot. It is
shown that the cooperative output regulation problem can be
solved and the transient performance of the multi-agent systems
can be improved by properly tuning the parameters of the
nonlinear feedback. The effectiveness of the theoretical results
is illustrated by a numerical example.

I. INTRODUCTION

Cooperative control of multi-agent systems has attracted
much attention due to its extensive applications on un-
manned aerial vehicles, mobile robots, and distributed sensor
networks [1]–[3]. Due to its general problem description,
the cooperative output regulation problem which aims at
designing a controller such that a group of agents are
able to asymptotically track prescribed trajectory, and reject
external disturbances, becomes a hot topic of interest [4]–
[6]. On the other hand, it is important to take into account
the input saturation for the multi-agent systems, since it
is one of the most typical actuator constraints in practical
systems. In fact, actuator saturation in control design has
also been widely investigated from individual systems to
multi-agent systems, please refer to [7] for more details on
this issue. Cooperative control of multi-agent systems with
input saturation started with simple agent dynamics, such as
single-integrator dynamics [8], double-integrator dynamics
[9], neutrally stable agent dynamics [10], etc. For agent of
which the dynamics are asymptotically null controllable with
bounded controls, various forms of semi-global consensus
results can also be achieved with actuator saturation, see, e.g.,
[11]–[15]. However, most of these results were based on low-
gain feedback design techniques, and thus the control input
would move away from the maximum allowable value as the
states approach the origin. Therefore, the closed-loop system

This work was supported in part by National Natural Science Foundation
of China under Grants 62173283 and 62273285, and in part by Natural
Science Foundation of Fujian Province of China under Grant 2021J01051.
(Corresponding author: Xiao Yu.)

The authors are with the Department of Automation, Xiamen
University, Xiamen 361005, China. (e-mail: wuxinfei@stu.xmu.edu.cn,
wylan@xmu.edu.cn, jtguan@xmu.edu.cn, xiaoyu@xmu.edu.cn).

cannot be operated at full capacity, which would degrade the
transient performance.

To overcome this drawback and improve transient per-
formance, a low-and-high gain technique was developed
in [16] to solve the semi-global stabilization problem. A
limitation of this method is that, when the controlled output
reaches a specified value, there is a hard switching between
the low-gain control law and the high-gain control law.
To improve the transient performance of the system and
make the control law more smoothly, in [17], the composite
nonlinear feedback (CNF) control method was first proposed
for a second-order linear system with input saturation. The
CNF control law consists of a linear part and a nonlinear
part. The linear part is designed to yield a closed-loop
system with small damping ratio to obtain a fast response.
The nonlinear part is used to increase the damping ratio
of the closed-loop system to reduce the overshoot caused
by the linear part. This idea was used for multi-variable
systems in [18]. In [19], a more general class of linear
systems with measurement feedback was comprehensively
investigated using the CNF control technique. The extension
of this result to multi-variable systems was reported in [20].
Later on, the CNF control has been devoted to the output
regulation problem [21], [22], path-following [23], [24],
transient behavior improvement in nonlinear systems [25],
and descriptor systems [26]. In fact, few works have tried
CNF in cooperative control of multi-agent systems. In [27],
a bounded composite nonlinear feedback-based formation
controller with hyperbolic functions is developed. In [28], a
distributed controller design strategy based on CNF control
is applied to the robot’s formation control problem.

In this paper, we investigate the cooperative output regu-
lation problem of multiple general linear systems with input
saturation. The network topology among agents is repre-
sented by a directed graph containing a directed spanning
tree. The CNF control method is addressed to improve the
transient performance of the cooperative output regulation
problem. It is shown that the CNF control technique will not
destroy the solvability conditions of the cooperative output
regulation problem. Thus, by appropriately designing the
CNF control law, the transient performance of each agent
can be significantly improved.

The main contribution of this paper can be highlighted
as follows. First, the cooperative output regulation of multi-
agent systems in [5] is revisited by considering the constraint
of each agent with input saturation. The solvability condi-
tions of the cooperative output regulation problem of multi-
agent systems with input saturation are established. Second,
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the CNF control technique is introduced to improve the
transient performance of the cooperative output regulation
of multi-agent systems. A CNF control law is designed for
the cooperative output regulation problem of multi-agent
systems by constructing a distributed observer. The transient
performance can be improved by tuning the parameters of
the CNF control law.

The remainder of this paper is organized as follows. In
Section II, we start by presenting some basic facts from
graph theory, and introduce the cooperative output regulation
problem of multi-agent systems. In Section III, we give a
CNF control law with a distributed observer, and our main
results are presented. The design of the CNF control law is
illustrated on an example in Section IV. Finally, we draw
some conclusions in Section V.

II. PRELIMINARIES

A. Graph Theory

We first begin with the introduction on graph theory, which
can be found in [5], or [29] for more details. The network
consisting of N agents can be represented by a directed
graph G = (V, E). In this directed graph, V = {1, 2, . . . , N}
is a non-empty finite node set of N nodes, where each
node vi represents one agent. The set of edges E ⊆ V × V
containing ordered pairs of nodes represents the neighboring
relationships among agents. Let (i, j) denote the edge in E ,
where node i is the parent node and node j is the child
node, indicating a connection from node i to node j. Node i
is also referred to as a neighbor of the node j. We use Ni to
denote the subset of V , including all the neighbors of node
i. A directed tree is a directed graph in which each node has
only one parent except for a node called the root node and
from which all other nodes are reachable. A directed graph
G contains a directed spanning tree if and only if there exists
at least one node that can reach all other nodes.

The directed graph G can be completely characterized by
its Laplacian matrix L = D −A where A = [aij ] ∈ RN×N

is the weighted adjacency matrix defined as

aii = 0, aij > 0 ⇔ (j, i) ∈ E

and D is a diagonal matrix, in which the ith diagonal element
is the in-degrees of node i. The Laplacian matrix has at least
one zero eigenvalue with the corresponding eigenvector 1N ,
which is an N × 1 column vector with all elements being 1.

B. Problem Formulation

Consider the following cooperative output regulation of
linear multi-agent systems which consist of N single-input
single-output (SISO) agents with input saturation,

ẋi = Aixi +Bi sat (ui) + Eiv

ei = Cixi + Fiv. i = 1, ..., N (1)

where xi ∈ Rn is the state, ui ∈ R is the control input,
ei ∈ Rp is the tracking error and v ∈ Rq is the exogenous
signal representing the reference input to be tracked or the

disturbance to be rejected and is assumed to be generated by
exogenous system (exo-system) as

v̇ = Sv (2)

Ai, Bi, Ei, Ci, Fi, and S are constant matrixes with respec-
tive appropriate dimensions, and sat: R → R represents the
input saturation defined as:

sat (ui) = sgn (ui)min (umax i, |ui|) (3)

with umax i being the saturation level of the input for each
agent i.

Definition 2.1: (Linear Cooperative Output Regulation
Problem) Given the multi-agent systems (1), exo-system (2),
and the directed graph Ḡ, design a distributed CNF control
law in the form of

˙̂vi = φ (v, v̂i)

ui = ϕ (xi, v̂i) (4)

which will be shown in detail later, such that
1) The system matrix of the overall closed-loop system is

Hurwitz.
2) For all xi (0) ∈ X0, v (0) ∈ V0, v̂i (0) ∈ V̂0, the

tracking error

lim
t→∞

ei (t) = 0, i = 1, ..., N.

where X0 ⊂ Rn, V0 ⊂ Rq , and V̂0 ⊂ Rq are some compact
sets containing the origin of Rn, Rq , and Rq respectively.

Given the multi-agent system (1) and an exo-system (2),
define a nonnegative matrix Ā = [aij ] , i, j = 0, 1, . . . , N
that satisfy aii = 0, i = 0, 1, . . . , N . If the control ui has
access to the exogenous signal v, then ai0 > 0 for i =
1, . . . , N . We can define a directed graph Ḡ =

(
V̄, Ē

)
with

Ā, where V̄ = {0, 1, . . . , N} and node 0 is associated with
the exo-system while all other nodes represent the N agents.
The edge (i, j) ∈ Ē exists if and only if aji > 0. Define G =
(V, E) as subgraph of Ḡ, where V = {1, · · · , N}, E ⊆ V×V .

Let ∆ be an N×N nonnegative diagonal matrix, with the
ith diagonal element being denoted by ai0, i = 1, . . . , N .
The Laplacian L̄ of the directed graph Ḡ is given by

L̄ =

 N∑
j=1

a0j [a01, · · · , a0N ]

−∆1N H


where, for all j = 1, . . . , N , a0j > 0 if (j, 0) ∈ Ē and
a0j = 0 otherwise. Then, H1N = (L + ∆)1N = ∆1N

since L̄1N+1 = 0. The property of H is described by the
following lemma which is proved in [5].

Lemma 2.1: All the nonzero eigenvalues of H , if any,
have positive real parts. Furthermore, H is nonsingular if
and only if the directed graph Ḡ contains a directed spanning
tree with the node 0 as its root.

To solve the linear cooperative output regulation problem
of multi-agent systems with input saturation, the following
assumptions are needed.

Assumption 1: The pairs (Ai, Bi) are stabilizable.
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Assumption 2: All the eigenvalues of S are on the imag-
inary axis and S is neutrally stable.

Assumption 3: There exist solution pairs (Πi,Γi) that
solve the regulator equations (5) respectively.

ΠiS = AiΠi +BiΓi + Ei

0 = CiΠi + Fi. (5)

Assumption 4: The directed graph Ḡ contains a directed
spanning tree with the node 0 as its root.

Remark 1: Assumptions 1–3 are the standard assumptions
for the solvability of the classical linear output regulation
problem [30], [31]. Assumption 4 is necessary for coopera-
tive output regulation problem of multi-agent systems [5].

III. MAIN RESULTS

Now, we are ready to introduce a distributed dynamic
compensator, designed as

˙̂vi = Sv̂i + ε

∑
j∈Ni

aij (v̂j − v̂i) + ai0 (v − v̂i)

 (6)

where i = 1, 2, ..., N , v̂i ∈ Rq , and ε is some positive real
number such that λi (S)− ελj (H) < 0,∀i, j, that is,

S̃ = (IN ⊗ S)− ε (H ⊗ Iq) (7)

is Hurwitz, with λi (S) and λj (H) being the eigenvalues
of S and H , respectively. Such an ε exists if the directed
graph Ḡ contains a directed spanning tree with the node 0
as the root, because all the real parts of λj (H) are positive
by Lemma 2.1. We call (6) a distributed observer since the
dynamics of v̂i also depends on v̂j , j ∈ Ni.

Then, the dynamic state feedback distributed CNF control
law is proposed as

ui = Ki1xi +Ki2v̂i + ρi (êi)B
T
i Pi (xi −Πiv̂i)

˙̂vi = Sv̂i + ε

∑
j∈Ni

aij (v̂j − v̂i) + ai0 (v − v̂i)


i = 1, 2, ..., N. (8)

Under Assumption 1, there exists Ki1 such that Ai+BiKi1

is Hurwitz, and let Ki2 be

Ki2 = Γi −Ki1Πi

where Γi, Πi are the solution of (5). For convenience,
we let uli = Ki1xi + (Γi −Ki1Πi) v̂i and uni =
ρi (êi)B

T
i Pi (xi −Πiv̂i). Denote Pi as the positive definite

solution to the following Lyapunov function equation

(Ai +BiKi1)
T
Pi + Pi (Ai +BiKi1) = −Wi (9)

for some Wi > 0. The nonlinear function ρi (êi) is a non-
positive function Lipschitz in êi = Cixi + Fiv̂i, and it can
be designed in the following form

ρi (êi) = −βie
−αiγi|êi(t)| (10)

where αi ≥ 0 and βi ≥ 0 are tuning parameters, and γi is

γi =

{
|êi (0)|−1

, êi (0) ̸= 0
1, êi (0) = 0

More design details of this class of nonlinear function can
be found in [32].

Remark 2: When the tracking error is large, |ρi (êi)| is
small, and the nonlinear control variable of the CNF control
law is also small. As a result, the nonlinear part has a very
limited effect and is negligible for fast response caused by
the linear part. As the tracking error decreases, |ρi (êi)|
becomes larger and larger, thus the nonlinear part will
become effective.

Let us start with some simple denotations. Let A =
block diag (A1, . . . , AN ), B = block diag (B1, . . . , BN ),
C = block diag (C1, . . . , CN ), E = block diag
(E1, . . . , EN ), F = block diag (F1, . . . , FN ), Π = block
diag (Π1, . . . ,ΠN ), Γ = block diag (Γ1, . . . ,ΓN ), P =
block diag (P1, . . . , PN ), W = block diag (W1, . . . ,WN ),
K1 = block diag (K11, . . . ,KN1), ρ (ê) = block diag
(ρ1 (ê1) , . . . , ρN (êN )). Then, (5) implies

Π(IN ⊗ S) = AΠ+BΓ + E

0 = CΠ+ F (11)

where ⊗ stands for the Kronecker product, and let x =[
xT
1 , . . . , x

T
N

]T
, v̂ =

[
v̂T1 , . . . , v̂

T
N

]T
, u =

[
uT
1 , . . . , u

T
N

]T
,

ul =
[
uT
l1, . . . , u

T
lN

]T
, un =

[
uT
n1, . . . , u

T
nN

]T
, e =[

eT1 , . . . , e
T
N

]T
, ê =

[
êT1 , . . . , ê

T
N

]T
, ω = sat (ul + un) −

ul =
[
ωT
1 , . . . , ω

T
N

]T
, v̄ = 1N ⊗ v.

Then, the main result of this paper is stated as follows.
Theorem 3.1: Consider the linear multi-agent systems (1)

and the exo-system (2) under Assumptions 1–4. Given a
positive-definite matrix WQ ∈ R(n×N)×(n×N) with

WQ > (K1Π− Γ)TBTPW−1PB(K1Π− Γ) (12)

let Q > 0 be the solution to the Lyapunov equation

S̃TQ+QS̃ +WQ = 0. (13)

For any δi ∈ (0, 1) , i = 1, ..., N , let cδ > 0 be the largest
positive scalar such that∣∣∣∣[ Ki1 Ki1Πi − Γi

] [ xi

v̂i

]∣∣∣∣ ≤ (1− δi)umax i (14)

for all(
x
v̂

)
∈ Xδ :=

{(
x
v̂

)
:

(
x
v̂

)T [
P 0
0 Q

](
x
v̂

)
≤ cδ

}
.

Then, there exists a ρ∗ > 0 such that for any ρ (ê) with non-
positive diagonal elements, it is locally Lipschitz in ê and
satisfies ∥ρ(ê)∥∞ ≤ ρ∗. The distributed CNF control law
(8) with suitable positive number ε, solves the cooperative
output regulation problem, provided that the initial states
xi(0), v̂i(0), and v(0) satisfy

v(0) ∈ V0 :={
v(0) :

∣∣Γie
Stv(0)

∣∣ ≤ δiumax i, t ≥ 0,∀i = 1, .., N
}
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and
(

x(0)−Πv̄(0)
v̄(0)− v̂ (0)

)
∈ Xδ .

Proof: Consider the closed-loop system of node i under
the distributed CNF control law (8), i.e.,

ẋi = Aixi +Bi sat (ui) + Eiv

v̇ = Sv

ui = Ki1xi + (Γi −Ki1Πi) v̂i + ρi (êi)B
T
i Pi (xi −Πiv̂i)

˙̂vi = Sv̂i + ε

∑
j∈Ni

aij (v̂j − v̂i) + ai0 (v − v̂i)


ei = Cixi + Fiv i = 1, 2, . . . , N. (15)

According to the above denotations, we can obtain the
following overall closed-loop system

ẋ = Ax+B sat(u) + Ev̄

˙̄v = (IN ⊗ S) v̄

u = K1x+ (Γ−K1Π)v̂ + ρ (ê)BTP (x−Πv̂)

˙̂v = ((IN ⊗ S − ε (H ⊗ Iq)) v̂ + ε (H ⊗ Iq) v̄

e = Cx+ F v̄. (16)

Introduce a set of state transformations

x̃ = x−Πv̄, ṽ = v̄ − v̂. (17)

The closed-loop system (16) can be rewritten as

˙̃x = Ax̃+B sat (ul + un)−BΓv̄

˙̃v = S̃ṽ (18)

with the linear part ul and nonlinear part un being

ul = K1x̃+ (K1Π− Γ) ṽ + Γv̄

un = ρ (ê)BTP (x̃+Πṽ) (19)

respectively. Then, (18) can be combined as[
˙̃x
˙̃v

]
=

[
A+BK1 B (K1Π− Γ)

0 S̃

] [
x̃
ṽ

]
+

[
B
0

]
ω

(20)

where ω = sat (ul + un)− ul.
Then, it is shown that the system (20) is asymptotically

stable for all
(

x (0)−Πv̄ (0)
v̄ (0)− v̂ (0)

)
∈ Xδ. Consider a Lya-

punov function candidate

V =

[
x̃
ṽ

]T [
P 0
0 Q

] [
x̃
ṽ

]
. (21)

The time-derivative of (21) along the trajectories of the
closed-loop system (20) is given by

V̇ =

[
x̃
ṽ

]T [
−W PB (KΠ− Γ)

(KΠ− Γ)
T
BTP −WQ

] [
x̃
ṽ

]
+ 2x̃TPBω (22)

Next, the different scenarios of the input saturation are
considered respectively in the remainder of this proof.

Case 1) Control inputs of all agents are unsaturated. That

is, |uli + uni| ≤ umax i holds for all i = 1, . . . , N . In this
case, ωi = uni holds.

Case 2) Control inputs of all agents are beyond the upper
limit. That is, for all i = 1, . . . , N, uli + uni > umax i

holds. Since ωi = umax i − uli, ωi < uni. Noting that for

all
(

x̃
ṽ

)
∈ Xδ , we have∣∣∣∣[ Ki1 Ki1Πi − Γi

] [ x̃i

ṽi

]
+ Γiv

∣∣∣∣
≤
∣∣∣∣[ Ki1 Ki1Πi − Γi

] [ x̃i

ṽi

]∣∣∣∣+ |Γiv| ≤ umax i.

Thus, in this case, 0 ≤ ωi < uni holds.
Case 3) Control inputs of all agents are beyond the lower

limit. Similar to Case 2, uni < ωi ≤ 0 holds.
Case 4) Control inputs of some agents are saturated, but

the others are not. This case is a combination of the cases
1–3. In this case, ωi can be expressed as ωi = qiuni with a
suitable piecewise continuous function qi (t) ∈ [0, 1]. To con-
clude, we can define a diagonal matrix q = diag [q1, . . . , qN ]
and

ω = qρ (ê)
[
BTP BTPΠ

] [ x̃
ṽ

]
. (23)

According to the above analysis, the derivative of V becomes

V̇ = 2x̃TPBqρ(ê)BTPx̃

+

[
x̃
ṽ

]T [
−W M
MT −WQ

] [
x̃
ṽ

]
≤

[
x̄
ṽ

]T [
−W 0
0 −W̄Q

] [
x̄
ṽ

]
(24)

where

M = PB
(
KΠ− Γ + qρ(ê)BTPΠ

)
x̄ = x̃−W−1Mṽ, W̄Q = WQ −MTW−1M.

By (12), we have WQ > (KΠ−Γ)TBTPW−1PB(KΠ−Γ),
and it is clear that there exists a ρ∗ > 0 such that for any ρ (ê)
with non-positive diagonal elements, it is locally Lipschitz
in ê and satisfies ∥ρ(ê)∥∞ ≤ ρ∗. Then, we have W̄Q > 0.
Hence

V̇ ≤ 0, ∀
(

x̃
ṽ

)
∈ Xδ

where Xδ is a invariant set of the overall closed-loop systems
(20), and all trajectories starting from Xδ will remain inside
and asymptotically converge to the origin. For the initial state
claimed in Theorem 3.1, we have

lim
t→∞

x̃ (t) = 0, lim
t→∞

x (t) = Πv̄ (t) .

lim
t→∞

e (t) = lim
t→∞

(Cx (t) + F v̄ (t))

= lim
t→∞

(CΠ+ F ) v̄ (t) = 0.

Hence, the tracking error limt→∞ ei(t) = 0, i = 1, . . . , N .
This completes the proof.

Remark 3: If the control input saturation is not consid-
ered, Theorem 3.1 will be reduced to the result of [5]. It can
be proved from the Case 1 in the proof part. As a matter of
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Fig. 1. Network topology for the example (Node 0 is the leader).

fact, adding an additional nonlinear part will not damage the
solvability condition given in [5].

Remark 4: In this paper, we only consider SISO case, but
it is not difficult to extend the results of this paper to multi-
input multi-output (MIMO) case. In fact, for MIMO systems,
the dynamic state feedback distributed CNF control law also
has the same form as (8), except that ρi(ê) is a nonlinear
function matrix. For more information on CNF controller
design for MIMO systems, please see [20].

IV. NUMERICAL EXAMPLE

In what follows, we illustrate the theoretical results with
the example used in [5] to show the improvement of transient
performance under CNF control law. The interaction among
agents is described as a directed graph shown in Fig. 1,
including four agents and one leader. The arrows represent
the informed agents. The multi-agent system is a group
of double-integrator systems with sinusoidal disturbances of
which the dynamics are

ẋi1 = xi2

ẋi2 = sat (ui) + 0.5 ∗ i ∗ v2 i = 1, 2, 3, 4

ei = xi1 − v1

and the exo-system is given by

v̇1 = v2, v̇2 = −v1.

In this example, the system matrices are given by

Ai =

(
0 1
0 0

)
Bi =

(
0
1

)
Ei =

(
0 0
0 0.5 ∗ i

)
Ci =

(
1 0

)
Di = 0 Fi =

(
−1 0

)
S =

(
0 1
−1 0

)
i = 1, 2, 3, 4.

Thus, Assumptions 1 and 2 are satisfied, and Assumption
3 is also satisfied by choosing that Πi = I2 and Γi =
(−1,−0.5 ∗ i) satisfy (5). By Theorem 3.1, a CNF dynamic
control law of the form (8) can be synthesized to solve the
cooperative output regulation problem. We further consider
the input saturation by setting umax i to 20. Set the linear
feedback gain matrix Ki1 = (−8,−4), ε = 5, and Ki2 =
Γi − Ki1Πi = (7, 4− 0.5 ∗ i). Choose a positive definite
matrix Wi = diag (1, 10). Then, by (9), we obtain

Pi =

(
10.3750 0.0625
0.0625 1.2656

)
.
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Fig. 2. Tracking error and control input of each agent under CNF control
law
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(b) Control input

Fig. 3. Tracking error and control input of each agent under linear feedback
control law

The nonlinear functions ρi (êi) are designed as

ρ1 (ê1) = −5e−20γ1|ê1(t)|, ρ2 (ê2) = −2e−12γ2|ê2(t)|,

ρ3 (ê3) = −3e−4γ3|ê3(t)|, ρ4 (ê4) = −3e−4γ4|ê4(t)|.
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The simulation results are shown in Figs. 2 and 3. Fig.
2(a) shows the evolution of state difference between four
agents and the leader under the CNF control law. It is shown
that the overall closed-loop system is asymptotically stable
and the tracking error of each agent i converges to zero. It
can be seen that compared with the case using only linear
control law in Fig. 3(a), CNF control law makes the tracking
errors have barely overshoot and improves the transient
performance effectively. Fig. 2(b) and Fig. 3(b) show the
control input of each agent under the two control laws.

Remark 5: Specially, for double-integrator dynamics,
CNF control law can provide guaranteed transient perfor-
mance through numerous computations. However, for other
high-order linear systems, it will be much more difficult due
to the freedom of K1, W and ρ.

V. CONCLUSION

In this paper, the cooperative output regulation problem of
multi-agent systems with input saturation is investigated. A
distributed dynamic control law based on the CNF control
technique is designed. By appropriately selecting the non-
linear function, the transient performance of each agent can
be significantly improved. The effectiveness of the theoretical
results is demonstrated by a numerical example. Future work
will focus on the case where the information graph is time-
varying.
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