
Model Predictive Control with Collision
Avoidance for Unknown Environment

Daniel Silvestre and Guilherme Ramos

Abstract— This paper proposes a model predictive con-
trol framework to design autonomous rendezvous opera-
tions for terrestrial and space missions in the scope of
spacecraft and drones, in the presence of obstacles in
an unknown environment. Vehicles equipped with a LiDAR
collecting points associated with the obstacles are con-
sidered. By proposing an efficient method to compute the
smallest ellipse that contains the collected LiDAR points,
this work is able to correct, in run time, the vehicle tra-
jectory to avoid collision and reach the rendezvous target.
Finally, simulations of the proposed approach to show its
effectiveness are presented.

Index Terms— Autonomous vehicles; Predictive control for
linear systems; Linear systems

I. INTRODUCTION

A crucial and challenging problem for many terrestrial and
space missions is the autonomous operation of spacecraft

and drones. A relevant operation in these missions is the design
of rendezvous. The classical way of designing rendezvous
missions trajectories is offline, where the maneuvers are per-
formed in an open-loop, with the need for online trajectory
corrections from possible trajectory deviations or obstacles
that come across [1], [2]. The advances in the computational
power and efficiency of on-board processing units give rise
to an increasing interest in applying Model Predictive Control
(MPC) to these rendezvous guidance problems [3]–[10].
The application of rendezvous or exploration involving Un-
manned Aerial Vehicles (UAVs) can often resort to consensus
algorithms [11], [12] that generate waypoints to be followed,
or other algorithms based on flocking rules [13], [14], which
can further be improved with obstacle avoidance mechanisms
based on reachability tools [15] or through a better design of
the agent interactions [16], [17]. However, these strategies pro-
vide very computationally efficient methods at the expense of
deviating from optimal trajectories such as when considering

D. Silvestre is with School of Science and Technology from the NOVA
University of Lisbon (FCT/UNL), 2829-516 Caparica, Portugal, with
COPELABS from the Lusófona University, and also with the Institute for
Systems and Robotics, Instituto Superior Técnico, University of Lisbon.
dsilvestre@isr.tecnico.ulisboa.pt

G. Ramos (guilherme.ramos@tecnico.ulisboa.pt) is
with Dept. of Computer Science and Engineering, Instituto Su-
perior Técnico, University of Lisbon, Portugal and Instituto de
Telecomunicações, 1049-001 Lisbon, Portugal.

This work was partially supported by the Portuguese Fundação
para a Ciência e a Tecnologia (FCT) through Institute for Sys-
tems and Robotics (ISR), under Laboratory for Robotics and Engi-
neering Systems (LARSyS) project UIDB/50009/2020, through project
PCIF/MPG/0156/2019 FirePuma and through COPELABS, University
Lusófona project UIDB/04111/2020.

MPC for search and coverage missions like in [18]. Given that
the MPC setup is based on optimization, it is simple to add
battery energy constraints, terminal position sets, etc.
MPC and its distributed versions have been extensively studied
both for linear and nonlinear models [19]. These method-
ologies are quite efficient assuming that the problem was
adequately formulated with collision avoidance given as sets
to be avoided like in [20]. In the case one opts by modeling
the obstacles as convex polytopes, the work in [21] considers
each hyperplane constraint and encodes them into a mixed
integer formulation of the MPC problem. Such an approach
is amenable to considering multiple polytopes by combining
the different options but has two main disadvantages: i) it
poses the inherent assumption that the obstacles are known
a priori since converting between a point representation to a
hyperplane is costly to perform in real-time; ii) a mixed-integer
program is also computationally intensive to solve, which can
be made worse once we have to include nonlinear dynamics
for the vehicles.
In more recent work, the authors of [22] have encoded the
obstacles by enforcing a given safety distance. This is done
by adding inequality constraints that match a hyperplane sep-
aration between the state and the obstacle with the estimated
heading. Such a formulation to avoid the use of mixed-
integer programming resembles our approach of considering
hyperplanes for some given points in the trajectories but adds
two variables and three constraints for each pair of estimated
states in the prediction horizon and obstacle. Moreover, it
requires maintaining an estimation of the obstacle that is not
available when the UAV is equipped with LiDAR sensors and
we do not know the obstacle dynamics.
In [2], the authors improved on strategies using hyperplanes
by considering spherical objects and attaching a tangent hy-
perplane constraint for each point in the estimation horizon.
Then, the MPC problem is solved sequentially with constraints
recomputed from the previous iteration. This approach im-
proves on [22] but poses extra computational complexity on
each sampling time as a series of MPC programs have to be
solved. Moreover, computing the tangent hyperplanes has a
closed-form expression for circular or spherical obstacles but
it can be conservative in a LiDAR-based approach.
A last option proposed in the literature is the use of Control
Barrier Functions (CBFs). The authors in [23] have proposed
a solution to the problem that resorts to solving a quadratic
optimization in each discrete-time slot by including a CBF
constraint for a single obstacle. Such an approach also requires
a priori knowledge of the obstacle and, even though quite

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 6124

(a) Original environment. (b) Possible environment set repre-
sentation.

Fig. 1: A depiction of how obstacles can be modeled using sets to
be added to the Model Predictive Control (MPC) optimization.

trivial to define for circular or ellipsoidal objects, it is not
amenable to polytopic obstacles or point-based readings.
Main contributions: This works proposes an efficient method
that takes the collected LiDAR points as input and computes
hyperplanes tangent to the smallest ellipse containing all the
measured points. These hyperplanes are then added to an MPC
formulation that is guaranteed to avoid collisions by solving
two different optimization problems. All computations can be
performed online and without any prior knowledge of the
obstacle shape or location.
Preliminaries and Notation: The first n positive integers are
denoted by [n], i.e., [n] = {1, . . . , n} and the set of integers
from i to j (i ≤ j) by [i : j], i.e., [i : j] = {i, i + 1, . . . , j}.
Given a set S ⊂ R2, the translation of S by vector v =
(vx, vy) ∈ R2 is denoted as S + v, where S + v = {(x, y) +
(vx, vy) : (x, y) ∈ S}.

II. MODEL PREDICTIVE CONTROL WITH COLLISION
AVOIDANCE FOR KNOWN ENVIRONMENT

This section starts by formalizing a simpler version of the
tackled problem to build the necessary definitions for the
more challenging case of an unknown environment. Consider
a vehicle and a set of M ≥ 0 static (not moving) obstacles
also described by closed curves {Oi}Mi=1, with Oi ⊂ R2, as
illustrated in Fig. 1 for M = 4. Additionally, assume that
each Oi is limited, i.e., for some εi > 0 it follows that
Oi ⊆ Bεi , where Br = {x : d(x,0) ≤ r} and d is the
Euclidean distance. Given a target rendezvous position of the
space X ∈ R2, the goal is to devise a trajectory for the drone
to follow such that it avoids the obstacles and arrives at the
target place X until a time limit τ > 0 while optimizing a
given cost function (e.g. the fuel consumption of the drone.)
This paper assumes that the drone can be modeled as a Linear
Time-Invariant (LTI) model given by:

x[k + 1] = Ax[k] +Bu[k]

where x[k] ∈ Rn is the state and u[k] ∈ Rm is the actuation.
Notice that the linear model is a simplification that assumes a
fully-actuated drone instead of having the acceleration depen-
dent on the thrust and the attitude of the body. Nevertheless, if
the MPC enforces a smooth and sufficiently slow acceleration,
a low-level controller can track the generated trajectory with
for instance an ArduPilot. Therefore, the state x is composed
of position and velocity such that x[k] =

[
p[k]⊺ v[k]⊺

]⊺
.

The controller is based on the following optimization problem
PK
1 for a fixed horizon N :

Fig. 2: Example trajectory (blue - feasible - and orange - infeasible),
constraint boundaries generated by the algorithm for the infeasible
point (purple) and the nearest points on the circle to each of the
infeasible points of the trajectory (yellow).

minimize
x[.],u[.]

J(x[.],u[.],X)

subject to x[0] = x[k]
x[ℓ+ 1] = Ax[ℓ] +Bu[ℓ], ℓ ∈ [0 : N − 1]
x[ℓ] ∈ X , ℓ ∈ [0 : N]
u[ℓ] ∈ U , ℓ ∈ [0 : N − 1]
p[ℓ] ∩Oi = ∅, ℓ ∈ [0 : N] , i ∈ [M]

where x and u are optimization variables to match the
predicted state and actuation over the horizon N , and the
notation x[.] means the concatenation of the sequence of
variables x. Moreover, the sets X and U translate constraints
on the feasible trajectories performed by the vehicle such
as limited mission plane or velocity vectors, and the cost
function J(x[.],u[.],X) should translate the objective for the
mission. For rendezvous, a possible definition of the cost
function is

J(x[.],u[.],X) = ∥x[.]− 1N+1 ⊗ X∥Q + ∥u[.]∥R
where ∥v∥A := v⊺Av. The problem in (1) is not convex due to
the obstacle constraints, which poses difficulties when solving
it by the onboard processors of a drone. In this paper, given
that the MPC is linear, a solution that maintains the same
level of algorithmic complexity when adding the obstacles
constraints is pursued. The remainder of this section, for
completeness, takes advantage of the known environment to
introduce two strategies from the literature.

A. Obstacle avoidance with Sequential Linear
Programming

A solution to problem PK
1 could trivially be pursued by

modeling it as a mixed integer program if the sets are given
as polytopes (a binary variable for each facet). However, for
a single obstacle modeled as a circle (O1 = (pobstacle, r),
for center pobstacle and radius r), one could resort to the
strategy in [2] that introduces a sequential linear programming
approach that can roughly be described as introducing a
hyperplane tangent to the projection of each point of the
previous trajectory on the surface of the circle.
A visual depiction is given in Fig. 2 for the first iteration of
Algorithm 1. The unconstrained trajectory resulting from line 3
is shown in blue with the points corresponding to the indices in
set I shown in orange. These infeasible points will generate
the purple hyperplanes (line 15) to be considered based on
the closest points to the surface computed in line 14, shown
in yellow. Remark that the description is required to be a circle
for the projection step to be easy to calculate.
Next, an upper-bound on the computational complexity of
Algorithm 1 is presented.

6125

Algorithm 1 Sequential Convex Programming for MPC with
obstacle avoidance
1: Input: x[k], X, O1 := (pobstacle, r), maxTol, maxIter
2: Output: u⋆[k]
3: x(0)[.],u(0)[.] = solve (1) without (1) constraint
4: u⋆[k] = u(0)[0]
5: if x(0)[.] not feasible in (1) then
6: κ = 0
7: tol = 2maxTol
8: I = ∅
9: while tol ≥ maxTol and κ ≤ maxIter do

10: C = ∅
11: for all ℓ = 1, · · · , N do
12: if ℓ ∈ I or ∥p(κ)[ℓ]− pobstacle∥2 ≤ r then
13: q =

p(κ)[ℓ]−pobstacle

∥p(κ)[ℓ]−pobstacle∥2
14: pnearest = pobstacle + rq
15: C = C ∪ q⊺p(κ)[ℓ] ≥ q⊺pnearest

16: if ℓ /∈ I then
17: I = I ∪ ℓ
18: end if
19: end if
20: end for
21: κ = κ+ 1
22: x(κ)[.],u(κ)[.] = solve (1) with C instead of (1)
23: tol = ∥x(κ)[.]− x(κ−1)[.]∥2
24: u⋆[k] = u(κ)[0]
25: end while
26: end if

Proposition 1: The computational complexity of Algorithm 1
is O(smaxIter), where s is the complexity of solving (1). ⋄
Notice that the computational complexity of solving 1 depends
on the selected solver.

B. Obstacle avoidance with Control Barrier Functions
In the mathematics field of constrained optimization, a barrier
function (BF) is a continuous function whose value on a point
augments to infinity as the point approaches the boundary of
an optimization problem feasible region [24]. The main goal of
these functions is to be used to replace inequality constraints
via a penalizing term in the objective function that is often
easier to handle. Another possible approach to address PK

1 is
by using the so-called control barrier functions (CBFs) [23],
[25], a particular case of BFs. CBFs allow specifying safe
and unsafe sets, which, in turn, may be used to solve quadratic
programs encoding the obstacle-avoiding problem. When there
is a single obstacle defined as a circle, finding a suitable CBF
is rather trivial but such a procedure does not generalize for
multiple obstacles and partial views of the obstacles.
Obstacle avoidance using CBFs can use, for instance, the tech-
nique in [23] corresponding to the solution of the following
Quadratic Program (QP) with a suitable Lyapunov function V
and a CBF h:

u∗[x] = argmin
u∈Rm, δ∈R

1

2
∥u∥2 + 1

2
pδ2

s.t. LfV + LgV u+ γ(V) ≤ δ
Lfh+ Lghu+ α(h) ≥ 0

with p > 0 and functions γ ∈ K, α ∈ K∞ render the feasible
set forward invariant. The notation Lf and Lg are the Lie
derivative operators applied to the nonlinear dynamics affine
in the actuation given by ẋ = f(x) + g(x)u. Notice that,
even though our system is assumed to be running in discrete-
time, the constraints in the QP only relate to the current time

instant and do not pose any difficulty. This controller can
have undesired equilibria but in [23] is shown how to deal
with that problem by introducing a rotation to the Lyapunov
function. Such details are omitted herein since for generic
initial conditions, those limit cases will not happen.
For the very specific case of a circular obstacle defined
as O1 = (pobstacle, r), a trivial choice for a CBF can be
h(x) = ∥x − pobstacle∥22 − r2 which satisfies all necessary
conditions. However, both the SLP and the CBF-based QPs
require a circular description known a priori of the obstacle
which conflicts with the objective of this paper of having the
drone acquiring LiDAR information as it moves through the
mission plane and would add considerable conservatism when
the obstacle is not circular.

III. MODEL PREDICTIVE CONTROL WITH COLLISION
AVOIDANCE FOR UNKNOWN ENVIRONMENT

In a more realistic scenario, only partial information about the
obstacles given by onboard sensors that are corrupted by noise
may be available. In other words, at time k ≥ 0, only P(Oi, k)
a portion of obstacle Oi is known. This paper assumes that the
vehicle accomplishing the mission is equipped with a LiDAR
(light detection and ranging device). Such a sensor, associated
with the vehicle position, can be abstracted by the tuple L =
(vL, rL, θL, εL), where vL is a unit vector indicating the main
direction that the LiDAR is pointed to, rL > 0 denotes the
radius of reach, θL denotes the angle covered by the LiDAR
(together, rL and θL define the field-of-view (FoV) of the
LiDAR), and 0 ≤ εL ≪ rL the measurement error, see Fig. 3.

Fig. 2: Example trajectory (blue - feasible - and orange -
infeasible), constraint boundaries generated by the algorithm for
the infeasible point (purple) and the nearest points on the circle
to each of the infeasible points of the trajectory (yellow).

shown in yellow. Remark that the description is required to
be a circle for the projection step to be easy to calculate.
Next, an upper-bound on the computational complexity of
Algorithm 1 is presented.
Proposition 1: The computational complexity of Algo-
rithm 1 is O(s maxIter), where s is the complexity of
solving (1). ⇧
Notice that the computational complexity of solving 1 de-
pends on the selected solver.

B. Obstacle avoidance with Control Barrier Functions

In the mathematics field of constrained optimization, a
barrier function (BF) is a continuous function whose value
on a point augments to infinity as the point approaches the
boundary of an optimization problem feasible region [24].
The main goal of these functions is to be used to replace
inequality constraints via a penalizing term in the objective
function that is often easier to handle. Another possible
approach to address PK

1 is by using the so-called control
barrier functions (CBFs) [23], [25], a particular case of
BFs. CBFs allow specifying safe and unsafe sets, which, in
turn, may be used to solve quadratic programs encoding the
obstacle-avoiding problem. When there is a single obstacle
defined as a circle, finding a suitable CBF is rather trivial but
such a procedure does not generalize for multiple obstacles
and partial views of the obstacles.
Obstacle avoidance using CBFs can use, for instance, the
technique in [23] corresponding to the solution of the fol-
lowing Quadratic Program (QP) with a suitable Lyapunov
function V and a CBF h:

u⇤[x] = arg min
u2Rm, �2R

1

2
kuk2 +

1

2
p�2

s.t. LfV + LgV u + �(V)  �
Lfh + Lghu + ↵(h) � 0

with p > 0 and functions � 2 K, ↵ 2 K1 render the feasible
set forward invariant. The notation Lf and Lg are the Lie
derivative operators applied to the nonlinear dynamics affine
in the actuation given by ẋ = f(x) + g(x)u. Notice that,
even though our system is assumed to be running in discrete-
time, the constraints in the QP only relate to the current time
instant and do not pose any difficulty. This controller can
have undesired equilibria but in [23] is shown how to deal
with that problem by introducing a rotation to the Lyapunov
function. Such details are omitted herein since for generic
initial conditions, those limit cases will not happen.
For the very specific case of a circular obstacle defined
as O1 = (pobstacle, r), a trivial choice for a CBF can be

h(x) = kx � pobstaclek2
2 � r2 which satisfies all necessary

conditions. However, both the SLP and the CBF-based QPs
require a circular description known a priori of the obstacle
which conflicts with the objective of this paper of having
the drone acquiring LiDAR information as it moves through
the mission plane and would add considerable conservatism
when the obstacle is not circular.

III. MODEL PREDICTIVE CONTROL WITH COLLISION
AVOIDANCE FOR UNKNOWN ENVIRONMENT

In a more realistic scenario, only partial information about
the obstacles given by onboard sensors that are corrupted
by noise may be available. In other words, at time k � 0,
only P(Oi, k) a portion of obstacle Oi is known. This
paper assumes that the vehicle accomplishing the mission is
equipped with a LiDAR (light detection and ranging device).
Such a sensor, associated with the vehicle position, can be
abstracted by the tuple L = (vL, rL, ✓L, "L), where vL is a
unit vector indicating the main direction that the LiDAR is
pointed to, rL > 0 denotes the radius of reach, ✓L denotes
the angle covered by the LiDAR (together, rL and ✓L define
the field-of-view (FoV) of the LiDAR), and 0  "L ⌧ rL
the measurement error, see Fig. 3 for a depiction.

x[k] vLvL

"L

✓L

✓L

rLrL

vL

Fig. 3: LiDAR L = (vL, rL, ✓L, "L) range of observations.

With a slight abuse of notation, the cloud of points
collected by the LiDAR L at time instance k 2 N is
denoted by CL(k). The convex hull of CL(k) defines
a portion of an obstacle identified by the LiDAR.
Hence, the problem PU

1 to be solved is the following.

minimize
x[.],u[.]

J(x[.],u[.], X)

subject to x[0] = x[k]

x[` + 1] = Ax[`] + Bu[`], ` 2 [0 : N � 1]

x[`] 2 X , ` 2 [0 : N]

u[`] 2 U , ` =2 [0 : N � 1]

p[`] \ cvxHull(Lk) = ;.

To have a very efficient solution, the main idea of the current
proposal is to fit an ellipsoid over the convex hull of the
collected points Lk and find tangent hyperplanes for each
point in the nominal trajectory that can cause a collision.
Going back to the Introduction illustration, Fig. 4 shows
how the obstacles are perceived by the drone and the desired
ellipsoid representing the positions of potential collision.
The attentive reader could be tempted to follow the typical
approach in the literature of finding an ellipse through the
minimization of the volume, which can be written as convex
program or even through the use of Khachiyan’s Algorithm.
However, such methods are at least quadratic in complexity.
Thus, this paper presents a very efficient method with linear

Fig. 3: LiDAR L = (vL, rL, θL, εL) range of observations.

With a slight abuse of notation, the cloud of points collected
by the LiDAR L at time instance k ∈ N is denoted by
CL(k) and is illustrated in Fig. 4. The convex hull of CL(k)
defines a portion of an obstacle identified by the LiDAR.
Hence, the problem PU

1 to be solved is the following.

minimize
x[.],u[.]

J(x[.],u[.],X)

subject to x[0] = x[k]

x[ℓ+ 1] = Ax[ℓ] +Bu[ℓ], ℓ ∈ [0 : N − 1]

x[ℓ] ∈ X , ℓ ∈ [0 : N]

u[ℓ] ∈ U , ℓ ∈ [0 : N − 1]

p[ℓ] ∩ cvxHull(Lk) = ∅.

The attentive reader could be tempted to follow the typical
approach in the literature of finding an ellipse through the
minimization of the volume, which can be written as convex
program or even through the use of Khachiyan’s Algorithm.
However, such methods are at least quadratic in complexity.
Thus, this paper presents a very efficient method with linear
complexity that is specifically tailored to the problem at hand,
which is presented in pseudo-code in Algorithm 2.

6126

Fig. 4: Illustration of the points CL(k) (green) collected by the
LiDAR and the desired ellipsoid that overbounds the obstacle.

Algorithm 2 Find smallest ellipse enclosing a set of LiDAR points
and closest ellipse orthogonal vectors to each trajectory point that are
closest to the initial trajectory point

1: input: cloud of LiDAR points D ⊂ R2, drone trajectory points T ⊂ R2,
number of points N to define the border of the ellipse that encloses D

2: output: cloud of points defining the border of an ellipse E, and set S of
ellipse tangents for the closets ellipse points to each trajectory point

3: compute: µ = 1
|D|

∑
p∈D p

4: ▷ set the mean point µ as the origin (0, 0)
5: set: D′ = D − µ
6: find: the point p ∈ D with maximum norm
7: compute: θ = − arccos(p)

∥p∥2
8: set: Θ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
9: ▷ rotate the points according to the main direction to be align

with the axis
10: set: D′′ = {q ·Θ : q ∈ D′}
11: set: xmax = max{x : (x, y) ∈ D′′} and ymax = max{y : (x, y) ∈

D′′}
12: set: xmin = min{x : (x, y) ∈ D′′} and ymin = min{y : (x, y) ∈

D′′}
13: ▷ re-scale the points to have similar range in both axis
14: set: D′′′ =

{(
x−xmin
xmax

, y−ymin
ymax

)
: (x, y) ∈ D′′

}
15: ▷ find circle that encloses the points
16: compute: c = (cx, cy) and r, the center and radius of the smallest

enclosing circle for the points in D′′ using [26]
17: ▷ compute the set of points that define the border of the ellipse
18: set: E′ =

{
r. (cos(ϑ) + cx, sin(ϑ) + cy) : ϑ ∈ {0, 2π

N
, . . . , 2π}

}
19: ▷ transform the border of the ellipse back to enclose the input

cloud of points
20: set: E′′ = {(xmax.x+ xmin, ymax.y + ymin) : (x, y) ∈ E′}
21: set: E =

{
q ·Θ−1 + µ : q ∈ E′′}

22: ▷ for each point of the trajectory, compute the tangent vector to
the ellipse in the ellipse point closer to the trajectory point

23: set: S = ∅
24: for each p ∈ T do
25: compute: p′, the closest point in E to point p that is closest to the

first trajectory point
26: set: S = S ∪ {v}, where v is the orthogonal vector to the ellipse

intersecting point p′
27: end for

The algorithm starts by centering the cloud of points at the
origin (lines 3 and 5) followed by a rotation to align them
with the axis (lines 6 to 10). Then a re-scale of the space is
done to have the same dispersion over each axis in lines 11
to 14. After finding the smallest circle, it revert to the original
coordinates to get the ellipse (lines 16 to 21). The constraints
can then be found by computing tangent hyperplanes to points
that correspond to the projection of the desired trajectory
waypoints on the boundary of the ellipse (last for cycle in the
algorithm). For a visualization of the algorithm steps see Fig.
5 where Fig. 5(a) is the initial input cloud of points followed
by the rescaling of the points in Fig. 5(b) and the final ellipse
after inverting the rescaling with the orthogonal vectors to the
tangent hyperplanes being shown in Fig. 5(c).

0 1
0

1

2

(a)

−2 −1 0 1
−2

−1

0

1

(b)

0 1
0

1

2

(c)
Fig. 5: Illustration of Algorithm 2. The trajectory starts at the origin,
“•”, is represented by the black points, and the rendezvous location
is “•” (Figures (a) and (c)). In blue, the LiDAR set of points are
shown (Figures (a) and (c)). Figure (b) has the normalized LiDAR
set of points, in yellow, to encounter the closest enclosing circle,
in green. Finally, the enclosing ellipse that result from the previous
circle is in Figure (c), depicted in green, and the orthogonal vectors
are depicted in orange (and start from the red ellipse points).

Next, we give the computational complexity of Algorithm 2.
Proposition 2: The computational complexity of Algorithm 2
is O(max{|D|, |T |2, N}). ⋄

Proof: The computational complexity of Algorithm 2 is
the sum of the computational complexities of each step of
the algorithm. Steps 3–14 are bounded by O(|D|). Step 16
also has cost O(|D|) [26]. Steps 18–21 have computational
complexity of O(N). Finally, steps 23–27 have computational
complexity of O(|T |2). Thus, the total computational com-
plexity is bounded by O(max{|D|, |T |2, N}).
The constraints found in Algorithm 2 can be combined with
the SLP optimization by changing line 21 of Algorithm 1 to
have the following MPC for iteration κ, and name it PU

UNSAFE:

minimize
x(κ)[.],u(κ)[.]

J(x(κ)[.],u(κ)[.],X)

subject to x(κ)[0] = x[k]

x(κ)[ℓ+ 1] = Ax(κ)[ℓ] +Bu(κ)[ℓ], ℓ ∈ [0 : N − 1]

x(κ)[ℓ] ∈ X , ℓ ∈ [0 : N]

u(κ)[ℓ] ∈ U , ℓ ∈ [0 : N − 1]

q(κ)⊺
ell[ℓ]p

(κ)[ℓ] ≥ q
(κ)
ell

⊺
[ℓ]p

(κ)
ell [ℓ], ℓ ∈ C.

where, as in Algorithm 1, the set C corresponds to the indices
of all points that were inside the ellipse and the vectors
q
(κ)
ell [ℓ] and p

(κ)
ell [ℓ] are the output of Algorithm 2 shown in

orange and red in Fig. 5(c), respectively.
Notice that the solution of (3) is not a safe controller in
the sense that the generated trajectory could travel to a
location in the unknown space from which the MPC cannot
recover in a future instant. For that reason, let us also define
the following optimization with variables x

(κ)
s [.],u

(κ)
s [.]

and a safe horizon H deemed as the problem PU
SAFE:

minimize
x
(κ)
s [.],u

(κ)
s [.]

J(x
(κ)
s [.],u

(κ)
s [.],X)

subject to x
(κ)
s [0] = x[k]

x
(κ)
s [ℓ+ 1] = Ax

(κ)
s [ℓ] +Bu

(κ)
s [ℓ], ℓ ∈ [0 : N − 1]

x
(κ)
s [ℓ] ∈ X , ℓ ∈ [0 : N]

∥p(κ)
s [ℓ]− p[k]∥2 ≤ rL, ℓ ∈ [0 : N]

u
(κ)
s [ℓ] ∈ U , ℓ ∈ [0 : N − 1]

q(κ)⊺
ell[ℓ]p

(κ)
s [ℓ] ≥ q

(κ)
ell

⊺
[ℓ]p

(κ)
ell [ℓ], ℓ ∈ C

∥x(κ)
s [ℓ]− x(κ)[ℓ]∥2 ≤ ϵ, ℓ ∈ [0 : H]

∥u(κ)
s [ℓ]− u(κ)[ℓ]∥2 ≤ ϵ, ℓ ∈ [0 : H]

for a sufficiently small ϵ > 0. The problem PU
SAFE in (4) adds

6127

three extra constraints to enforce that the entire trajectory
lies within the observable space of the LiDAR and also an
overlap of H steps between the safe and unsafe trajectories.
That way, the vehicle can safely implement whatever is given
as the input of (3) and switch back to the trajectory in (4)
if needed. The two strategies may be combined as detailed
in Algorithm 3, denoting a trajectory encompassing both the
x(κ)[.] and u(κ)[.] variables over the entire horizon N by
T (k) for the iteration k and adding a subscript to distinguish
between the safe and unsafe MPCs.

Algorithm 3 Proposed Safe MPC with guaranteed Collision Avoid-
ance

1: Input: x[k], X, T (k−1)
safe

2: Output: u⋆[k]
3: set: feasible = false
4: compute: an unsafe trajectory T

(k)
unsafe using Algorithm 1 with the MPC

PU
UNSAFE problem and set feasible = true if it had a feasible solution

5: if feasible then
6: update: u⋆[k] from trajectory T

(k)
unsafe

7: compute: a safe trajectory T
(k)
safe using Algorithm 1 with the MPC

PU
SAFE problem

8: else
9: update: u⋆[k] from trajectory T

(κ−1)
safe

10: compute: a safe trajectory T
(k)
safe using Algorithm 1 with the MPC

PU
SAFE problem using T

(k−1)
safe as the base trajectory

11: end if

Remark 1: In practice, solving PU
SAFE may be avoided by

encoding in X velocity constraints such that the drone can
safely stop within the specified H horizon without leaving the
observed radius of the LiDAR.

IV. THEORETICAL GUARANTEES

This section shows two results that give the necessary safety
guarantees to the proposed MPC approach. The first result
shows that there are no collisions with the obstacles within the
observed space (next lemma) by showing there is a hyperplane
separating all LiDAR points from the trajectory points.
Lemma 1: Given a point cloud CL(k) collected by the LiDAR
L at the time k ≥ 0, representing a partial view of an obstacle
border ∂O ⊂ R2, if p[k] /∈ O, PU

UNSAFE is feasible, and for all
predicted positions ℓ ∈ [N] we have ∥p(κ)[ℓ] − p[k]∥2 ≤ rL,
then, p(κ)[.] /∈ O. ⋄

Proof: Let us consider that all points in CL(k) belong
to the ellipse E produced by Algorithm 2. The feasibility of
PU

UNSAFE implies that all points in the horizon p(κ)[ℓ] satisfy the
inequalities q(κ)⊺

ell[ℓ]p
(κ)[ℓ] ≥ q

(κ)
ell

⊺
[ℓ]p

(κ)
ell [ℓ] for hyperplanes

tangent to the ellipse defined by the vectors q
(κ)
ell

⊺
[ℓ]. Thus,

given the assumption that for all ℓ ∈ [N] we have ∥p(κ)[ℓ]−
p[k]∥2 ≤ rL, the hyperplanes serve as certificates separating
the set O from each point p

(κ)
ell [ℓ]. Therefore, suppose, by

contradiction, that there is a point p ∈ CL(k) such that p /∈ E.
This would entail that the affine transformation of p, p′, is not
in the same affine transformation of E that transforms back
the ellipse into a circle C (i.e., p′ /∈ C). Therefore, step 16
of Algorithm 2 would not obtain a circle that encloses all the
points (including p′). This contradicts the correction of the
algorithm in [26], thus proving the conclusion since all points
in CL(k) belong to the ellipse E.

Lemma 1 asserts that within the observable region, as long
as the unsafe MPC is feasible, there is no collision with
the obstacle part that is viewed by the LiDAR. The next
result shows that if PU

UNSAFE is not feasible, the overall control
strategy in Algorithm 3 is collision free.
Theorem 1: Consider a vehicle equipped with a LiDAR per-
forming a rendezvous mission in an unknown environment
using Algorithm 3 for which it is always possible to solve
PU

SAFE with H > 1. If p[0] /∈ O, then p[k] /∈ O,∀k > 0. ⋄
Proof: Let us consider at time step k > 0 that p[k] /∈ O.

If PU
UNSAFE is feasible, from Lemma 1 it follows that p[k+1] /∈

O. If PU
UNSAFE is not feasible, given line 9 in Algorithm 3, the

vehicle will switch to trajectory T
(k−1)
safe , which always exists

with H > 1 using the statement of the theorem. Moreover,
T

(k−1)
safe is such that ∥p(κ)

s [ℓ]− p[k − 1]∥2 ≤ rL for all values
of ℓ ∈ [N] and, using Lemma 1 entails that p[k+1] resulting
from using T

(k−1)
safe will also satisfy p[k+1] /∈ O. By induction,

the conclusion follows.
Remark 2: To consider a vehicle that is not simply represented
as a point in space, the value εL used in Algorithm 2 can be
increased to account for the vehicle radius. In practice, the
assumptions in Theorem 1 can be enforced by setting up a
maximum velocity in the safe MPC that matches the free space
that the vehicle is allowed to stop before exiting the measuring
radius of the LiDAR. ⋄

V. ILLUSTRATIVE EXAMPLES

This section provides simulation results showing the trajec-
tories achieved with the proposed solution and compared
against a QP using the CLF-CBF framework. The dynamics is
described by a discrete-time double integrator with a sampling
time of 0.1 s. The rendezvous point is assumed to be in the
point

[
20 15

]⊺
with the vehicle having a max velocity of

2.5 m/s and an acceleration of 1.5 m/s2 and the simulation
running for 12 s. The obstacle is randomly selected and then
overbounded by a circle with such information assumed to be
known a priori only for the design of the CLF-CBF controller.
The results of the simulation are presented in Fig. 6 with the
trajectories being shown in each subfigure for every multiple
of 3 s. The generated trajectory by the current proposal is quite
close to the obstacle and respects the maximum noise level for
each point. In contrast, the CLF-CBF approach is even more
conservative than following the known circle that overbounds
the obstacle. Moreover, it takes around the 12 seconds to reach
the rendezvous whereas the proposed MPC took 9 s. Both
the unconstrained MPC and the QP arising from the CLF-
CBF took under 0.02 s in each iteration whereas the proposed
MPC is typically spending around 0.1 s. These values point
towards the feasibility in practice of the proposed method as
the simulations are being run in Matlab on an HP machine with
a Intel Core i7-8550U CPU @ 1.80GHz and 12 GB of memory
resorting to Yalmip as the language to model optimization
problems. Once implemented in C or C++, the method can fit
in the typical values used for the clock of ArduPilots [27].

VI. CONCLUSIONS & FUTURE RESEARCH

This work presented a model predictive control framework to
design autonomous rendezvous operations in the presence of

6128

0 5 10 15 20 25
-10

-5

0

5

10

15

20

25

30

destination
MPC Unconstrained position
MPC LiDAR position
CLF-CBF position

(a) Iteration k = 30 corresponding
to 3 s of simulation.

0 5 10 15 20 25
-10

-5

0

5

10

15

20

25

30

destination
MPC Unconstrained position
MPC LiDAR position
CLF-CBF position

(b) Iteration k = 60 corresponding
to 6 s of simulation.

0 5 10 15 20 25
-10

-5

0

5

10

15

20

25

30

destination
MPC Unconstrained position
MPC LiDAR position
CLF-CBF position

(c) Iteration k = 90 corresponding
to 9 s of simulation.

0 5 10 15 20 25
-10

-5

0

5

10

15

20

25

30

destination
MPC Unconstrained position
MPC LiDAR position
CLF-CBF position

(d) Iteration k = 120 corresponding
to 12 s of simulation.

Fig. 6: Simulation of 12 s of a drone executing the CLF-CBF con-
troller in comparison with the proposed MPC and the unconstrained
version when in the presence of a polytopic obstacle for which is
known a circular overbound. The dashed line in from of the drone
serves to show the predicted horizon of the trajectory.

obstacles in an unknown environment. To this end, vehicles
equipped with a LiDAR were considered, and an efficient and
effective method to compute the smallest ellipse containing the
collected points was presented. The generated ellipses allow
us to encode the obstacles using linear inequalities in the
optimization. Finally, simulations of the proposed method to
demonstrate its effectiveness are shown.
Avenues for further research include extending the proposed
method to cope with sets of more than one obstacle, and the
design of efficient approaches to compute ellipsoids in R3

to extend the proposed method, for instance using the exact
formula to compute the convex hull of collected obstacle’s
points as in [28]. Moreover, running an experiment with a boat
equipped with a laser is the next step to have real experimental
data validating the proposed method.

REFERENCES

[1] W. Fehse, Automated rendezvous and docking of spacecraft. Cambridge
university press, 2003, vol. 16.

[2] A. Botelho, B. Parreira, P. N. Rosa, and J. M. Lemos, Predictive Control
for Spacecraft Rendezvous. Springer.

[3] E. N. Hartley, “A tutorial on model predictive control for spacecraft
rendezvous,” in 2015 European Control Conference (ECC). IEEE,
2015, pp. 1355–1361.

[4] A. Richards and J. How, “Performance evaluation of rendezvous using
model predictive control,” in AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2003, p. 5507.

[5] S. Di Cairano, H. Park, and I. Kolmanovsky, “Model predictive control
approach for guidance of spacecraft rendezvous and proximity maneu-
vering,” International Journal of Robust and Nonlinear Control, vol. 22,
no. 12, pp. 1398–1427, 2012.

[6] E. N. Hartley, P. A. Trodden, A. G. Richards, and J. M. Maciejowski,
“Model predictive control system design and implementation for space-
craft rendezvous,” Control Engineering Practice, vol. 20, no. 7, pp. 695–
713, 2012.

[7] A. Weiss, M. Baldwin, R. S. Erwin, and I. Kolmanovsky, “Model
predictive control for spacecraft rendezvous and docking: Strategies for
handling constraints and case studies,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 4, pp. 1638–1647, 2015.

[8] R. Vazquez, F. Gavilan, and E. F. Camacho, “Model predictive control
for spacecraft rendezvous in elliptical orbits with on/off thrusters,” IFAC-
PapersOnLine, vol. 48, no. 9, pp. 251–256, 2015.

[9] S. Zhu, R. Sun, J. Wang, J. Wang, and X. Shao, “Robust model predictive
control for multi-step short range spacecraft rendezvous,” Advances in
Space Research, vol. 62, no. 1, pp. 111–126, 2018.

[10] M. Leomanni, G. Bianchini, A. Garulli, and R. Quartullo, “Sum-of-
norms periodic model predictive control for space rendezvous,” IEEE
Transactions on Control Systems Technology, vol. 30, no. 3, pp. 1311–
1318, 2021.

[11] D. Silvestre, J. P. Hespanha, and C. Silvestre, “Broadcast and gossip
stochastic average consensus algorithms in directed topologies,” IEEE
Transactions on Control of Network Systems, vol. 6, no. 2, pp. 474–486,
2019.

[12] G. Ramos, D. Silvestre, and C. Silvestre, “General resilient consensus
algorithms,” International Journal of Control, vol. 95, no. 6, pp. 1482–
1496, 2022.

[13] R. Ribeiro, D. Silvestre, and C. Silvestre, “Decentralized control for
multi-agent missions based on flocking rules,” in CONTROLO 2020,
J. A. Gonçalves, M. Braz-César, and J. P. Coelho, Eds. Cham: Springer
International Publishing, 2021, pp. 445–454.

[14] ——, “A rendezvous algorithm for multi-agent systems in disconnected
network topologies,” in 2020 28th Mediterranean Conference on Control
and Automation (MED), 2020, pp. 592–597.

[15] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Set-consensus
using set-valued observers,” in American Control Conference (ACC),
2015, Chicago, Illinois, USA., July 2015.

[16] ——, “Finite-time convergence policies in state-dependent social net-
works,” in 2015 American Control Conference (ACC), 2015, pp. 1041–
1046.

[17] ——, “Stochastic and deterministic state-dependent social networks,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52,
no. 2, pp. 911–926, 2022.

[18] G. Gramajo and P. Shankar, “An efficient energy constraint based
uav path planning for search and coverage,” International Journal of
Aerospace Engineering, vol. 2017, 2017.

[19] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model
predictive control,” IEEE Control Systems Magazine, vol. 22, no. 1, pp.
44–52, 2002.

[20] A. Thibbotuwawa, G. Bocewicz, G. Radzki, P. Nielsen, and Z. Ba-
naszak, “Uav mission planning resistant to weather uncertainty,” Sensors,
vol. 20, no. 2, p. 515, 2020.

[21] F. Stoican, T.-G. Nicu, and I. Prodan, “A mixed-integer mpc with
polyhedral potential field cost for obstacle avoidance,” in 2022 American
Control Conference (ACC), 2022, pp. 2039–2044.

[22] S. H. Nair, E. H. Tseng, and F. Borrelli, “Collision avoidance for
dynamic obstacles with uncertain predictions using model predictive
control,” in 2022 IEEE 61st Conference on Decision and Control (CDC),
2022, pp. 5267–5272.

[23] M. F. Reis, A. P. Aguiar, and P. Tabuada, “Control barrier function-
based quadratic programs introduce undesirable asymptotically stable
equilibria,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 731–736,
2020.

[24] Y. Nesterov et al., Lectures on convex optimization. Springer, 2018,
vol. 137.

[25] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
6271–6278.

[26] N. Megiddo, “Linear-time algorithms for linear programming in r3 and
related problems,” SIAM Journal on Computing, vol. 12, no. 4, pp. 759–
776, 1983.

[27] J. P. Hespanha, “Tenscalc: A toolbox to generate fast code to solve
nonlinear constrained minimizations and compute nash equilibria,”
Mathematical Programming Computation, vol. 14, no. 3, pp. 451–496,
2022.

[28] D. Silvestre, “Accurate guaranteed state estimation for uncertain lpvs
using constrained convex generators,” in 2022 IEEE 61st Conference on
Decision and Control (CDC), 2022, pp. 4957–4962.

6129

