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Abstract— This paper proposes a data-driven control method
to stabilize unknown switched linear systems under arbitrary
switching. We consider the case where the system state is not
measurable and design an output feedback controller only using
measured input-output data. First, the system with multiple
outputs is transformed into a single-output system with observ-
ability preserved. Then, a data-based state-space representation
that has the same input-output relationship as the original
system is constructed using the input-output data of the single-
output system, based on which the data-driven controller is
designed. Sufficient conditions for asymptotic stability of the
closed-loop system under arbitrary switching are established in
terms of linear matrix inequalities (LMIs). Compared with the
existing method, the proposed method decreases the dimension
of the constructed data-based state-space representation, which
may reduce the computational burden of the controller design.
The effectiveness of the proposed controller is illustrated by an
example.

I. INTRODUCTION

Data-driven control (DDC) is a control strategy that learns
controllers from data for unknown systems and is increas-
ingly popular in a wide range of research fields. Depending
on the different control design procedures, DDC is divided
into indirect DDC and direct DDC. The former identifies the
system model using data and designs controllers using the
existing model-based methods. In contrast, the latter directly
designs the controller using data by bypassing the system
identification step, which may simplify the whole design
process. Over the past two decades, numerous direct DDC
methods have been proposed, such as unfalsified control [1],
iterative feedback tuning [2], neural network control [3], and
model-free adaptive control [4].

Willems’ Fundamental Lemma has recently attracted much
attention in DDC. It reveals that the input-output behavior
of a linear time-invariant (LTI) system can be described
entirely by using a persistently exciting (PE) input-output
trajectory of the system [5]. Thanks to this lemma, a data-
based representation of LTI systems can be constructed
using an informative input-output sequence [6]. With the
representation, many existing model-based control methods
can be extended to data-based cases [7]–[10]. Basic control
problems of unknown LTI systems, such as the state feed-
back control, output feedback control, and linear quadratic
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regulator, are solved by using data-dependent linear matrix
inequalities (LMIs) in [7], [8]. A data-enabled predictive
control algorithm is proposed to solve the optimal trajectory
tracking problem [9]. In addition, Willems’ Fundamental
Lemma has also been used to solve problems of complex
systems. Preliminary results have been reported for particular
nonlinear systems. The stabilization problem of unknown
nonlinear polynomial systems with noisy data is solved in
[11]. The state feedback control problem for systems with
quadratic nonlinearities is solved in [12].

On the other hand, as an important type of hybrid system,
switched linear systems have attracted much attention in
different fields [13]. The control problems of switched linear
systems have been well-studied in the past two decades.
However, most of the existing control design methods [14]–
[16] are model-based and only apply to switched linear
systems with identified models. How to design controllers for
unknown switched linear systems is still an open problem.
In recent years, a few direct DDC methods have been pro-
posed for unknown switched linear systems. State feedback
controllers are designed using input-state data for systems
without and with disturbances in [17] and [18], respectively.
However, the system state may not be measurable in practice
and thus is not available for the state feedback controller
design. Moreover, the switching signals in [17], [18] are
time-dependent and require a large enough dwell time.

In view of the abovementioned issue, this paper will
propose an output feedback control by only using input and
output data to stabilize unknown switched linear systems
under arbitrary switching. First, a non-switched LTI system
with multiple outputs is transformed into a new single-
output (SO) system with observability preserved. Based on
this SO system, a new system with the same input-output
relationship as the original one is built. Then, a data-based
representation is constructed for the new system using the
input and output data. This method is extended to represent
each subsystem of the switched linear system by using
data. Finally, output feedback control laws are designed for
each subsystem to stabilize the switched linear system under
arbitrary switching.

The remainder of this paper is organized as follows. The
switched linear system to be studied is given in Section
II. Section III proposes a data-based representation for the
system. Then, a data-driven output feedback controller is de-
signed in Section IV. Section V gives a numerical example to
illustrate the effectiveness of the proposed methods. Finally,
Section VI gives some concluding remarks.

Notation: Let N, Z, R, and C denote the set of natural
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numbers, integers, real numbers, and complex numbers,
respectively. In is the identity matrix with dimensions n×n.
0n×m is a zero matrix with dimensions n×m. Given a matrix
M , let M⊤ denote its transpose, M−1 denote its inverse if
it is nonsingular, and M > 0 means it is positive definite.
diag(M1, . . . ,Mn) denotes the block diagonal matrix with
matrices Mi, i = 1, . . . , n. For a signal z(i) : Z → Rn,
define z[i,j] as z[i,j] = [z(i)⊤, z(i+1)⊤, . . . , z(j)⊤]⊤, where
i, j ∈ Z and i < j. Zi|L|j denotes the Hankel matrix of order
L, associated with z[i,j], which is given by

Zi|L|j =

 z(i) z(i+ 1) · · · z(j − L+ 1)
...

...
. . .

...
z(i+ L− 1) z(i+ L) · · · z(j)

 ,

where i, j ∈ Z and L ∈ N satisfying L ≤ j − i + 1. For
simplicity, Zi|j is used to denote the case with L = 1.

II. PROBLEM FORMULATION

Consider a discrete-time switched linear system
x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (1a)

y(k) = Cx(k), (1b)
where u(k) ∈ Rm, x(k) ∈ Rn, and y(k) ∈ Rp are the control
input, state, and output, respectively; Ai, Bi, ∀i ∈ S =
{1, . . . , s} and C are the related matrices with appropriate
dimensions. The switching signal σ(k) ∈ S is a piecewise
constant function of time k. We assume that the state x(k)
is unmeasurable. Without loss of generality, the following
assumptions are made for the system (1).

Assumption 1: The system matrices Ai, Bi, ∀i ∈ S, and
C are unknown. The number of the subsystems s and the
dimensions n, m and p are known.

Assumption 2: The common output matrix C has full row
rank.

Assumption 3: Each subsystem i, i ∈ S is controllable
and observable.

Assumption 4: The system matrix Ai for each subsystem
i, ∀i ∈ S, has n distinct eigenvalues.

Remark 1: Assumption 1 is commonly used in the study
of DDC problem [7]. Assumption 2-4 can be checked
using input-output data (e.g., Markov parameters [19]) of
the subsystem i. Take a single-input system of (1) for an
example. By applying a special input signal with u(k) = 1
at k = 0 and u(k) = 0 otherwise, to each subsystem i
under the zero initial condition, a length 2n output sequence
yi,[0,2n−1] can be collected. Denote Hi,1|n|2n−1 as the Han-
kel matrix of order n, associate with yi,[1,2n−1]. From [19], if
rank(Hi,1|n|2n−1) = n, then the collected input-output data
has a minimal n-dimensional state-space realization. Since
the original n-dimensional subsystem i is similar to this
minimal realization, it is controllable and observable, i.e., As-
sumption 3 is satisfied. Further, if rank([yi(1), . . . , yi(n)]) =
p, then the subsystem output matrix has full row rank,
i.e., Assumption 2. For Assumption 4, if there exists an
ηi ∈ R1×p such that rank(ΨiHi,1|n|2n−1) = n with Ψi =
diag(ηi, . . . , ηi), then Ai has n distinct eigenvalues. How to
find such an ηi will be discussed in Remark 2 and 5.

This paper is aimed to design an output feedback controller
to stabilize the unknown switched linear system (1) under
arbitrary switching. Traditionally, one can use a set of input-
output data satisfying the PE condition to identify the model
of the unknown system (1). Then, the output feedback
controller can be designed using the model-based methods
[15]. To simplify the design procedure, we bypass the system
identification step and use the input-output data to design an
output feedback controller directly. To end this section, we
review the PE condition for future reference.

Definition 1 ( [5]): The sequence z[i,j] is said to be PE
of order L if the Hankel matrix Zi|L|j has full row rank.

III. INPUT-OUPUT DATA-BASED REPRESENTATION

This section proposes a data-based representation of the
system (1). Usually, the existing works, even for non-
switched LTI systems, use input-state-output data to build
such a representation. However, in practice, the system states
may not be measurable. In view of this issue, we will first
build a data-based representation for LTI systems by only
using input-output data and then extend it to switched linear
systems.

Consider an LTI system as follows:
x(k + 1) = Ax(k) +Bu(k), (2a)

y(k) = Cx(k), (2b)
with A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n. Moreover, the
system (2) follows the same assumptions as those for the
subsystem i of the system (1).

A. A New State-Space Model

This subsection builds a new state-space model for the
system (2) only using its input and output data. Compared
with the original system model (2), this new model has the
same input and output as (2), but a different state x̂ that is
created by the past input-output data of (2).

In [7], the p-dimensional output of the system (2) is
directly used to construct x̂, which may lead to a high
dimension of x̂. To solve this issue, this paper will change
the multiple-output (MO) system into an SO system with ob-
servability preserved. The one-dimensional output of the new
system is actually a linear combination of the p-dimensional
system output. Then, the output of the SO system is used to
construct x̂.

Before proceeding, we introduce the following lemma.
Lemma 1: Consider the system (2) with p ≥ 2 outputs.

If the pair (A, C) is observable and A has n distinct
eigenvalues, then there exists at least a row vector η ∈ R1×p

such that the pair (A, ηC) is observable.
Proof: Let λι ∈ C and ωι ∈ Cn, ∀ι ∈ N = {1, . . . , n}

be the eigenvalues and the corresponding right non-zero
eigenvectors of matrix A, respectively. Then, we have Aωι =
λιωι. Since all the eigenvalues λι, ∀ι ∈ N , are distinct, any
of the corresponding non-zero eigenvectors can be expressed
as aιωι, ∀ι ∈ N , ∀aι ∈ R and aι ̸= 0.

Define W = [a1ω1, . . . , anωn] and CW = [Ca1ω1, . . . ,
Canωn] = [µ⊤

1 , . . . , µ
⊤
p ]

⊤ with µj , j ∈ P = {1, . . . , p} be-
ing the j-th row of CW . Since the pair (A,C) is observable,
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based on the Hautus lemma [20], we have Caιωι ̸= 0p×1,
∀ι ∈ N , which indicates that there exists at least one non-
zero entry in each column of CW , i.e., Caιωι, ∀ι ∈ N .

Let η = [η1, . . . , ηp] with ηj , j ∈ P being the j-th entry
of η. Next, we claim that there exists at least one non-zero η,
making ηCW =

∑p
j=1 ηjµj with no zero entries. Set η1 = 1

and choose η2 such that entries of µ1 + η2µ2 are non-zero
if the corresponding ones of µ1 or µ2 are non-zero. It is
obvious that such an η2 always exists. Similarly, choose ηk,
3 ≤ k ≤ p such that the entries of

∑k
j=1 ηjµj are non-zero

if the corresponding ones of
∑k−1

j=1 ηjµj or µk are non-zero.
With the selected η, entries of ηCW are non-zero if the
corresponding ones of any µj , j ∈ P are non-zero. Since
there exists at least one non-zero entry in each column of
CW , we conclude that all entries of ηCW are non-zero.
Further, based on the Hautus lemma [20], the pair (A, ηC)
is observable.

Remark 2: If matrices A and C are known, then η can be
selected by ensuring that ηCωι ̸= 0, ∀ι ∈ N . When A and
C are unknown, η can be calculated based on data. Similar
to Remark 1, we can obtain a Hankel matrix H1|n|2n−1 by
applying the special input u(k) = 1 at k = 0 and u(k) = 0
otherwise to the system (2) and collecting the output data.
Then, η can be chosen such that rank(ΨH1|n|2n−1) = n,
where Ψ = diag(η, . . . , η). Further, this problem can be
cast as an unconstrained optimization problem to maximize
J(η) = rank(ΨH1|n|2n−1). However, J(η) is non-convex,
and there is no theoretical guarantee of finding the globally
optimal solution. Alternatively, we can employ heuristic
optimization methods [21], such as the genetic algorithm and
particle swarm optimization algorithm, to search for such an
η.

From Lemma 1, there always exists a row vector η ∈
R1×p such that the observable matrix M̄o = [(ηC)⊤,
(ηCA)⊤, . . . , (ηCAn−1)⊤]⊤ has full rank if the pair (A, C)
is observable and matrix A has n distinct eigenvalues.

Let x̄(k) = M̄ox(k). Then, (2) with the new output ȳ(k) =
ηy(k) can be transformed into an observability form [22]

x̄(k + 1) = Āx̄(k) + B̄u(k), (3a)
ȳ(k) = C̄ηx̄(k), (3b)

where Ā =

[
0(n−1)×1 In−1

−αn −αn−1 · · · − α1

]
, B̄ = [b1, . . . ,

bn]
⊤, and C̄η = [1, 01×(n−1)] with αi ∈ R and bi ∈ Rm,

i ∈ N . Furthermore, (3) can be written in an ARX form [23]
ȳ(k + n) =β⊤

n u(k) + β⊤
n−1u(k + 1) + · · ·+ β⊤

1 u(k + n− 1)

− αnȳ(k)− · · · − α1ȳ(k + n− 1), (4)

where βi =
∑i−1

ι=0
αιbi−ι,∀i ∈ N and α0 = 1. (5)

Define the state x̂(k) ∈ Rn̂ with n̂ = nm+ n as
x̂(k) = [u(k − n)⊤, . . . , u(k − 1)⊤,

ȳ(k − n), . . . , ȳ(k − 1)]⊤. (6)
Then, (4) can be transformed into a new state-space form

x̂(k + 1) = Âx̂(k) + B̂u(k), (7a)

ȳ(k) = Ĉηx̂(k), (7b)

where Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×m, Ĉη ∈ R1×n̂ are defined as

Â=


0(n−1)m×m I(n−1)m

0m×m 0m×(n−1)m
0nm×n

0(n−1)×m 0(n−1)×(n−1)m

β⊤
n β⊤

n−1 · · · β⊤
1

Ā

, (8a)

B̂ = [0m×(n−1)m, Im, 0m×n]
⊤, (8b)

Ĉη = [β⊤
n , . . . , β⊤

1 ,−αn, . . . ,−α1]. (8c)

Subsequently, we will establish the relation between the
original system output y(k) and the state x̂(k) of (7). To do
so, the relationship between x̄(k) in (3) and x̂(k) in (6) is
first derived. Substituting (7b) into ȳ(k) = x̄1(k), i.e., (3b),
gives

x̄1(k) = Ĉηx̂(k). (9)
Combining (9), (7a), β1 = b1 in (5) with x̄1(k+1) = x̄2(k)+
b⊤1 u(k), i.e., the first row of (3a), gives
x̄2(k) = x̄1(k + 1)− b⊤1 u(k) = Ĉηx̂(k + 1)− b⊤1 u(k),

= Ĉη(Âx̂(k) + B̂u(k))− b⊤1 u(k) = ĈηÂx̂(k). (10)
Repeating the process (10) derives x̄i(k), i = 3, . . . , n as

x̄i(k) = ĈηÂ
i−1x̂(k). (11)

From (9)-(11), the relation between x̄(k) and x̂(k) is given
by
x̄(k) = Φx̂(k) with Φ = [(Ĉη)

⊤, . . . , (ĈηÂ
n−1)⊤]⊤. (12)

Substituting (12) into x̄(k) = M̄ox(k) gives the relation
between x(k) and x̂(k) as

x(k) = M̄−1
o Φx̂(k). (13)

Furthermore, substituting (13) into (2b) gives
y(k) = CM̄−1

o Φx̂(k). (14)

By combining (7a) with (14), a new state-space model of
the system (2) is obtained as follows:

x̂(k + 1) = Âx̂(k) + B̂u(k), (15a)

y(k) = Ĉx̂(k) with Ĉ = CM̄−1
o Φ. (15b)

Remark 3: It should be noted that the new system (15)
constructed based on the SO system (3) has the same input-
output relationship as the original system (2). However,
different from [7], the state x̂ of (15) is constructed by the
input-output data of the SO system (3), rather than those
of the original MO system (2). Thus, the order of the new
system (15) can be reduced significantly, which may decrease
the computational burden of the controller design.

Remark 4: It can be proved that the system (15) is com-
pletely controllable by directly calculating the controllability
matrix and its rank. By substituting (8a) and (8c) into Φ
in (12), it can be proved that Φ has full row rank, which
together with the full row rank of C and the non-singularity
of M̄o gives that Ĉ has full row rank based on (15b), i.e.,
rank(Ĉ) = p. These properties will be used for the controller
design later.

B. Data-Based Representation

The equivalent system (15) is constructed by using input-
output data of the system (2), but its system matrices are
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still unknown. To solve this issue, this subsection will build
a data-based representation of (2) with the help of (15).

Let (u[0,T ], y[0,T ]) be an input-output trajectory of the
system (2). With the definition of x̂(k) in (6), we define
Un|T , Yn|T , and X̂n+κ|T+κ, κ = 0, 1 as the input, output
and state Hankel matrices of order 1, associated with u[n,T ],
y[n,T ], and x̂[n+κ,T+κ], respectively.

Assume that the input sequence u[n,T ] is PE of order n̂+1.
From Willems’ Fundamental Lemma [5], [7], we have

rank
(
[U⊤

n|T , X̂
⊤
n|T ]

⊤) = n̂+m. (16)

Let u(k) = Ky(k) be the output feedback controller of
the system (15) with the control gain K ∈ Rm×p. Then, the
closed-loop system (15) with the controller becomes

x̂(k + 1) = (Â+ B̂KĈ)x̂(k), (17a)

y(k) = Ĉx̂(k). (17b)

With the condition (16), an equivalent data-based repre-
sentation of (17) is proposed in the following theorem.

Theorem 1: Suppose the condition (16) holds. The data-
based representation of the system (15) with the output
feedback controller u(k) = Ky(k) is given by

x̂(k + 1) = X̂n+1|T+1Gx̂(k), (18a)
y(k) = Yn|TGx̂(k), (18b)

with G ∈ R(T−n+1)×n̂ satisfying
[(KĈ)⊤, In̂]

⊤ = [U⊤
n|T , X̂

⊤
n|T ]

⊤G. (19)
Proof: The proof of (18a) is similar to that of Theorem

2 in [7] and thus is omitted. The proof of (18b) is given
below. From (15b) and (19), we have In̂ = X̂n|TG and

Yn|T = ĈX̂n|T . (20)

Right-multiplying both side of (20) with G yields Ĉ =
Yn|TG and substituting the result into (15b) gives (18b).

C. Extension to Switched Linear Systems

This subsection extends the obtained results in Subsection
III-A and III-B to the switched linear system (1). For
simplicity, we only consider the case that the input-output
data of each subsystem can be collected independently.

We first introduce the following lemma to show that there
always exists a common η for all subsystems in (1) if each
pair (Ai, C) is observable and Ai has n distinct eigenvalues.

Lemma 2: Consider the switched linear system (1) with
p ≥ 2 outputs. If the pair (Ai, C), ∀i ∈ S is observable
and matrix Ai has n distinct eigenvalues, then there exists
at least a common row vector η ∈ R1×p such that the pair
(Ai, ηC), ∀i ∈ S, is observable.

Proof: The proof is similar to that of Lemma 1, and
thus is omitted.

Remark 5: The process of finding such a common η for
the switched linear system (1) is similar to that shown in
Remark 2, and thus is omitted.

Similar to (2), the system (1) can be converted to
x̂(k + 1) = Âσ(k)x̂(k) + B̂σ(k)u(k), (21a)

y(k) = Ĉσ(k)x̂(k), (21b)

where Âi ∈ Rn̂×n̂, B̂i ∈ Rn̂×m, Ĉi ∈ Rp×n̂, ∀i ∈ S, and
x̂(k) is constructed by using the same steps as those of (6).
Similar to Remark 4, for any i ∈ S , the pair (Âi, B̂i) is
controllable, and the output matrix Ĉi has full row rank.

Let (ui,[0,T ], yi,[0,T ]) be the input-output trajectory of the
i-th, i ∈ S subsystem of (1). Define Ui,n|T , Yi,n|T , and
X̂i,n+κ|T+κ, ∀i ∈ S and κ = 0, 1 as the input, output, and
state Hankel matrices of order 1, respectively.

For each subsystem i, i ∈ S of the system (21), we assume
that the input sequence ui,[n,T ] is PE of order n̂ + 1. From
Willems’ Fundamental Lemma [5], [7], it follows that

rank
(
[U⊤

i,n|T , X̂⊤
i,n|T ]

⊤) = n̂+m, ∀i ∈ S. (22)

Let u(k) = Kiy(k) with Ki ∈ Rm×p, ∀i ∈ S , be the
output feedback controller for the system (21). Then, the
closed-loop switched linear system is given by

x̂(k + 1) = (Âσ(k) + B̂σ(k)Kσ(k)Ĉσ(k))x̂(k), (23a)

y(k) = Ĉσ(k)x̂(k). (23b)
Similar to (18), the data-based representation of the

closed-loop system (23) can be derived as
x̂(k + 1) = X̂σ(k),n+1|T+1Gσ(k)x̂(k), (24a)

y(k) = Yσ(k),n|TGσ(k)x̂(k), (24b)

with Gi ∈ R(T−n+1)×n̂, ∀i ∈ S, satisfying
[(KiĈi)

⊤, In̂]
⊤ = [U⊤

i,n|T , X̂
⊤
i,n|T ]

⊤Gi. (25)

IV. DATA-DRIVEN OUTPUT FEEDBACK CONTROLLER

This section proposes a data-driven output feedback con-
trol scheme to stabilize the switched linear system (1) under
arbitrary switching. Since the input-output behavior of the
closed-loop system (1) with the output feedback controller
is the same as that of the data-based representation (24), we
use (24) to derive the data-driven control scheme.

Inspired by [15], a multiple Lyapunov function method is
employed to design the control scheme for the switched lin-
ear system (24). We select the following piecewise quadratic
function as a Lyapunov function candidate for (24)

V (x̂(k)) =
∑s

i=1
ξi(k)Vi(x̂(k)), (26)

where Vi(x̂(k)) = x̂(k)⊤Pix̂(k) with the positive definite
matrix Pi ∈ Rn̂×n̂, and ξi(k) = 1 if σ(k) = i, otherwise
ξi(k) = 0. Then, we introduce a lemma that provides a
necessary and sufficient condition such that the closed-loop
system (24) admits a Lyapunov function in the form of (26).

Lemma 3 ( [14]): Consider the closed-loop system (24).
There exists a Lyapunov function in the form of (26) such
that (24) is asymptotically stable under arbitrary switching if
and only if there exist matrices Pi = P⊤

i , ∀i ∈ S, satisfying[
Pi Ã⊤

i Pj

PjÃi Pj

]
> 0,∀(i, j) ∈ S × S, (27)

where Ãi = Âi + B̂iKiĈi = X̂i,n+1|T+1Gi.
Based on Lemma 3, the proposed controller for the system

(1) can be designed by solving LMIs in the following
theorem.

Theorem 2: Consider the switched linear system (1) under
Assumption 1-4. For any i ∈ S and given the group of
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input-output data (ui,[0,T ], yi,[0,T ]), suppose ui,[n,T ] is PE of
order n̂+1. If there exist matrices Qi, Si, and non-singular
matrices Ri with appropriate dimensions such that[

X̂j,n|TQj X̂i,n+1|T+1Qi

Q⊤
i X̂

⊤
i,n+1|T+1 X̂i,n|TQi

]
> 0, (28a)

SiYi,n|T − Ui,n|TQiX̂i,n|T = 0, (28b)

RiYi,n|T − Yi,n|TQiX̂i,n|T = 0 (28c)
hold for all i, j ∈ S , then the output feedback controller
u(k) = Kiy(k) with Ki = SiR

−1
i , ∀i ∈ S asymptotically

stabilizes the switched system (1) under arbitrary switching.
Proof: Based on Lemma 3, if LMIs (27) are feasible,

the closed-loop system (24) is asymptotically stable. There-
fore, it is sufficient to prove that LMIs (25) and (27) can be
guaranteed by LMIs (28a)-(28c).

First, we prove that LMIs (28a) are equivalent to (27)
by choosing Pi = (X̂i,n|TQi)

−1, ∀i ∈ S. Let Γi = P−1
i .

Applying Schur complement to (27) twice yields that[
Γj ΓiÃ

⊤
i

ÃiΓi Γi

]
> 0 (29)

holds for all i, j ∈ S.
Replacing Ãi in (29) with X̂i,n+1|T+1Gi gives[

Γj ΓiG
⊤
i X̂

⊤
i,n+1|T+1

X̂i,n+1|T+1GiΓi Γi

]
> 0. (30)

Let Qi ∈ R(T−n+1)×n̂ satisfy
Qi = GiΓi, ∀i ∈ S. (31)

Combining (31) with (25) implies
KiĈiΓi = Ui,n|TQi, (32)

Γi = X̂i,n|TQi, ∀i ∈ S. (33)
Then, substituting (31) and (33) into (30) gives (28a).

Subsequently, we further give the derivation of the LMIs
(28b) and (28c). These two LMIs are used to guarantee that
control gains Ki = SiR

−1
i , ∀i ∈ S satisfy the condition

(25).
From Remark 4, Ĉi, ∀i ∈ S has full row rank. Thus,

there exist nonsingular matrices Ri ∈ Rp×p, i = 1, . . . , s,
such that

RiĈi = ĈiΓi, ∀i ∈ S. (34)

Substituting Ki = SiR
−1
i and (34) into (32) gives

SiĈi = Ui,n|TQi, ∀i ∈ S. (35)
On the other hand, substituting (33) into (34) gives

RiĈi = ĈiX̂i,n|TQi, ∀i ∈ S. (36)

Since Yi,n|T = ĈiXi,n|T , the LMIs (28b) and (28c) can be
derived by right-multiplying both sides of (35) and (36) with
X̂i,n|T , respectively.

In conclusion, if the LMIs (28a)-(28c) are feasible, the
LMIs (25) and (27) can be guaranteed by choosing Pi =
(X̂i,n|TQi)

−1, and Ki = SiR
−1
i , ∀i ∈ S. Based on Lemma

3, the closed-loop system (24) is asymptotically stable,
i.e., the designed output feedback controller asymptotically
stabilizes the switched system (1) under arbitrary switching.

Remark 6: According to the definition of x̂ in (6), if the
output matrices are different, there will be a state jump at
each switching instant, which may cause difficulties in the
stability analysis. To avoid such an issue, this paper requires
the output matrices in (1) to be identical, i.e., C1 = · · · =
Cn = C. Of course, subsystems in (1) may have different
output matrices in practice, and how to extend the obtained
results to this general case will be studied in future work.

Remark 7: As discussed in Remark 3, one of the major
advantages of our method is the dimension reduction of the
state in (24), and thus may reduce the computational burden
of the controller design. This advantage becomes particularly
significant when using input-output data to design controllers
for complex systems such as hybrid systems (e.g., unmanned
aerial vehicles [24]) and large-scale systems with intercon-
nected MIMO subsystems (e.g., multi-agent systems [25]).
The application of our method to these practical scenarios
will be a subject of study in future work.

V. NUMERICAL EXAMPLE

This section gives a numerical example to show the
effectiveness of our methods. Consider the switched linear
system (1) with four subsystems and system matrices as

Ai =


0.36 0 0 0 θ1i
0 θ2i 0.78 0 0
0 0.76 0.39 0 0.3
0 0 0 θ3i 0.3
θ4i 0 0.5 0.24 0.5

 , Bi =


θ5i 0.2
0.37 0.6
0.88 0.5
0.63 θ6i
0.86 0.2

 ,

C =

[
0.55 0.50 0 0 0.34
0 0 0.74 0.40 0

]
, i = 1, . . . , 4,

where θιi , i = 1, . . . , 4, ι = 1, . . . , 6 is given in Table. I.

TABLE I
PARAMETERS IN THE SWITCHED LINEAR SYSTEM.

i θ1i θ2i θ3i θ4i θ5i θ6i
1 0.35 0.25 0.38 0.35 0.50 0.44
2 0.45 0.10 0.30 0.45 0.32 0.12
3 0.15 0.15 0.48 0.15 0.29 0.34
4 0.25 0.15 0.28 0.25 0.19 0.24

It is obvious that the four subsystems are unstable without
control. We assume that system matrices are unknown and
are used to build the test system in the simulation. Assume
that the system state is unmeasurable. Based on Remark 1,
by applying two special inputs u1(k) = [1, 0]⊤ at k = 0
and u1(k) = 02×1 otherwise and u2(k) = [0, 1]⊤ at k = 0
and u2(k) = 02×1 otherwise to these four subsystems and
collecting the output data, respectively, we can verify that
the four subsystems are controllable and observable, and their
output matrices have full row rank. Further, based on Remark
2 and 5, a common row vector η = [0.5, 0.5] makes the
four pairs (Ai,ηC), i = 1, . . . , 4 observable. Then, based on
Section III-A, a new state variable can be constructed by
using the past 5-step input-output data of the system and the
selected η as x̂(k) = [u(k − 5)⊤, · · · , u(k − 1)⊤, ηy(k −
5), · · · , ηy(k − 1)]⊤.
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By simulation, we collect a set of input-output sequences
of the switched linear system, denoted by (ui,[0,55], yi,[0,55]),
i = 1, . . . , 4, in which the control input is randomly gener-
ated between −0.1 and 0.1. The input sequence ui,[5,55] is
PE of order 16, i.e., n̂ + 1. Referring to Subsection III-C,
the input, state, and output Hankel matrices of order 1 are
denoted as Ui,5|55, X̂i,5+κ|55+κ and Yi,5|55, i = 1, . . . , 4,
κ = 0, 1, respectively. Then, solving the LMI problem
in Theorem 2 can obtain the controller u(k) = Kiy(k),
i = 1, . . . , 4.

The switching signal and output results of the closed-
loop system with the initial condition x0 = [−0.32, 0.95,
−0.56,−0.31, 0.79]⊤ are given in Fig. 1. The switching
signal is generated randomly. In the last two sub-graphs of
Fig. 1, the blue lines are the system outputs with the proposed
switched data-driven control (SDDC) scheme; and the red
dashed lines are those with the switched model-based control
(SMBC) scheme proposed in [14]. It can be observed that
the SDDC scheme can reach the control target and achieve
a similar control performance to the SMBC scheme.
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0
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0 5 10 15
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0
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Fig. 1. The switching signal and output trajectories of the switched linear
system.

A DDC method for non-switched LTI systems is proposed
in [7] by using the original system output to construct the
new system state x̂. Using our method, the dimension of x̂ is
15 compared with 20 using [7]; thus, our method may have a
lower computation burden. Moreover, it is worth pointing out
that subsystems with the state x̂(k) directly constructed by
the system output are uncontrollable. Therefore, we cannot
design the controllers by using our method or any other
methods based on Willems’ Fundamental Lemma.

VI. CONCLUSION

This paper has studied the problem of designing data-
driven output feedback controllers for unknown switched
linear systems under arbitrary switching. First, inspired by
Willems’ Fundamental Lemma, a data-based representation
of the closed-loop system with an output feedback controller
has been constructed using only input-output data. Based on
this representation, the control problem has been formulated
as a data-dependent LMI problem. Then, an output feedback
controller has been designed using the feasible solution to the

LMI problem. A numerical example has been given to show
the correctness and effectiveness of the proposed controller.
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