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Abstract— Many off-the-shelf generic non-linear model struc-
tures have inherent sparse parametrizations. Volterra series and
non-linear Auto-Regressive with eXogeneous inputs (NARX)
models are examples of this. It is well known that sparse
estimation requires low mutual coherence, which translates
into input sequences with certain low correlation properties.
This paper highlights that standard optimal input design
methods do not account for this requirement which may lead to
designs unsuitable for this type of model structure. To tackle
this problem, the paper proposes incorporating a coherence
constraint to standard input design problems. The coherence
constraint is defined as the ratio between the diagonal and
non-diagonal entries of the Fisher information matrix (FIM)
and can be easily added to any input design problem for
nonlinear systems, while the resulting problem remains convex.
The paper provides a theoretical analysis of how the range of
the optimal objective function of the original problem is affected
by the coherence constraint. Additionally, the paper presents
numerical evaluations of the proposed approach’s performance
on a Volterra series model in comparison to state-of-the-art
algorithms. I. INTRODUCTION

A. Sparse System Identification
The science of constructing mathematical models for

dynamic systems by measuring their inputs and outputs is
known as system identification. Mathematical models are
an approximation of a system’s actual behavior, and various
assumptions can lead to distinct models. This paper centers
on nonlinear models that can be expressed as a linear
regression, which is defined as

y = Φθ + e, (1)

in which Φ ∈ RN×nθ , θ ∈ Rnθ×1, y ∈ RN×1 and e ∈
RN×1 indicate a regressor matrix that consists of nonlinear
terms of input values, a parameter vector, an observation
vector, and white Gaussian noise with zero mean and covari-
ance matrix σ2I, i.e., e ∼ N (0, σ2I), respectively. Nonlinear
models that are linear in parameters can be formulated as in
(1).

The Polynomial NARX models are widely recognized
nonlinear models used for system identification [1]. The
model is represented by (1), where the regressor Φ includes
polynomials of past input and output signals. The Volterra
model is another nonlinear model used in system identifi-
cation, which is also expressed by (1) [1]. The number of
parameters in a Volterra model is determined by the number
of kernels P and the model memory L, and is given by
nθ =

(
L+P
P

)
.

It is evident from the polynomial NARX and Volterra
models that there can be an enormous number of param-
eters, with only a small number of them being non-zero.
Furthermore, not estimating more parameters than necessary
is beneficial for a low variance error in parameter estimation

[2]. Consequently, sparse parameter estimation can be an
effective approach to estimate this type of models.

In this case, we can estimate the parameter vector θ in
(1) by minimizing the error ‖y − Φθ‖22 with respect θ
while `0 pseudo norm of θ, i.e., ‖θ‖0, which denotes the
number of nonzero elements, is smaller than s; this method
is called P ε0 . Since P ε0 is a NP-hard problem [3], the `0 can
be approximated with `1 which results in the so called P ε1
method, also known as LASSO (least absolute shrinkage and
selection operator) [4].
B. Mutual Coherence

Several papers have been published to analyze the re-
quirements for an accurate sparse estimation [3], [5]–[7].
A significant number of these studies underscore the crucial
role of mutual coherence, which denotes the highest possible
absolute correlation between distinct columns of a regressor,
i.e.,

µΦ = max
i 6=j

|〈φi,φj〉|
‖φi‖2‖φj‖2

, (2)

in which µΦ and φi denote the mutual coherence of Φ and
the i-th column of Φ, respectively.

Specifically, the mutual coherence is essential in sparse
estimation algorithms such as P ε0 , which is evident from its
ability to limit the estimation error, denoted as ‖θε − θ0‖2,
where θε and θ0 represent the solutions obtained by P ε0 and
the true parameters, respectively. A lower mutual coherence
leads to a smaller upper bound on the estimation error, with
the minimum bound being achieved when µΦ = 0 [8].
Similarly, the importance of mutual coherence in P ε1 has been
established in [3]. In a nutshell, sparse estimation requires a
low mutual coherence in order to be accurate.
C. Input Design for Nonlinear Systems

In this paper, we aim to design the input sequence
Unseq := {unseq , · · · , u1} that maximizes the accuracy of
a given model, expressed as

yt = G(Ut)Tθ0 + et. (3)
Here, Ut = (ut, · · · , ut−k) in which k is the maximum
time lag, and G is a nonlinear function. This type of model
structure is very common in black-box identification of non-
linear systems, where a range of candidate non-linearities
are included in the model but where many of these can be
expected to be zero. Volterra and NARX models are two
examples of this. The maximum accuracy is measured by a
scalar function of the FIM, such as λmin(IF ) or log det(IF ),
where λmin, det, and IF represent the minimum eigenvalue,
determinant, and FIM, respectively. To begin with, the FIM
in the linear regression model (1) when e ∼ N (0, σ2I) is
given by

IF =
1

σ2
ΦTΦ. (4)

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 1637



Instead of directly designing the input such that the corre-
sponding Φ results in desired properties of the FIM, which is
a generally acknowledged difficult problem, we will follow
the classical approach and design the per sample FIM given
by

ĪF =
1

σ2
E

{
nseq∑
t=1

ωtω
T
t

}
(5)

where ωt = G(Ut), where in turn Ut is a stationary stochastic
process. Due to stationarity and the law of large numbers

lim
N→∞

1

N
IF = ĪF , w.p. 1

This leads to a two-step procedure: 1) design the per sam-
ple FIM. 2) Generate a realization of the input from the
obtained stationary stochastic process. The motivation for
this approach is that the first step can often be solved using
convex optimization. The method has a long history, see e.g.
[9]–[12].

In our setting, the per sample FIM is given by [12], [13]

ĪF =
1

σ2
E

{
nseq∑
t=1

ωtω
T
t

}
=

1

σ2

∫
Rnseq

nseq∑
t=1

ωtω
T
t p(Unseq )dUnseq , (6)

where p(Unseq ) is the probability density function of Unseq .
The per sample FIM exhibits different behaviors for linear
and nonlinear systems. In nonlinear systems, the per sample
FIM is dependent on the probability function, while in linear
systems, the per sample FIM is an affine function of the
input spectrum [10], [11], [14], [15]. In linear systems, a
finite representation for the input spectrum is considered as
a design variable to reduce complexity. In nonlinear models,
the input signal ut can be restricted to take a finite number
dseq of values, to decrease computational complexity [12].
We will use D to show the set of these values. Since the input
signal ut can only take a finite number of values, p(Unseq )
then becomes a probability mass function and corresponds
to a stationary process. Moreover, assuming the input signal
ut to be a stationary process with finite memory can further
reduce computational complexity [16]. Therefore the optimal
pmf is selected from the set PD which is characterized as

PD :=
{
p : Dnseq → R

∣∣∣ ∑
x∈Dnseq

p(x) = 1; p(x) ≥ 0,

∀x ∈ Dnseq ,
∑
ut∈D

p(ut,w) =
∑
ut∈D

p(w, ut),∀w ∈ Dnseq−1
}
.

By restricting the input values as per the above conditions,
the expression for ĪF in (6) becomes

ĪF =
1

σ2

∑
Unseq∈Dnseq

nseq∑
t=1

ωtω
T
t p(Unseq ). (7)

In [12], a convex optimization problem is proposed to de-
sign the optimal FIM for nonlinear models. The optimization
aims to minimize the estimation error with respect to the pmf
p(Unseq ) while p(Unseq ) ∈ PD. It is of the form

min
p(Unseq )∈PD

Estimation error

st ĪF =
1

σ2

∑
Unseq∈Dnseq

nseq∑
t=1

ωtω
T
t p(Unseq ), (8)

in which the estimation error can be defined by different
criteria such as A-optimality, D-optimality, E-optimality, or
L-optimality [9]. The number of free variables in the above
problem is dk+1

seq .
In [13], an alternative approach to designing inputs in

nonlinear models was proposed, which is based on graph
theory. The approach involves using the fact that each
element in the convex polyhedron PD can be represented
by a convex combination of its extreme points. Therefore,
for all z ∈ PD, we have

z =

nA∑
i=1

βiai, ai ∈ AP (9)

in which set AP includes all extreme points of PD, βi ≥ 0

and
nA∑
i=1

βi = 1. The usage of graph theory is to find the set

AP . According to [17, Theorem 6], each ai can be described
by a prime cycle of a graph.

As a result, in [13] the per sample FIM which is associated
with the i− th prime cycle is given by

Ī
(i)
F ≈

1

σ2Nm

Nm∑
t=1

ωtω
T
t , (10)

in which Nm is sufficiently large and ωt depends on
{uit}

t=Nm
t=0 which is obtained from ai. It is possible to reduce

the sum (7) from dimension nseq to dimension 1 by using
the approximation of Ī

(i)
F in (10).

The final optimization problem to find the optimal FIM in
[13] is given by

min
β1,β2,··· ,βnA

Estimation error

st ĪappF =

nA∑
i=1

βiĪ
(i)
F

nv∑
i=1

βi = 1

βi ≥ 0, ∀i ∈ {1, · · · , nA}. (11)

Methods (8) and (11) are equivalent. For large values of
nseq , method (11) is preferred in terms of computational
complexity [16].

The optimal pmf and per sample FIM are the results of
both methods, which are given by equations (8) and (11).
In the second step of the method we need to generate a
realization from the corresponding distribution. To this end,
a method based on a Markov chain is proposed in [16]. First,
the optimal pmf is used to design a transition probability
matrix A using Algorithm 1 in [16]. Then, a Markov chain is
run using a random initial state and the transition matrix A to
generate the input sequence Unseq . Once the input sequence
is obtained, the regressor Φ is constructed based on this
sequence. This regressor matrix is now an approximation
of the optimal regressor which would have been obtained if
the FIM as given by (4) had been used. It is worth noting
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that when the resulting Markov chain exhibits ergodicity,
although the input sequence is generated as a realization of
a stationary stochastic process, it gives approximately the
desired average properties of the estimator of θ for different
noise realizations [16].

Remark 1: In some cases, it is possible for the optimal
solution to be non-ergodic, indicating the presence of discon-
nected subgraphs. To address this issue, a potential solution is
to add a small perturbation to the resulting Markov chain of
the input. By doing so, the perturbed Markov chain becomes
ergodic [16].
D. Contribution

Accurate sparse estimation requires a low mutual coher-
ence, but the input design problem for nonlinear models
lacks coherence constraints, as demonstrated in (11) and
(8). This often results in high correlation between input
sequences, leading to a regressor in the model (1) with a
high mutual coherence. Although [18] proposes a method for
limiting coherence in linear systems, it cannot be applied to
nonlinear systems. The importance of low mutual coherence
in nonlinear models, such as polynomial NARX and Volterra
series, is greater than in linear models because nonlinear
models tend to be intrinsically sparse. Therefore, this paper
proposes a novel approach for designing inputs that enables
the production of accurate sparse estimates in nonlinear
models. The contributions of this paper are as follows:

1) An innovative method is introduced to design input
sequences that provide precise sparse estimation. This
is achieved by adding coherence constraints to the
original approach described in equations (11) and (8),
while still maintaining convexity of the optimization
problem.

2) Theorem 2 establishes an upper bound on the mutual
coherence that guarantees correct support estimation of
θ in (1) using the P ε1 method, as stated in [19]. The
ranges of the optimal objective function of both meth-
ods (the proposed approach and the original method
outlined in (11)) are theoretically derived for compar-
ison (Theorem 3).

3) The proposed method is numerically evaluated on a
Volterra series model and compared to state-of-the-art
algorithms.

II. PROPOSED ALGORITHM

In this section, a new input design method for nonlinear
sparse models is formulated.

According to the definition of mutual coherence in (2) and
using the above per sample FIM, it is straightforward to show
that

µΦ = max
k 6=j

|ĪF (k, j)|√
ĪF (k, k)ĪF (j, j)

. (12)

To account for the accuracy of sparse estimation,
we propose incorporating a constraint of the form
{max
k 6=j

|ĪF (k,j)|√
ĪF (k,k)ĪF (j,j)

≤ η} into the optimization problems

(8) and (11). Imposing this constraint on (8) results in the
following convex optimization problem

min
p(Unseq )∈PD

Estimation error

st ĪF =
1

σ2

∑
Unseq∈Dnseq

nseq∑
t=1

ωtω
T
t p(Unseq )

max
k 6=j

|ĪF (k, j)|√
ĪF (k, k)ĪF (j, j)

≤ η (13)

To solve the problem (13), we can use a convex optimization
toolbox such as CVX [20]. To incorporate the coherence
constraint |ĪF (k, j)| ≤ η

√
ĪF (k, k)ĪF (j, j), k 6= j, in CVX

we can use the geometric mean by
√

ĪF (k, k)ĪF (j, j) =
geomean([ĪF (k, k), ĪF (j, j)]). Furthermore, in order to con-
strain the mutual coherence in the aforementioned problem,
a tuning parameter, η, is employed. The paper [7] presents a
theoretical bound for η that guarantees the correct estimation
of the support vector of θ through P ε1 . The following theorem
describes this bound.

Theorem 2 ( [7]): Consider the model y = Φθ0 + e
where e ∼ N (0, σ2I), and where θ0 denotes a sparse
parameter vector with support Λ0 and ‖θ0‖0 = s. Assume
that the mutual coherence of Φ satisfies the bound 0 ≤ µΦ <
1
3s . Then the support of the solution θ̂ obtained through P ε1
is Λ0 with probability at least(

1− (nθ − s)
n1+ν
θ

)(
1− e− s7

)
, ∀ν > 0. (14)

According to this theorem, sparse parameter vectors can
be accurately estimated using P ε1 if there is a sufficiently
small mutual coherence. While the above theorem has been
established for P ε1 , similar results can also be obtained for
other sparse estimation methods, emphasizing the importance
of coherence constraints in input design.

Moreover, adding the coherence constraint affects the
estimation error compared to the main problem. Therefore,
one of the questions that arises is how much the range of ob-
jective function changes by adding the coherence constraint.
The next theorem answers this question.

Theorem 3: Consider the following optimization problem:
max

β1,β2,··· ,βnv
λmin(ĪappF )

st ĪappF =

nv∑
i=1

βiĪ
(i)
F

nv∑
i=1

βi = 1

βi ≥ 0, ∀i ∈ {1, · · · , nv}, (15)

in which Ī(i)F ≥ 0. Let the corresponding optimal objective
function be denoted by λ∗min. Then it holds that λ∗min ≤
nθI

max
F , in which Imax

F = max
1≤i≤nv,1≤k≤nθ

Ī
(i)
F (k, k). Adding

the coherence constraint {max
k 6=j

|ĪappF (k,j)|√
ĪappF (k,k)ĪappF (j,j)

≤ η} to

the above problem yields a new input design problem, for
which we denote the optimal objective function by λη

∗

min. It
then holds that λη

∗

min ≤ λ∗min and λη
∗

min ≤ (η(nθ−1)+1)Imax
F .

Proof: See Appendix I.
Based on the above theorem, the upper bound of the

optimal objective function in the new input design problem
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is impacted by two factors: the number of parameters and
the value of the tuning parameter η. When the value of
η decreases, the range of the optimal objective function
becomes smaller. However, when η = 1, the range is not
affected. As the number of columns in matrix Φ increases
with nθ, there are more correlations between these columns
that must be restricted to obtain feasible solutions. This
results in a larger reduction of the feasible set, which in
turn causes an increase in the difference between the upper
bounds of λ∗min and λη

∗

min. However, even if the estimation
accuracy (as measured by λ∗min, or another model quality
measure) may seem to be reduced by including the coherence
constraint, the estimation accuracy when a sparse estimation
method is used may improve. This is in fact the reason for
including the constraint. We will see an example of this in
Section III.

The algorithm is summarized in Algorithm 1.

Algorithm 1 Coherence-based Input Design for Nonlinear
Systems (CIDNS)

Require: input levels, η, ωt and nseq .
1) Design the optimal per sample FIM by solving (13).
2) Design the input sequences through the method

proposed in [16].
3) Construct the optimal regressor Φ by the obtained

input sequence from the previous step.
4) Apply a sparse estimation algorithm to model (1).

Output: θ̂.

III. NUMERICAL STUDY

This section assesses the effectiveness of the new proposed
approach for designing inputs in nonlinear systems. As
previously stated, the Volterra model is a commonly used
nonlinear model, and its parameter vectors typically exhibit
sparsity. For this numerical study, we examine the Volterra
model presented in [21], which is given by
y(t) = 0.5 + 0.8u(t) + 0.12u(t)u(t− 1)

− 0.43u(t− 2)u(t− 3) + 0.21u(t− 2)u(t− 4) + e(t)
(16)

in which the observation was corrupted by additive white
Gaussian noise e ∼ N (0, σ2I), which was selected to obtain
SNR (Signal-to-Noise Ratio) between 9 and 30. The SNR is
given by

SNR = 10 log
‖Φθ‖22
E(eTe)

. (17)

As the model given in (16) has P = 2 kernels and L = 5,
there are 21 parameters in total. However, out of these 21
parameters, only five of them possess non-zero values. Two
ways of measuring the estimation performance are used:
NRMSE, which quantifies the error in sparse estimation,
and is defined as NRMSE = ‖θ−θ0‖2

‖θ0‖2
, and POD, which

measures the proportion of correctly identified non-zero
coefficients in the parameter vector, and is given by

POD =
‖θ � θ0‖0

s
, (18)

in which � denotes element-wise product. Before computing
the POD, coefficients with magnitudes lower than 10−3 are

truncated to zero in the simulations. To determine the appro-
priate threshold value, we initially estimate the parameter
vector resulting in θ and apply 200 different thresholds
spaced logarithmically within the range of [10−5, 10−2]. This
yields parameter vectors θti, where 1 ≤ i ≤ 200. Subse-

quently, we measure the error erri =
|‖y−Φθ‖2−‖y−Φθti‖2|

‖y−Φθ‖2
.

To fine-tune the threshold value, we identify the maximum
threshold that satisfies the condition erri ≤ ε, where ε
represents a small positive constant. The study considers
the input levels in D ∈ {−0.1, 0, 0.4, 0.8, 1.3, 1.6, 2.3}.
The optimization problem used for designing the optimal
input involves using − log det(IF ) as the estimation error.
Consequently,

max
p(Unseq )∈PD

log det(ĪF ) (19a)

st ĪF =
∑

Unseq∈Dnseq

nseq∑
t=1

ωtω
T
t p(Unseq ) (19b)

|ĪF (k, j)| ≤ η
√

ĪF (k, k)ĪF (j, j), k 6= j. (19c)

The number of free variables in the above optimization
problem is 75 = 16807. The CVX toolbox is employed to
solve (19). For comparison, we use standard input design
where the mutual coherence constraint (19c) has been re-
moved, called IDNS (Input Design for Nonlinear Systems).
The proposed method in [16] is utilized to generate the
input sequences. To estimate the parameter vector θ, we
employ the proposed method CIDNS in conjunction with
sparse estimation algorithms LADMM (LASSO via Alter-
nating Direction Method of Multipliers) [22] and Sparse
Bayesian Approach to System Identification (referred to as
SPBSI) [23], resulting in CIDNS-LADMM and CIDNS-
SPBSI. Furthermore, we combine the standard method IDNS
with ordinary Least Squares (LS) and LADMM, and SPBSI.
This results in IDNS-LADMM, IDNS-SPBSI, and IDNS-LS.
The simulations were conducted using MATLAB R2022a on
a computer with a 4.00 GHz I7 CPU and 16 GB RAM,
operating on the Microsoft Windows 10 operating system.

Two hyperparameters are required for the algorithms:
λSPBSI (SPBSI as in [23]), and λLADMM (LADMM). We chose
both to be 0.25 as this resulted in the lowest error ‖y−Φθ‖2
during experimentation. The number of observations is 1000.

To select an appropriate value for the parameter η, the
coherence constraint can restrict the feasible set of IDNS
substantially because of the nonlinear terms in the regressor.
If a small value of η is chosen, this can lead to an infeasible
problem. However, if η is too large, it can result in a
high sparse estimation error. To address this, in this study,
we have picked the value of η = 0.9 after conducting
some preliminary experiments. In order to investigate the
performance of the proposed method for different values of
η, we also evaluate CIDNS-LADMM for η = 0.95. Our
simulation results indicate that η = 0.9 is reasonable for the
considered problem as it ensures problem feasibility while
achieving accurate sparse estimation.

The determinant of the Fisher information matrix,
det(IF ), for IDNS and CIDNS with η = 0.9 were 0.18,
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and 0.025, respectively. This suggests that the estimation
accuracy should be worse for CIDNS. However, as remarked
after Theorem 3, this holds for non-sparse estimation. To
evaluate the performance when sparse estimation is used we
first note that the mutual coherence obtained through IDNS is
0.99, while it has dropped to µΦ = 0.9 for CIDNS with η =
0.9, suggesting improved behavior of CIDNS for sparse esti-
mation. To further examine this we have conducted 300 ex-
periments for each SNR level {9, 12, 15, 18, 21, 24, 27, 30},
reported in Figures 1a and 1b, respectively. From these
figures, we see a significant improvement when using the
coherence constraint, both with respect to the NRMSE and
with respect to POD. Based on these numerical results, it
can be concluded that using a coherence constraint, as in
CIDNS, in conjunction with sparse estimation methods such
as LADMM and SPBSI, significantly reduces the NRMSE
and leads to higher POD, especially at low SNRs. This
implies that reducing the mutual coherence can lead to
improved performance in sparse estimation.

To examine how the coherence constraint affects problem
(19), we plot the histogram of the resulting input sequences
from CIDNS with η = 0.9 and IDNS in Figure 1c.
The figure reveals that IDNS prefers to use input levels
of {−0.1, 1.3, 2.3}, whereas CIDNS uses {−0.1, 0.8, 2.3}.
Additionally, Figure 2a depicts the resulting optimal pmf
from IDNS and CIDNS. This figure shows that reducing
the coherence leads to greater sparsity in the pmf, with
the optimal pmf of CIDNS being more sparse than that of
IDNS. Furthermore, the maximum probabilities in CIDNS
occur when it designs input sequences using input levels of
-0.1 and 0.8. This indicates that CIDNS attempts to decrease
coherence by focusing more on the input levels of -0.1 and
0.8 among the seven input levels.

Figures 2b and 2c depict the input signal variations over
time at input levels that yield the maximum resulting prob-
ability from CIDNS with η = 0.9 and IDNS, respectively,
as shown in Figure 2a. In Figure 2c, the input signals 2, 3,
4, and 5 alternate between input levels of -0.1 and 2.3 over
time, while input signal 1 remains constant, resulting in high
mutual coherence in IDNS. Conversely, when a coherence
constraint is present, as illustrated in Figure 2b, the input
signals fluctuate between -0.1 and 0.8, resulting in non-
constant input signals over time.

IV. CONCLUSION

This paper introduces a novel technique to enhance sparse
estimation accuracy in nonlinear systems by restricting the
mutual coherence during input design. The method’s objec-
tive is to generate a regressor with low coherence, which
is critical for accurate sparse estimation. The maximum
ratio between the diagonal and non-diagonal elements of the
Fisher information matrix determines the mutual coherence,
making it easy to incorporate into standard input design
problems, while the resulting problems remain convex. It
is theoretically analyzed how the proposed idea affects the
optimal objective function of the original approach. Based
on numerical results, the proposed approach has a lower
normalized root mean square error and a higher accuracy for

identifying non-zero elements in the parameter vector than
state-of-the-art input design algorithms.

APPENDIX I
PROOF OF THEOREM 3

To prove Theorem 3, we first find the range of the optimal
cost of the original problem (15). Using the first constraint
of (15) results in

ĪF =



nv∑
i=1

βiĪ
(i)
F (1, 1) · · ·

nv∑
i=1

βiĪ
(i)
F (1, nθ)

nv∑
i=1

βiĪ
(i)
F (2, 1) · · ·

nv∑
i=1

βiĪ
(i)
F (2, nθ)

... · · ·
...

nv∑
i=1

βiĪ
(i)
F (nθ, 1) · · ·

nv∑
i=1

βiĪ
(i)
F (nθ, nθ)


. (20)

According to the Gershgorin circle theorem [24], we have∣∣∣λm − nθ∑
k 6=j,j=1

nv∑
i=1

βiĪ
(i)
F (k, j)

∣∣∣ ≤ nv∑
i=1

βiĪ
(i)
F (k, k), (21)

in which λm denotes the m-th eigenvalue of ĪF . Then, we
can write

λm ≤
nθ∑

k 6=j,j=1

nv∑
i=1

βiĪ
(i)
F (k, j) +

nv∑
i=1

βiĪ
(i)
F (k, k). (22)

Since Imax
F = max

1≤i≤nv,1≤k≤nθ
Ī
(i)
F (k, k) and

nv∑
i=1

βi = 1, we

can write

λm ≤
nθ∑

k 6=j,j=1

nv∑
i=1

βiĪ
(i)
F (k, j) +

nv∑
i=1

βiI
max
F

≤
nθ∑

k 6=j,j=1

nv∑
i=1

βiĪ
nd
F (k, j) + Imax

F =

nθ∑
k 6=j,j=1

ĪndF (k, j) + Imax
F

(23)

where ĪndF (k, j) = max
1≤i≤nv

(Ī
(i)
F (k, j)). Since ĪndF (k, j) ≤

Imax
F , we have,

λm ≤
nθ∑

k 6=j,j=1

ĪndF (k, j)+1 ≤ (nθ−1)Imax
F +Imax

F = nθI
max
F .

On the other hand, since the FIM is a positive definite matrix,
λm > 0. Using above inequality, we have

0 < λm ≤ nθImax
F . (24)

Finally, according to the above inequality, the optimal cost
of the convex problem (15) satisfies λ∗min ∈ (0, nθI

max
F ]. We

add the coherence constraint to the original problem which
results in max

β1,β2,··· ,βnv
λmin(ĪappF )

st ĪappF =

nv∑
i=1

βiĪ
(i)
F

max
k 6=j

|ĪappF (k, j)|√
ĪappF (k, k)ĪappF (j, j)

≤ η

nv∑
i=1

βi = 1

βi ≥ 0, ∀i ∈ {1, · · · , nv}. (25)

Similarly, the optimal cost of the above problem is derived.
Since Imax

F = max
1≤i≤nv,1≤k≤nθ

Ī
(i)
F (k, k) , it is straightforward

to show that ĪappF (j, j) ≤ Imax
F . Using (23) results in
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Fig. 1: Evaluation with: s = 5 and Φ ∈ R1000×21.
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Fig. 2: Evaluation of input design problems.

ληm ≤
nθ∑

k 6=j,j=1

ĪappF (k, j) + Imax
F ,

where ληm denotes the m-th eigenvalue of ĪappF . According to
the coherence constraint, we have max

k 6=j
|ĪappF (k, j)| ≤ ηImax

F .

Using above inequality we can write

ληm ≤
nθ∑

k 6=j,j=1

ĪF (k, j) + Imax
F ≤ (η(nθ − 1) + 1)Imax

F .

Thus, the optimal cost of the problem (25) satisfies λη
∗

min ∈
(0, (η(nθ − 1) + 1)Imax

F ]. Moreover, since there is an addi-
tional constraint in (25) compared to (15), it is straightfor-
ward to show that λη

∗

min ≤ λ∗min. This concludes the proof of
Theorem 3. REFERENCES

[1] Johan Schoukens and Lennart Ljung, “Nonlinear system identification:
A user-oriented road map,” IEEE Control Systems Magazine, vol. 39,
no. 6, pp. 28–99, 2019.

[2] L. Ljung, System Identification: Theory for the User, Prentice-Hal,
1999.

[3] M. Elad, Sparse and Redundant Representations, Springer, 2010.
[4] R. Tibshirani, “Regression shrinkage and selection via the lasso,”

Journal of the Royal Statistical Society (Series B), vol. 58, pp. 267–
288, 1996.

[5] J. Parsa and H Hjalmarsson, “On reducing the coherence in sparse
system identification,” 59th IEEE Conference on Decision and Control
(CDC), 2020.

[6] D. L. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Trans. Information Theory, vol. 47, no. 7, pp.
2845–2862, 2001.

[7] Zvika Ben-Haim, Yonina C. Eldar, and Michael Elad, “Coherence-
based performance guarantees for estimating a sparse vector under
random noise,” IEEE Transactions on Signal Processing, vol. 58, no.
10, pp. 5030–5043, 2010.

[8] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans.
Info. Theory, vol. 52, no. 1, pp. 6–18, 2006.

[9] G. Goodwin and R. Payne, Dynamic System Identification: Experiment
Design and Data Analysis, Academic Press, New York, 1977.

[10] X. Bombois, G. Scorletti, M. Gevers, P. Van den Hof, and R. Hilde-
brand, “Least costly identification experiment for control,” Automat-
ica, pp. 1651–1662, 2006.

[11] H. Hjalmarsson, “System identification of complex and structured
systems,” European Journal of Control, pp. 275–310, 2009.

[12] Christian A. Larsson, Hkan Hjalmarsson, and Cristian R. Rojas, “On
optimal input design for nonlinear FIR-type systems,” in 49th IEEE
Conference on Decision and Control (CDC), 2010, pp. 7220–7225.

[13] Patricio E. Valenzuela, Cristian R. Rojas, and Hkan Hjalmarsson,
“Optimal input design for non-linear dynamic systems: A graph theory
approach,” in 52nd IEEE Conference on Decision and Control, 2013,
pp. 5740–5745.

[14] J. Parsa and H. Hjalmarsson, “Optimal input design through infinity
norm minimization using proximal mapping,” in 60th IEEE Confer-
ence on Decision and Control, 2021.

[15] J. Parsa, C. R. Rojas, and H. Hjalmarsson, “Low coherence regressor
design in sparse system identification,” IEEE Transaction of Automatic
Control (Submitted), 2021.

[16] Patricio E. Valenzuela, Cristian R. Rojas, and Hkan Hjalmarsson,
“A graph theoretical approach to input design for identification of
nonlinear dynamical models,” Automatica, vol. 51, pp. 233–242, 2015.

[17] Arif Zaman, “Stationarity on Finite Strings and Shift Register
Sequences,” The Annals of Probability, vol. 11, no. 3, pp. 678 –
684, 1983.

[18] Javad Parsa, Cristian R. Rojas, and Hkan Hjalmarsson, “Application-
oriented input design with low coherence constraint,” IEEE Control
Systems Letters, vol. 7, pp. 193–198, 2023.

[19] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” in In Proc. Asilomar Conf. Signal Syst. Comput.,
1993.

[20] M. Grant and S. Boyd., “Cvx: Matlab software for disciplined convex
programming (web page and software),” Tech. Rep., Stanford.

[21] Sayed Mohammad Reza Loghmanian, Rubiyah Yusof, and Marzuki
Khalid, “Nonlinear dynamic system identification using volterra series:
Multi-objective optimization approach,” in 2011 Fourth International
Conference on Modeling, Simulation and Applied Optimization, 2011,
pp. 1–5.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[23] W. Pan, Y. Yuan, J. Gonalves, and GB. Stan, “A sparse bayesian
approach to the identification of nonlinear state-space systems,” IEEE
Trans. on Automatic Control, vol. 61, no. 1, 2016.

[24] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge
University Press, 2 edition, 2012.

1642


