IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Coordination in Noncooperative Multiplayer Matrix Games via
Reduced Rank Correlated Equilibria

Jaehan Im, Yue Yu, David Fridovich-Keil, and Ufuk Topcu

Abstract— Coordination in multiplayer games enables play-
ers to avoid the lose-lose outcome that often arises at Nash equi-
libria. However, designing a coordination mechanism typically
requires the consideration of the joint actions of all players,
which becomes intractable in large-scale games. We develop a
novel coordination mechanism, termed reduced rank correlated
equilibria. The idea is to approximate the set of all joint actions
with the actions used in a set of pre-computed Nash equilibria
via a convex hull operation. In a game with n players and each
player having m actions, the proposed mechanism reduces the
number of joint actions considered from O(m™) to O(mn) and
thereby mitigates computational complexity. We demonstrate
the application of the proposed mechanism to an air traffic
queue management problem. Compared with the correlated
equilibrium—a popular benchmark coordination mechanism—
the proposed approach is capable of solving a problem involving
four thousand times more joint actions while yielding similar or
better performance in terms of a fairness indicator and showing
a maximum optimality gap of 0.066% in terms of the average
delay cost. In the meantime, it yields a solution that shows up
to 99.5% improvement in a fairness indicator and up to 50.4%
reduction in average delay cost compared to the Nash solution,
which does not involve coordination.

I. INTRODUCTION

In a multiplayer game, each player minimizes its own
cost by choosing its strategy—a probability distribution over
its available actions—based on the other players’ strategies.
At a Nash equilibrium, no player can reduce its cost by
unilaterally changing its current strategy. Multiplayer games
enable the modeling of noncooperative interactions in various
applications, including air traffic management systems.

Coordination mechanisms in games allow players to avoid
lose-lose outcomes, which often occur in competitive interac-
tions. The prisoner’s dilemma and the chicken game [1] are
typical examples of such games. Coordination mechanisms
help players avoid lose-lose outcomes by recommending
joint actions to each player through a coordinator.

A correlated equilibrium in a multiplayer game is a
probability distribution over all joint actions of all players
[2] which provides a coordination mechanism as follows.
Suppose a coordinator samples a joint action according to a
correlated equilibrium known to all players and recommends
it to all players. Then, each player cannot reduce its own cost
by unilaterally deviating from the recommendation. Several
studies have shown that the correlated equilibrium is useful

J. Im, and D. Fridovich-Keil are with the Department of Aerospace
Engineering and Engineering Mechanics, The University of Texas at Austin,
TX, 78712, USA (emails: jachan.im@utexas.edu, dfk@utexas.edu). Y. Yu,
and U. Topcu are with the Oden Institute for Computational Engineering
and Sciences, The University of Texas at Austin, TX, 78712, USA (emails:
yueyu@utexas.edu, utopcu@utexas.edu).

Copyright ©2024 IEEE

% e % ~ . ﬁ%Queue #3
Queug #2 ?{ % % Queue #4
,"” Q\iéue #1 / ﬁ% C%(C%{(
N . —
| ®----------- T 3
| o~ Runway #1
% /;":/7 . @ ------ R 3
\\ //,% B Runway #2
Fig. 1: TIllustration of a multiple departure-arrival queue

coordination scenario. Each player (queue) may occupy both
runways, a single runway, or yield to others.

for coordinating chicken games [1], 2-by-2 games [3], Battle-
of-Sexes games [4], and public goods game [5].

However, computing a correlated equilibrium becomes
intractable as the number of players and actions increases,
because it requires considering all joint actions. In a game
with n players where each player has m actions, the number
of all joint actions is m"™. This makes the computation of
correlated equilibria intractable as n and m increase, which
limits its usage in large-scale coordination problems [1].

We develop an algorithm that efficiently computes cor-
related equilibria based on a novel concept termed reduced
rank correlated equilibria (RRCE). The set of RRCE inhabits
the convex hull of multiple Nash equilibria, and this set
approximates the set of all possible correlated equilibria. The
proposed algorithm first computes multiple Nash equilibria
and then obtains a set of RRCE. Unlike the correlated
equilibrium, the computation of the Nash equilibrium only
requires the consideration of the actions of individual players
in isolation rather than all joint actions. As a result, the
proposed algorithm reduces the number of joint actions
considered during the correlated equilibrium computation
from O(m™) to O(mn).

We evaluate the proposed algorithm by conducting a series
of Monte Carlo simulations on an air traffic management
problem, which typically requires coordination for efficient
operation. The proposed algorithm solves a problem involv-
ing a four thousand times larger number of joint actions
than a direct computation of the correlated equilibrium can
solve. The proposed algorithm yields a solution that shows a
0.066% gap (at worst) to the correlated equilibrium regarding
the average cost per player. Yet our approach demonstrates
superior fairness and average cost per player compared to a
Nash solution that does not involve coordination.

II. RELATED WORKS

The challenge of obtaining the correlated equilibrium in
large-scale problems is widely acknowledged [1], [6], [7].
One research direction that addresses this issue is to utilize an
evolutionary algorithm to obtain the correlated equilibrium
[8], [9], [6]. These algorithms let players gradually converge
to a correlated equilibrium through repeated games while
players are set to follow a specific regret-minimization rule.
However, this approach converges to a random correlated
equilibrium, preventing the user from obtaining an equilib-
rium that fits their interests.

Learning dynamics is another approach to bypass the
direct computation of the correlated equilibrium. This ap-
proach learns a strategy converging to a coarse correlated
equilibrium, a relaxed notion of correlated equilibrium,
that minimizes the sum of players’ costs [10], [11], [12].
However, a coarse correlated equilibrium is an equilibrium
that does not guarantee that the players comply with the
recommended actions, making it inappropriate to be applied
for coordination purposes.

Various multiplayer games have extensively implemented
a Nash equilibrium as coordination [13], [14], [15] and
outcome prediction [16] tool. This approach computes an
existing Nash equilibrium and uses it as a control command
relayed to the players. If multiple Nash equilibria exist, the
coordinator chooses the one that best fits the coordinator’s
interests [13]. However, since the Nash equilibrium does
not consider joint actions, it generally yields a less efficient
solution than the correlated equilibrium [10], [12].

Approximation of the correlated equilibrium has been
attempted in mean-field games [17] and graphical games
[18] to improve solution quality and reduce computation
burden. However, to our knowledge, no research has focused
on both (i) addressing the computational intractability of the
correlated equilibrium and (ii) yielding a solution that fits
the coordinator’s interests.

III. NASH AND CORRELATED EQUILIBRIA
IN MATRIX GAMES

A. Matrix games

We consider a game with n € N players in which each
player has m € N actions. In this paper, we denote a ranged
set of natural numbers {1,2,...,n} as Ny ,,). Let —i denote
the set excluding the i-th element itself, i.e., {1,...,n}\ i.
Lastly, let v € R™ be a vector and let [v]; indicate the k-th
element of v for k € Ny ;).

1) Player’s action: Let a; € Npj ;) denote an action of
player i and a := {a1,...,a,} denote a joint action of all
players. Let A be a set of all possible joint actions, a. The
cardinality of this set, |A], is m™.

2) Player’s strategy: Let A, == {v € R% |v'1,, =1}
and z; € A, denote player i’s strategy as follows:

[%;]a; == P[Player i taking action a;]. (D

3) Joint action distribution: Let z € RZy"*"™ denote the
joint action probability distribution and z, € [0,1] denote
the probability of specific joint action profile a occuring, i.e.,

zq = PP[Players take joint action a] = P[a], (2)

where » z, = 1.

The joint action probability distribution profile z can
be expressed in terms of the players’ strategy z;, i.e. the
conversion equation is shown below.

za = [L;[@i{a);- 3)

Note that this conversion is only valid from z to z. The
reverse (decomposition of z to x) may not exist or result in
indefinite strategy profiles x.

4) Cost: The cost that player ¢ incurs by taking action
a; when player j takes action a; (for all j #) is given by
>4ilC7asa, where [C9]q,q, is the a;a;-th element (a;-th
row and a;-th column) in the cost matrix C* € R™*™.

The cost that player ¢ experiences, c;, can be expressed as
follows:

¢i(2) =Yg Za 2 je—ilC7]ali al;-)

Note that one can compute c¢; with individual player’s
strategy x; by transforming xz; to z via (3).

B. Nash equilibrium (NE)

The Nash equilibrium is a set of individual strategies
in which no player can reduce its cost by unilaterally
changing its strategy. It exists regardless of the presence of
coordination.

Definition 1 (Nash equilibrium). A Nash equilibrium is a
strategy x* such that for all i € Ny),

ci(wy, x*y) < ci(wi,ary), Vo, € Ay,) #xi (5)

Under an appropriate constraint qualification, the Karush-
Kuhn-Tucker (KKT) conditions for all players must be sat-
isfied at a Nash equilibrium [19, p.26]. The KKT conditions
for player 7 are

vmlﬁz = Z Cijxj -)\l - Ni]-rn = O,
jA—i (6)
Lhai=1, X2, =0, 2; 20y, A >0,

where AP = [A¢,..., A\]T € R™ and u' € R are Lagrange
multipliers, and £; is player i’s Lagrangian.

C. Correlated equilibrium (CE)

A correlated equilibrium is a joint action probability dis-
tribution, z, such that after a particular joint action profile a*
is drawn from z and each action a; € a* is recommended to
each player ¢, playing a7 is the optimal choice for each player
1. Here, we assume that the players know the distribution z.

Definition 2 (Correlated equilibrium). A correlated equilib-
rium is a probability distribution z over the set of joint action
profiles A such that

Elci(a})|af, 2] < Elei(ai)|a, 2], af = [a*]i, (D)

where aj # a;, for all i € Ny) and for all joint action
profiles a € A.

The expected cost that player ¢ experiences when the
player chooses action a; with action suggestion a} given
z, Elci(af)la}, 2], is denoted with ®Z, (a;):

0%, (ai) = 3g Za 204,07]jaila)» (8)

where @ € {a € Al[a]; = a’}. Then, the correlated
equilibrium is a joint action distribution z that satisfies the
following conditions:

(I)zf (CL:) < (I)z" (ai)a V(ai,ag‘) S N[l}mb Vi € N[l,n]v
EaeAza =1, 2420, Va € A.

IV. REDUCED RANK CORRELATED EQUILIBRIA
ALGORITHM

9

The correlated equilibrium computation becomes quickly
intractable as the number of joint actions grows exponentially
in the number of players (n). Recall that the number of joint
actions considered to compute the correlated equilibrium is
O(m™) while for the Nash equilibrium, the figure is O(mn).
This affects the computational complexity of solving for each
equilibrium. Although computational complexity may vary
according to which solver one uses, we provide an example
when using the interior point method (IP).

Proposition 1 (Number of linear equations to find NE and
CE with IP). The computation of the Nash equilibrium and
the correlated equilibrium with IP involves solving n(m+1)
and 2m™ + 3m?2n + 1 linear equations, respectively.

Proof. The interior point (IP) method solves a system of
linear equations at every iteration [20, p.393]. The Nash equi-
librium is formulated as a linear complementarity problem
with n(m + 1) linear equations when solved with IP [19,
p-1037]. The correlated equilibrium is formulated as a linear
program with 2m™ 4 3m?2n+ 1 linear equations when solved
with IP [20, p.394]. O

To exploit this apparent difference in scaling, we propose
an algorithm that approximates the set of correlated equilibria
with multiple Nash equilibria.

A. Correlated equilibrium set approximation

Let G := {z|z satisfies (9)} denote a set of correlated
equilibria. Since (9) comprises only linear constraints, G is
a convex polytope. In addition, the set of all Nash equilibria
is a subset of G [21]. Therefore, the convex hull of Nash
equilibria is a subset of the correlated equilibria.

Let a set with d distinct Nash equilibria denoted as D,
with the superscript k indicating the k-th Nash equilibrium

[D}k = {x?,aj?...,:tﬁ},k GN[l,d]- (10)

It is possible to convert [D], into a joint action probability
distribution z using (11). Let 2¥ € RZ;**™ denote the
joint action probability distribution of the k-th equilibrium

in D such that
zk =1Lz, (11)

for all @ € A. The convex hull of zFEN1.4 is a subset of
the correlated equilibrium set G [21], [22], i.e.

H = conv(zk) cg, (12)

where the convex hull of {z*}¢_, is denoted as H and
d i
conv(z") = {375, [Y]iz" | v € REg, 15y = 1},

Definition 3 (Rank of a tensor). A simple tensor T° is
a tensor that can be expressed with the outer products
of p vectors v where p is the dimension of a tensor, i.e.

..... . [vplk. T is of rank t if and only if t is
the smallest number of simple tensors required to express T
[23, p.309], ie. T =17 + ...+ 1.

The joint action probability distribution of the Nash equi-
librium, z(’;, has a rank of 1 as the Nash equilibrium is
expressed with an outer product of the player’s strategies x;
as shown in (11), and is thus a simple tensor. Since all Nash
equilibria are elements of the set of correlated equilibria G
[21], an element in G with equal or higher rank than any
elements in ‘H always exists. Based on this characteristic,
elements within the set H are termed reduced rank correlated
equilibria (RRCE).

B. Multiplayer coordination and RRCE algorithm

We consider an optimization problem that seeks a cor-
related equilibrium 2z, which minimizes a particular cost
function J that considers the social context. By recommend-
ing actions sampled from the correlated equilibrium to each
player, a coordinator can help the players reach a joint action
that minimizes J. Such a socially optimal joint action is often
unachievable without a coordination mechanism.

The cost function J that evaluates the quality of a
correlated equilibrium—such as efficiency and fairness—is
denoted as

J: Rgg“m - R. (13)

In particular, we search for an optimal correlated equilibrium
by solving the following optimization:
minimize J(z)
Z . (14)
subject to condition from (9).
We denote this method as the Correlated Equilibrium (CE)
algorithm. As stated previously, solving this problem re-
quires high computation costs.

In contrast, we propose an algorithm that computes RRCE,
termed the RRCE algorithm. The RRCE algorithm consists
of two phases. First, the algorithm searches for multiple
Nash equilibria—each satisfies Definition 1—and computes
the corresponding joint action distributions according to
(11). The computed joint action distribution is denoted
{z',...,z%}. We suggest two methods for searching Nash
equilibria: (i) random initialization method, which randomly
initializes the numerical solver [24] when solving (6), and
(ii) brute-force method, which exhaustively enumerates all
deterministic joint actions and identifies all pure Nash equi-
libria by brute force [25].

Second, the RRCE algorithm computes a reduced rank
correlated equilibrium given by Zzzlh*}izk, where v* €
R<, is the optimal solution of the following optimization
problem:

minimize J(32°, [v]:27)
¥

15)
subject to v > 0g, 1dT'y =1

V. COORDINATION IN AIR TRAFFIC MANAGEMENT

A noncooperative multiplayer coordination problem is
frequently observed in air traffic management. Consider a
situation where two aircraft are trying to land at an airport
with a single runway. In this case, the players are aircraft,
and the limited resource is runway occupancy. Each aircraft
prefers to occupy the runway (i.e. land) immediately rather
than wait until the other aircraft lands and vacates the run-
way. However, neither can occupy the runway simultaneously
without causing a crash and incurring a heavy penalty.

This two-aircraft landing scenario can be expressed in a
normal form game:

| Occupy Yield
Occupy ‘ 3,0 0,p
Yield 0,0 p.P
where § € R is a penalty that is arbitrarily larger than any
other values in this matrix and p € R4 is a small penalty
that occurs when a player chooses the Yield action. The cost
matrix for this game is as follows:

0¥ =07 = (3]

(16)

The best outcome, 0, occurs when each player occupies
while the opponent yields. The worst case occurs when both
players Occupy, thus resulting in § penalty for each player.

This game setting can be expanded to various air traffic
management scenarios. Players could be airlines competing
over airport slots, departure and arrival queues competing
over runway usage, and airports competing over using a
particular air route.

A. Airport departure/arrival queue game

We will focus on the scenario of the departure and arrival
queues competing over the limited number of runways, as
illustrated in Figure 1.

1) Players: Let queues indicate a queue of aircraft waiting
for departure or arrival. A queue that holds aircraft waiting
for departure is departure queue, and one with aircraft
waiting for arrival is an arrival queue. An aircraft is added
to the i-th queue according to a Poisson process at a specific
rate v; for each queue, Pois(v;). Each departure or arrival
queue is a player in this game, and each wants to reduce
their queue length by deploying the aircraft in their queue to
occupy runways.

2) Actions: The game is played every 5 minutes. Every
time the game is played, the players have two actions for each
runway: Occupy the runway or yield its usage to the others.
Each player can decide whether to occupy or yield each
runway independently if multiple runways exist. Let r be the
number of runways; then the number of actions, m, becomes

m = 2". For example, if there are two runways, then there
are four possible joint actions: A = {(Occupy, Occupy),
(Occupy, Yield), (Yield, Occupy), (Yield, Yield)}. In prac-
tice, the control tower (coordinator) will choose among these
joint actions based on z and then radio a recommended
action to each aircraft in the front of each queue.

3) Cost matrix: The cost for each player (queue) in this
game represents the delay applied to all the aircraft within
the queue. Since the game is played every 5 minutes, if a
player chooses to Yield, it causes 5-minute delays to all the
scheduled aircraft in its queue. We designate 5 as p, the
Yield penalty. As the average number of added aircraft to
each queue per unit time ¢ is proportional to v;, the cost for
Yield becomes 5v;, or pv; minutes per runway. If a particular
player chooses Occupy and all other players do Yield the
runway, that player does not incur any costs. However, if
the simultaneous occupation of a runway occurs, all the
occupying players receive a large penalty 6 > p.

An example cost matrix for queue ¢ when there are 2
runways, or m = 4 is,

B 20 8 00
CY = v laiﬁ o Z]’W € —i
20 2p 2p 2p

a7)

where the order of actions is (Occupy, Occupy), (Occupy,
Yield), (Yield, Occupy), (Yield, Yield).

VI. NUMERICAL EXPERIMENTS

We evaluate the effectiveness of the RRCE algorithm by
comparing it with the algorithm based on the correlated
equilibrium and Nash equilibrium, respectively [24]. The
algorithm based on the correlated equilibrium, termed the
CE algorithm, solves the optimization in (14). The algorithm
based on the Nash algorithm termed the Nash algorithm,
finds a solution that satisfies the conditions in (6). It con-
verges to a different equilibrium under different initialization
when multiple Nash equilibria exist.

The proposed RRCE algorithm has two variations depend-
ing on which strategy it uses to find multiple Nash equilibria;
RRCE using the random initialization method is denoted as
the Random-RRCE. It repeats random initialization method
for a fixed number of times, and the newly discovered
Nash equilibrium is returned. The RRCE using the brute-
force method is denoted as the Brute-RRCE. It performs
an exhaustive search for pure Nash equilibrium (with a
deterministic strategy) by enumerating the best responses of
each player for all joint actions.

In summary, four algorithms are used for the experiment
(two RRCE algorithms, the CE algorithm, and the Nash
algorithm). Note that other baseline algorithms are neglected
since there have not been any algorithms that share common
objectives with the proposed algorithm, making the direct
comparison unnecessary, per the discussion in Section II.

To capture the variance in computation time and solution
quality of each algorithm, we conduct a series of Monte
Carlo experiments. Fifty trials with fixed arrival rates v; are
tested for each distinct number of players (n) and actions
(m). A total of 18 settings for (n, m) are investigated, with

n varying from 2 to 7 and the number of runways r varying
from 1 to 3, which is equivalent to the number of actions,
m € {2,4,8} respectively. These test cases correspond to
the number of joint actions ranging from 22 to 22!. We
implement algorithms in the Julia programming language,
using the ParametricMCPs.jl package [26] and the PATH
mixed complementarity program solver [24]. All experiments
were performed on an AMD Ryzen 9 7950X processor.

A. Evaluation criteria

We use three metrics to measure the performance of each
algorithm: the computation time, the Gini index, and the
average delay cost per player.

1) Computation time (CT): The computation time mea-
sures the time required to compute the solution. We evaluate
the computation time in two ways: (i) Solver time, which is
the runtime for the solver to find the solution, and (ii) Total
computation time, which is a combination of the solver time
and the pre-processing time required to compile the problem
before running the solver.

2) Average delay cost (AC): The average delay cost
measures the average cost of the players as

AC(c) = % ZieN[m] Ci,

where ¢ = {c1,¢2,...,¢n}

3) Gini index (GI): The Gini index is an indicator measur-
ing fairness among the players. The smaller the discrepancy
in the cost between the players, the better the fairness. A
small Gini index indicates the players achieve a more fair
outcome. We compute the Gini index as

(18)

GI(c) = m Zi,jeN[l,n] lci — ¢l (19)

where AC(c) is an average delay cost computed from [27].

B. Objective function

There are two objectives that the coordinator in this sce-
nario has to satisfy: (i) Minimize the total cost and (ii) Min-
imize the cost differences between the players. Qualitatively
speaking, the first objective promotes the overall system’s
efficiency, and the second objective promotes fairness among
the players.

We adopted a cost function that balances both objectives:
the fairness-threshold-criteria with maximin fairness [27]. It
is formulated as,

J(z) = —nA+ > max(c; + A, Cmax), (20)

where A is a pre-specified fairness-threshold value and ¢y,ax
is the maximum value of c. Note that each ¢; can be
computed from z directly via (4). If the difference between
player ’s cost and ¢,y is less than A, the cost function adds
¢; into consideration. However, if the difference is larger than
A, or ¢; is less than ¢, by more than A, the cost function
focuses on ¢, rather than c;.

When the differences of costs between all the players are
within A, the cost function becomes J(c) = > 1" ¢;. If a
single player incurs a higher cost than any other player by
more than A, the overall cost depends only upon that player’s
cost, and J(¢) = —nA + nemax-

104§ e e imesa
- ——Nash
- ——Random-RRCE (ours)
f Brute-RRCE (ours)
102 —CE

10 T T 0 10t
Number of joint actions
Fig. 2: Computation time plot in log-log scale. Solver run-
time plot (dotted) and total computation time (solid) that
includes both solver runtime and preprocessing time.

025

" =1 m=2) " =2 m=4)] | ‘ =3 (m=8)

© Nash
i| @ Random-RRCE (ours)
l Brute-RRCE (ours)
| = CE
. 1
1
1

02

0.151 ﬁ

0.1+

Index

0.05

0,£%MA4M4L€HMJ;¢
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 1

Number of Players (n)
(a) Gini index
400 | I 1 | 1 I 1 I I [3
r=1 (m=2) =2 (m=4) r=3 (m=8) 1
350 - ﬁ ¢ |
300 l R
1
=250 f #

%200— &: “ g 4 il
Sisol i ﬂc 8 1
100 - . éeaéea %ee ﬂéA b
50 ieaéea geﬁ * 1

86 ﬁ%& =7

L L L Il L L L Il
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 17
Number of Players (n)

(b) Average delay cost

Fig. 3: Unfairness indicator (Gini index) plot (upper) and
average delay cost plot (bottom). Results are shown per
runway number r and the number of players n.

C. Result

The RRCE and Nash algorithm solves all the test cases
involving up to 22! joint actions. However, the CE algorithm
fails to solve several test cases due to a lack of available
memory, thus leaving missing data points in the figure. The
maximum number of joint actions the CE algorithm can
handle is 2°.

1) Computation time: Figure 2 shows the computation
time regarding the number of joint actions in each test
case. Random-RRCE shows the largest value in terms of
solver time for most of the test cases. However, it shows a
polynomial increasing trend, which is also true for the Nash
algorithm. The Brute-RRCE and CE algorithms show a much

greater rate of increase in solver time, and the CE’s rate of
increase is the greatest (i.e. worst) among the algorithms.

A similar trend exists in the total computation time.
The Random-RRCE and Nash show polynomial increasing
trends, while Brute-RRCE and CE show a greater rate. The
total computation time for CE exceeds that of the Random-
RRCE in the test case involving 64 joint actions, becoming
the most time-consuming algorithm. The maximum total
computation time reduction observed from Random-RRCE
to CE was 91.0% in a test case involving 29 joint actions.

2) Gini index: Figure 3 shows the solution quality indi-
cators (Gini index, average delay cost) with respect to the
number of players (n) and actions (m). Regarding fairness,
Figure 3a shows that the RRCE and CE algorithms kept
the costs between the players similar. Among the algorithms
apart from the Nash algorithm, the Random-RRCE shows the
highest (worst) median Gini index value and higher variance,
and the trend becomes notable in the cases involving larger
n and m. This degradation is due to the reduced ratio of
the number of sampled Nash equilibria to the number of all
Nash equilibria in the game as the problem size increases.

3) Average delay cost: According to Figure 3b, the me-
dian of average delay costs for CE and RRCE algorithms
are consistently lower than that of the Nash equilibrium.
RRCE and CE yield a solution showing similar performance
to the cases CE solved. Random-RRCE shows performance
between these two extremes, with the average delay cost
reduced by 1.8% up to 50.4% than that of the Nash approach,
while showing a maximum optimality gap of 0.066% com-
pared to the observable CE algorithm results.

VII. CONCLUSION AND FUTURE WORKS

We propose a highly scalable algorithm that computes the
correlated equilibrium, a coordination mechanism that has
been proven helpful in multiplayer noncooperative games, by
approximating the set of correlated equilibria with the convex
hull of multiple Nash equilibria. Numerical experiments
show that the proposed algorithm demonstrates improved
scalability compared to the standard correlated equilibrium
computation and superior solution quality (fairness and av-
erage cost per player) to the Nash solution, which does not
involve coordination.

Despite this promising result, there is room for further
development. As this paper focuses on the correlated equilib-
rium set approximation method, we adopted a simple strategy
to search for multiple Nash equilibria. However, as the prob-
lem scale increases, the Nash equilibria recovered represent
a decreasing fraction of the total number of Nash points,
which makes the convex hull approximation worse. Thus,
exploring a method that can search for Nash equilibrium to
maximize the volume of the convex hull effectively will be
an exciting topic for future study.

REFERENCES

[1] C. Papadimitrioiu, “Computing correlated equilibria in multi-player
games,” Proc. of the Annu. ACM Symp. on Theory of Comput., pp.
49-56, 01 2005.

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

R. J. Aumann, “Subjectivity and correlation in randomized strategies,”
J. of Math. Econ., vol. 1, no. 1, pp. 67-96, 1974.

J. Bone, M. Droiuvelis, and I. Ray, “Coordination in 2 x 2 games by
following recommendations from correlated equilibria,” 2013.

J. Duffy, E. K. Lai, and W. Lim, “Coordination via correlation: an
experimental study,” Econ. Theory, vol. 64, pp. 265-304, Aug 2017.
A. Cavaliere, “Coordination and the provision of discrete public goods
by correlated equilibria,” J. of Public Economic Theory, vol. 3, no. 3,
pp. 235-255, 2001.

D. Wu, Y. Cai, L. Zhou, Z. Zheng, and B. Zheng, “Cooperative
strategies for energy-aware ad hoc networks: A correlated-equilibrium
game-theoretical approach,” IEEE Trans. on Veh. Technol., vol. 62,
no. 5, pp. 2303-2314, 2013.

Y. Babichenko, S. Barman, and R. Peretz, “Simple approximate
equilibria in large games,” in Proc. of the Fifteenth ACM Conf. on
Econ. and Comput., ser. EC *14. New York, NY, USA: Association
for Computing Machinery, 2014, p. 753-770.

S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to
correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127-1150,
2024/02/19/ 2000, full publication date: Sep., 2000.

J. Lenzo and T. Sarver, “Correlated equilibrium in evolutionary models
with subpopulations,” Games and Econ. Behav., vol. 56, no. 2, pp.
271-284, 2006.

J. Arifovic, J. F. Boitnott, and J. Duffy, “Learning correlated equilibria:
An evolutionary approach,” Journal of Econ. Behav. & Org., vol. 157,
pp. 171-190, 2019.

J. R. Marden, “Selecting efficient correlated equilibria through dis-
tributed learning,” Games and Econ. Behav., vol. 106, pp. 114-133,
2017.

H. P. Borowski, J. R. Marden, and J. S. Shamma, “Learning efficient
correlated equilibria,” in 53rd IEEE Conf. on Decis. and Control, 2014,
pp. 6836-6841.

S. G. Park and P. K. Menon, “Game-theoretic trajectory-negotiation
mechanism for merging air traffic management,” J. of Guid., Control,
and Dyn., vol. 40, no. 12, pp. 3061-3074, 2017.

D. Pisarski and C. Canudas-de Wit, “Nash game-based distributed
control design for balancing traffic density over freeway networks,”
IEEE Trans. on Control of Netw. Syst., vol. 3, no. 2, pp. 149-161,
2016.

L. Yu, E. Masabo, and C. Mutimukwe, “Nash equilibrium: Better
strategy for agents coordination,” in 2008 IEEE Asia-Pacific Services
Comput. Conf., 2008, pp. 795-800.

D. A. Braun, P. A. Ortega, and D. M. Wolpert, “Nash equilibria in
multi-agent motor interactions,” PLoS Comput. biol., vol. 5, no. 8, p.
¢1000468, 2009.

S. Sanjari, N. Saldi, and S. Yiiksel, “Nash equilibria for exchangeable
team against team games and their mean field limit,” in 2023 Amer.
Cont. Conf. (ACC). 1IEEE, 2023, pp. 1104-1109.

H. Kamisetty, E. P. Xing, and C. J. Langmead, “Approximating
correlated equilibria using relaxations on the marginal polytope.” in
ICML, 2011, pp. 1153-1160.

P. Harker and J.-S. Pang, “Finite-dimensional variational inequality
and nonlinear complementarity problems: A survey of theory, algo-
rithms and applications.” Math. Program., pp. 18-25, 03 1990.

J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New
York, NY, USA: Springer, 2006.

R. Nau, S. G. Canovas, and P. Hansen, “On the geometry of nash
equilibria and correlated equilibria,” Int. J. of Game Theory, vol. 32,
no. 4, pp. 443-453, Aug 2004.

S. R. Phade and V. Anantharam, “On the geometry of nash and
correlated equilibria with cumulative prospect theoretic preferences,”
Decision Analysis, vol. 16, no. 2, pp. 142-156, 2019.

N. Bourbaki, Algebra: Chapter 2. Springer Nature, 2023.

S. P. Dirkse and M. C. Ferris, “The path solver: a nommonotone
stabilization scheme for mixed complementarity problems,” Optim.
Methods and Softw., vol. 5, no. 2, pp. 123-156, 1995.

H. Li, W. Huang, Z. Duan, D. H. Mguni, K. Shao, J. Wang, and
X. Deng, “A survey on algorithms for nash equilibria in finite normal-
form games,” Comput. Sci. Rev., vol. 51, p. 100613, 2024.

L. Peters, “ParametricMCPs.jl,” 2022. [Online]. Available: https:
//github.com/lassepe/ParametricMCPs.jl

V. Xinying Chen and J. N. Hooker, “A guide to formulating fairness
in an optimization model,” Ann. of Oper Res., vol. 326, no. 1, pp.
581-619, Jul 2023.

