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Abstract— As Artificial Intelligence (AI) techniques continue
to advance, the need for explainability becomes increasingly
crucial, especially in sensitive or safety-critical domains. eX-
plainable AI (XAI) has emerged to address this need, aiming to
enhance transparency in complex models. While XAI has gained
traction in mainstream machine learning, its application in
data-driven control systems remains relatively unexplored. This
paper introduces a novel concept of explainability tailored for
data-driven control, allowing one to design feedback loops from
data incorporating prior knowledge and preserving important
system properties. Through two case studies, we demonstrate
the efficacy of this property-preserving framework in direct
and indirect data-driven control system design. This work
lays the foundation for further research at the intersection of
AI and data-driven control, offering insights into enhancing
transparency in complex control systems.

Index Terms— Data driven control, Machine Learning, Iden-
tification for control.

I. INTRODUCTION

In the past decade, AI and ML techniques have rapidly
expanded across various fields such as medicine [1], finance
[2], and transportation [3], [4], resulting in significant accu-
racy improvements. However, this growth has also led to the
development of more complex and less interpretable models
[5]. This lack of transparency has highlighted the importance
of explainability in AI, particularly in sensitive domains
like medicine, where it is considered a crucial performance
metric alongside accuracy for real-world deployment [6].
Consequently, eXplainable Artificial Intelligence (XAI) has
gained popularity, with efforts focused on developing tools to
enhance model transparency. These tools aim to improve user
understanding of the decision-making process and potentially
mitigate biases in the dataset [5], [6], [7].

In the XAI community, explainability focuses on two main
aspects: the dataset and the model. Pre-modelling explain-
ability, discussed in [7], involves analyzing and processing
the dataset before model training through data analysis,
data summarization, and feature engineering [5]. Regarding
models, explanations vary depending on the model class, as
outlined in [6]. They can be global or local, direct or via
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surrogates, and specific to the model or agnostic. White-
box models like linear models and decision trees offer ante-
hoc explainability, i.e., by design, with dimensionality and
sparsity being crucial factors in enhancing explainability [6],
[5]. On the other hand, black-box model explanations are
retrieved post-hoc, i.e. after the actual training, with both
global and local explanations achievable through surrogate
models like SHAP and LIME [8], [9]. In summary, XAI
in machine learning aims to balance prediction performance
and model complexity, prioritizing understanding alongside
accuracy.

Explainability is becoming a hot research topic also in
the control community, where many current data-driven
design approaches borrow techniques from standard ML.
However, as far as we are aware, only few works deal
with this problem: in [10] a symbolic regression model
is learnt, combining math operations and variables via a
genetic programming algorithm; in [11] and [12], instead, a
decision tree is used to approximate big complex controllers
stored via big look-up tables; while in [13], a qualitative
description of the controller is built from simulations. In the
field of data-driven fault diagnosis, [14] and [15] discuss
power electronics applications. In particular, [15] uses the
conditional entropy to interpret black-box controllers and
remove abnormal training data. Finally, we highlight that
there are few works which attempt to adapt XAI tools for
dynamical systems, as shown in [16] using LIME.

In this paper, we aim at laying the first stone towards the
development of eXplainable data-driven control (XDDC),
leveraging the nature of physical and dynamical systems of
interest in the field. Indeed, in control applications, it is likely
to have both prior knowledge, e.g., from first principles,
about the physical properties that we would like to recover
in the data-driven model, and some prior information or
constraint about dynamical properties of interest, like sta-
bility of both open-loop and closed-loop systems. Exploiting
knowledge to improve explainability is not a completely new
concept in the field of XAI, as shown by the knowedge
corpus [17]1, and by Physics-Informed Neural Networks
(PINNs) [18], which encode in the training process the prior
knowledge of known differential equations as an additional
regularization term. Despite this, the possibility of preserving
some known property in the explainable models has not been

1Unstructured domain knowledge is used in the XAI system to match the
semantics of ML models with human interpretable concepts, e.g., through
textual explanation. This is not the usual situation in data-driven control
applications, where systems are usually dynamical and knowledge can rarely
be expressed via textual or visual information.
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investigated from a control systems perspective yet. Thus,
in this work, we define a novel concept of explainability
tailored for data-driven control, adding prior knowledge in a
systematic way but also setting a novel property-preserving
framework. To strenghten the discussion, we address two
case studies taken from the available literature, showing the
effectiveness of the property-preserving paradigm to obtain
explainable data-driven objects both in traditional system
identification and model-based control and in more recent
direct data-driven control system design.

The outline of the paper is as follows. in Section II,
we introduce and discuss the property-preserving framework
for XDDC. Section III presents the first case study, about
data-driven control design for power split in hybrid battery
packs for electric racing vehicles. In Section IV, the second
case study is proposed, highlighting the role of preserving
physical and stability properties in the identification of an
electro-mechanical positioning system for control design.
The paper is ended by some concluding remarks, pavying
the way for future researches in this field.

II. PROPERTY-PRESERVING EXPLAINABLE
DATA-DRIVEN CONTROL

In this section, we define the property-preserving frame-
work for explainability in data-driven control. To this aim,
we need to introduce a proper model taxonomy. Models
(M) are historically categorized as white-box, grey-box,
and black-box, with different meanings with respect to ML.
White-box models (W) are fully built from first principles,
from which controllers are designed using established model-
based synthesis techniques. Grey-box models (G) are located
in between the model-based and data-driven world, where
the structure of the model, e.g., the dynamical equations,
is derived from first principles, while parameters from data.
The same concept can be used for control design, where the
parameters of suitable model-based controllers are identified
from data, using experiments. Black-box models (B), instead,
are strictly related to ML models, where a distintion can be
made between transparent (T , e.g., linear parameter varying
models) and opaque models (O, e.g., echo-state neural
networks). In this context, the explanations achieved via
standard XAI methods might be either in conflict with the de-
signer prior knowledge about the system, or incomplete. For
this reason, we propose a further model categorization: the
property-preserving model class (P), whose members satisfy
some specified physical and dynamical properties. Fig. 1
depicts the discussed model categorization in control, intro-
ducing the property-preserving class, which might intersect
both transparent and opaque ones. Indeed, asymptotically
stable linear time-invariant systems are examples of transpar-
ent property-preserving models, while echo-state networks, if
equipped with enforced stability during random coefficients
sampling, belong to opaque property-preserving ones. We
highlight that, transparent property-preserving models rep-
resent the best possible scenario, merging a global, direct
and specific explanation with property guarantees coming

G(s)

Fig. 1. Model taxonomy in data-driven control: M is the whole model
class; W , G and B include respectively white-box, grey-box and black-
box models; and T , O, and P contain respectively transparent, opaque and
property-preserving models.

from the proposed paradigm, which defines an additional
explainability layer.

Given the above intuition, we hereafter define the property-
preserving framework for XDDC more formally. To this aim,
we start from a rather general formulation of the model
learning problem, which can be written as:

min
M∈M

Ein (S,M) + λ · Compl (M) . (1)

In (1), Ein is the in-sample error between the true system S
and the model M ∈ M, either white-box or black-box, while
the last term is a regularization penalty, weighted by a user-
defined coefficient λ, to handle over-fitting by limiting model
complexity Compl (M). In the standard XAI framework,
explainability ante-hoc is achieved by restricting the search
set to T ⊂ M, namely to the transparent models:

min
M∈T ⊂M

Ein (S,M) + λ · Compl (M) , (2)

while post-hoc one is achieved downstreaming the training
of the model. In data-driven control, the set of models of
interest is defined by B, the black-box ones. The original
ML problem in (1) can be modified to include the property-
preserving paradigm restricting the search set to P ⊂ B,
as:

min
M∈P⊂B

Ein (S,M) + λ · Compl (M) (3)

Eventually, this restriction can be achieved by means of
suitable constraints from the original set B, exploiting the
prior knowledge on S:

min
M∈B

Ein (S,M) + λ · Compl (M)

s.t. :

M ∈ prior (S)

(4)

Addressing the learning problem outlined above from a broad
theoretical perspective would be overly extensive and com-
plex, especially at this early stage, given the diverse range
of possible scenarios. Therefore, in this initial study, we will
focus on demonstrating how specific dynamic properties can
be maintained within a learning process and evaluating the



implications of framing the problem as proposed through
two distinct and relevant case studies. A formal examination
of this framework is currently underway as part of ongoing
research and will be addressed in future publications.

III. CASE STUDY 1: CONTROLLER DESIGN FOR POWER
SPLIT IN HYBRID BATTERY PACKS

In this first case study, we tackle the problem of learning
an energy management strategy (EMS) for hybrid battery
packs in racing electric vehicles, aiming to distribute power
between available sources. This study builds upon [19] and
[20], where [19] introduces an optimization framework for
fully electric vehicles, and [20] extends it to hybrid battery
packs. The design and control of hybrid battery packs are
pertinent in automotive electrification trends, particularly
in racing competitions driving technological advancements.
In [20], an implicit EMS control logic is optimized for
power split, necessitating the development of an explicit
real-time implementable logic. Our study aims to learn this
explicit policy from the implicit optimal one in a data-driven
approach. We introduce the application and data generation
process, discuss the use of regression trees for explainability,
and compare results with neural networks using SHAP for
post-hoc explanation.

As data generator mechanism, we leveraged the work in
[20], where the optimal sizing of a hybrid battery pack for the
Generation 3 (Gen 3) Formula E race car has been addressed.
Starting from its detailed analysis, we selected the optimal
hybrid battery layout with commercial cells, which is made
up by the Kokam SLPB065 and the Saft VL5U, respectively
for high energy and high power cells. Moreover, we stick
with the same mission profile for sizing, i.e., the 2021 Rome
ePrix, considering 23 laps as desired mileage. The optimal
hybrid battery size resulted in 17 parallels for the high energy
battery, and a single parallel for the high power one. The
training dataset for our learning problem is made up by the
battery power split obtained from such optimal battery size,
which is shown in Fig 2. As additional dataset for testing

Fig. 2. Training dataset for the hybrid battery pack case study: input battery
power request and optimal power split between the two batteries.

purposes, we computed the optimal power split with the
same battery configuration for the 23 laps Valencia ePrix.
We highlight that, in the following, the high energy battery

is indicated by index 1, while the high power one with the
index 2. Regarding the employed features, we selected all
the available information that can be either measured or
estimated by the actual control unit, namely: the desired
battery power Pb, the State of Charge (SoC) of both batteries,
i.e., SoC1 and SoC2, and the power limits of both batteries,
respectively P low

b,1 , P high
b,1 , P low

b,2 , and P high
b,2 . Finally, given

the constraint on the total request, only the power split on
the high energy battery is learnt, obtaining equal power split
errors, with opposite sign, between the two. Thus, the Root
Mean Square Error (RMSE) computed based on the high
energy battery, is representive of both.

Despite the main objective of the case study is to learn a
policy approximating the implicit optimal solution, we also
aim at achieving a logic which can be easily interpreted
and understood by race engineers, for a reliable real-time
implementation. For this reason, we selected linear regres-
sion trees [21] as model class, which guarantees a global,
direct and specific explanation, as discussed in Section I.
Indeed, the logic is characterized by binary decisions, each
one based on a unique threshold on a single feature, and
linear regressions for each leaf of the tree, which determine
how the split is performed based on the input features. The
training has been performed in Python 3.7 using the linear-
tree2 package, restricting the maximum depth to three and
the minimum percentage of samples for each split at 2%, to
improve explainability and mitigate overfitting. A pictorial
representation for the obtained decision tree is reported in
Fig. 3. As anticipated, with the chosen models we have
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Fig. 3. Representation of the regression tree without property-preserving
constraints.

a straightforward interpretation of the logic. However, the
explanation obtained lacks reliability since binary decisions
rely solely on the input battery power request value, with-
out considering the state of the batteries. To enhance the
explanation, we aim to incorporate prior knowledge about
relevant physical phenomena using the property-preserving
paradigm. As a first step, we introduce four additional bi-
nary variables

(
Bsat,low

1 , Bsat,high
1 , Bsat,low

2 , and Bsat,high
2

)
,

indicating whether the requested battery power exceeds the
lower or upper power limits of each battery. Additionally, we

2https://pypi.org/project/linear-tree



enforce the dichotomy of traction and braking conditions,
crucial for power split logic in race cars, by constraining
the first binary decision based on the sign of the input
battery power. This results in two separate sub-trees for
braking and traction, as depicted in Fig. 4. In contrast to
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Fig. 4. Representation of the property-preserving regression tree: enforced
split between traction and braking conditions. In braking, a table with the
relevant regression weights for each leaf node is reported.

the previous model, decisions in both braking and traction
conditions are now based on features related to the state
of the batteries, resulting in more reliable outcomes. In
the braking sub-tree, the first decision depends on whether
the high-energy battery is saturated by the request, with
subsequent leafs providing regression models approximated
by Pb,1 = P low

b,1 , as shown in the table of Fig. 4 reporting the
relevant features’ regression weights, indicating saturation to
maximize regeneration capabilities. In the traction part, leafs
5 and 6 dominate, with the regression model approximated
by Pb,1 = 0.6 ·Pb, representing a simple power split between
the two batteries. This illustrates how incorporating prior
physical knowledge improves the reliability of explanations,
even with established transparent XAI models.

For a comprehensive analysis, we compare our approach
with feed-forward neural networks, serving as a benchmark
for accuracy. To ensure a fair comparison, we select two
different complexities: 1) a shallow neural network with
200 neurons (nn-full) for reference performance, and 2)
a deep neural network with two layers, having 7 and 4
neurons respectively (nn-limited), to match the number of
free parameters in our property-preserving regression tree.
Both models are trained in Python 3.7 using the TensorFlow
package, minimizing the mean square error via a stochastic
gradient descent algorithm with learning rate 0.1. In Fig. 5,
we compare the accuracy of all trained models, evaluated
via RMSE, on both training and testing data. Overall, all
models perform well, with relatively small power estimation
errors, as depicted in Fig. 6 for the Valencia ePrix testing
data. As expected, the more complex neural network (nn-full)
performs best on the training data. Although the property-
preserving regression tree, due to additional constraints,
exhibits slightly lower performance compared to the standard
one, it outperforms the neural network with equal complexity
(nn-limited). In terms of explainability (as discussed in

Fig. 5. Accuracy comparison on training and testing data. Compared
models: 1) standard regression tree (r.tree), 2) property-preserving regression
tree (pp r. tree), 3) complex neural network (nn-full), and 4) limited
complexity neural network (nn-limited).

Fig. 6. Comparison of power split testing performance. Compared models:
1) standard regression tree (r.tree), 2) property-preserving regression tree (pp
r. tree), 3) complex neural network (nn-full).

Section I), opaque models’ logic can only be interpreted post-
hoc. For a direct comparison with the explanations obtained
for regression trees, we utilize SHAP [8], a local method
based on specific predictions. Results are nearly identical
for both opaque models, and here we present those for nn-
full. In Fig. 7, shapley values for each input feature for
one braking (left) and one traction (right) prediction are
displayed, revealing the significant influence of the input
battery power request. The distribution of shapley values for
all predictions is depicted in Fig. 8, confirming the pivotal
role of this input feature. These observations align with those
of the standard regression tree, where all binary decisions
were based on the input power request. In conclusion, these
results demonstrate how the property-preserving paradigm
enables a more meaningful interpretation of the control logic,
albeit with a slight accuracy loss in this case study.

IV. CASE STUDY 2: MODEL-BASED CONTROL OF AN
ELECTRO-MECHANICAL POSITIONING SYSTEM

In this second case study, we transition from direct data-
driven control design to a classical model-based control
design known as ”indirect data-driven design.” Using a set
of nonlinear benchmarks, we tackle the Electro-Mechanical
Positioning System (EMPS) problem to identify a dynamical



Fig. 7. Shapley values of the benchmark neural network (nn-full) in two
specific predictions: one braking (left) and one traction (right) condition.

Fig. 8. Distribution of shapley values of the benchmark neural network
(nn-full) on the whole testing dataset.

model suitable for control design, as presented in [22].
Two identification datasets, for training and testing, are
provided along with a grey-box estimation approach based
on the inverse dynamic identification model (IDIM). In the
context of data-driven control, we utilize both transparent and
opaque black-box models. For transparent models, a linear
time-invariant model in transfer function representation is
selected, offering explainability akin to the benchmark grey-
box model. As representatives of opaque models, a shallow
feedforward neural network with 5 neurons is employed to
learn the mapping from past positions and input values to
the current actuator position. The optimal number of neurons
and past values is determined through sensitivity analysis on
the training data. To ensure a fair comparison, all models
are trained to minimize simulation error over the entire
training data horizon using the MATLAB function fmincon.
To show the impact of the property-preserving paradigm,
the class of transparent models has been endowed with three
incremental levels of prior knowledge about the system: 1)
we impose a second-order transfer function, knowing the
mechanical nature of the system, 2) we enforce the presence
of a pure integrator in the system, from speed to position,
due to the absence of a load [22], and 3) we compel the
remaining eigenvalue to be asymptotically stable, to preserve
open-loop stability. As first step, we optimized the order
of the transfer function model when no prior knowledge is
used. Fig. 9 shows the obtained accuracy on the training
data, where performance are expressed in terms of relative
position error, as in [22], and compared with that of the three
incremental property-preserving models (pp). It is visible
that the best order for the transfer function, as trade-off

between accuracy and complexity, is two, which represents
exactly the first level of property-preserving. Thus, from
now on, we focus only on the three levels of property-
preserving models, whose general transfer function expres-
sion is G(s) = b1s+b0

s2+a1s+a0
. The optimal values of the free

parameters of the three models are reported in Tab I. We
can highlight the impact of the preserved properties: levels
two and three have zero value a0 coefficient to guarantee the
presence of the integrator, and the third one shows a positive
coefficient a1, which corresponds to a negative eigenvalue.
The performance of the different models are compared in

Fig. 9. Relative position estimation error as a function of the transfer
function model order.

TABLE I
OPTIMIZED TRANSFER FUNCTION PARAMETERS FOR THE THREE

PROPERTY-PRESERVING LEVELS.

b0 b1 a0 a1

tf pp (1) 0.39 -3.48×10−4 -0.28 4.70
tf pp (2) 8.62×10−4 7.68×10−2 0 -5.57×10−2

tf pp (3) 0.01 6.58×10−2 0 2.08×10−7

Fig. 10 on the testing data. The neural network results to be
the most accurate model, showing comparable performance
with the first level of property-preserving transfer functions,
i.e., of second order. Moreover, the second level of property-
preserving models outperforms the grey-box benchmark in
[22], which in turn defeats the third level one. Accuracy
on the testing data is also in shown in Fig. 11, where the
different models are compared in time-domain. Regarding
explainability, the situation is reversed, and the latter two
models show the highest level of physical interpretation. In
addition, despite the limited accuracy loss, the third property-
preserving model attains another important advantage with
respect to all the other black-box models: indeed, preserved
open-loop stability allows the usage of more standard control
synthesis techniques, like bode criterion, for the design of a
closed-loop position controller.

V. CONCLUSIONS

In this paper, we propose a novel framework for achieving
explainable data-driven control by integrating established
principles into the control process. This involves imposing
constraints on either the control-oriented model or the direct
derivation of feedback actions from data, as seen in direct



Fig. 10. Accuracy comparison on the testing data. Compared models: 1)
benchmark model-based approach (IDIM), 2) third level property-preserving
transfer function, 3) second level property-preserving transfer function, 4)
first level property-preserving transfer function, and (5) benchmark neural
network.

Fig. 11. Time-domain position estimation comparison on testing data. Com-
pared models: 1) benchmark model-based approach (IDIM), 2) third level
property-preserving transfer function, 3) second level property-preserving
transfer function, 4) first level property-preserving transfer function, and
(5) benchmark neural network.

data-driven control methods. Despite resulting in black-box
laws, our approach offers transparency for easy interpreta-
tion. Due to the early stage of our development, a detailed
theoretical discussion is considered overly intricate. Instead,
we present a preliminary exploration demonstrating the ap-
plication of this approach in both direct and indirect data-
driven design scenarios. Using experimental data, we address
two modern control challenges to showcase the methodol-
ogy’s applicability. This work establishes the groundwork
for further examination of feedback loop explainability to
enhance transparency in complex control systems.

Future efforts will focus on automatically embedding
formal properties, extensive experimental testing, and the-
oretical analysis of the resultant loop.
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[13] D. Šoberl and I. Bratko, “Learning explainable control strategies
demonstrated on the pole-and-cart system,” in Advances and Trends
in Artificial Intelligence. From Theory to Practice: 32nd International
Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, IEA/AIE 2019, Graz, Austria, July 9–11,
2019, Proceedings 32. Springer, 2019, pp. 483–494.

[14] A. Beattie, P. Mulink, S. Sahoo, I. T. Christou, C. Kalalas,
D. Gutierrez-Rojas, and P. H. Nardelli, “A robust and explainable data-
driven anomaly detection approach for power electronics,” in 2022
IEEE International Conference on Communications, Control, and
Computing Technologies for Smart Grids (SmartGridComm). IEEE,
2022, pp. 296–301.

[15] S. Sahoo, H. Wang, and F. Blaabjerg, “On the explainability of black
box data-driven controllers for power electronic converters,” in 2021
IEEE Energy Conversion Congress and Exposition (ECCE). IEEE,
2021, pp. 1366–1372.

[16] D. Biparva and D. Materassi, “Application of explainable ai and causal
inference methods to estimation algorithms in networks of dynamic
systems,” in 2023 American Control Conference (ACC). IEEE, 2023,
pp. 1889–1894.

[17] X.-H. Li, C. C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao,
S. Zhang, X. Xue et al., “A survey of data-driven and knowledge-
aware explainable ai,” IEEE Transactions on Knowledge and Data
Engineering, vol. 34, no. 1, pp. 29–49, 2020.

[18] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and
F. Piccialli, “Scientific machine learning through physics–informed
neural networks: Where we are and what’s next,” Journal of Scientific
Computing, vol. 92, no. 3, p. 88, 2022.

[19] G. Riva, S. Radrizzani, G. Panzani, M. Corno, and S. M. Savaresi,
“An optimal battery sizing co-design approach for electric racing cars,”
IEEE Control Systems Letters, vol. 6, pp. 3074–3079, 2022.

[20] S. Radrizzani, G. Riva, G. Panzani, M. Corno, and S. M. Savaresi,
“Optimal sizing and analysis of hybrid battery packs for electric racing
cars,” IEEE Transactions on Transportation Electrification, 2023.

[21] W.-Y. Loh, “Classification and regression trees,” Wiley interdisci-
plinary reviews: data mining and knowledge discovery, vol. 1, no. 1,
pp. 14–23, 2011.

[22] A. Janot, M. Gautier, and M. Brunot, “Data set and reference models
of emps,” in Nonlinear System Identification Benchmarks, 2019.


