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Abstract— We present a novel approach to the problem of
learning the behavior of dynamical systems for the purpose
of robust control design. The approach is centered around the
derivation of stable predictors of potentially unstable systems
and using them to identify plant models that can be ranked by
their complexity (order) vs. empirical Nu-gap value.

Identification for Control, Robust Control

I. INTRODUCTION

A goal of system identification can be stated as one of de-
riving a mathematical description of a dynamical system that
is no more complicated than what the application demands.
The derived model must of course be consistent with both the
system measurements as well as any prior knowledge about
its behavior and the disturbances. In this context, the goal
of control-oriented identification is to be able to certify that
if the priors are correct, then a controller designed using the
identified plant will also stabilize the true, unknown system.

It is well-known that stable, finite-horizon, predictors can
be posed even for unstable systems, a fact at the core of the
prediction error minimization (PEM) framework [1]. This
observation provides the inspiration for the line of approach
described in this paper. In short, we lean on the stability of
predictors to perform the identification of unstable systems.

In this paper, we discuss approaches to steer the identifica-
tion process toward control-friendliness, that is, trade-off the
open-loop closeness of the model’s response to the measured
one for better closed-loop guarantees. The main tool used
for assessing this trade-off is the ν-gap metric that measures
the closed-loop distance between systems: specifically, if two
systems are close in this metric, then there exists a controller
that simultaneously stabilizes both. As discussed in an earlier
publication [2], this assessment cannot be done by open-loop
measures of the distance between plants.
Approaches that take into account the closed-loop objec-
tives such as the gap metric have been considered under
various settings earlier. Some are based on coprime factor
identification and typically either require the knowledge
of a stabilizing controller beforehand [3]–[6], or rely on
relaxations that are hard to scale up [7]. [8] minimizes
the uncertainty in the identified coprime factors subject to
robust stability constraints. However, a prior structure on the
transfer function is imposed essentially limiting the role of
gap-minimization to a gain K. [2] proposed a generalized
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Fig. 1. Stereographic projection and chordal distances. Corresponding to a
point h1 ∈ C, ∃ hmax

2 s.t. the chordal distance between their projections,
P1 and Pmax

2 respectively, is maximized. N = (0, 0, 1) denotes the
“north pole” of the Riemann sphere, and C = (0, 0.0.5) its center. If
−h̄/|h̄|2 /∈ D(hm, ϵ), the Chebyshev center is the point hcc which bisects
the projections of the closest (h) and the farthest (h̄) points on the disk
(the dotted green line bisects the dashed cherry-colored line and meets the
complex plane at hcc).

interpolation-based approach. In the absence of noise, this
method leads to a semi-definite program. However, in the
presence of noise, retaining convexity requires using a relax-
ation that leads to conservative bounds on the uncertainty.

Our objective is to identify a model Gid that is as
close as possible to the true system G0 in the gap metric
while respecting the uncertainty bounds prescribed on the
measurements. Since G0 is unknown, this can’t be achieved
directly. Instead, using the prior that the uncertainty bounds
envelope the response of G0, we can estimate the worst-case
distance between the true system and the identified model
in the gap-metric sense. This is represented by the chord
P1−P2 in Figure 1 which denotes the distance between the
stereographic projections of two response values h1 and h2

in the complex plane; see [9] for more details. Assuming h1

represents the true plant response, the objective then is to
find an optimal value for h2 inside the disk of uncertainty.
The standard approach to identifying a stable model that
guarantees adherence to the prescribed bounds is using
the interpolatory algorithms [10], [11]. Our methodology
leverages this approach for control-oriented identification of
potentially unstable systems without requiring closed-loop
experimentation. Our contributions are as follows:

1) An ersatz scheme for estimating the Chebyshev center
of the consistency set in the ν-gap sense.
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2) A method for the identification of a robust predictor
that can handle both time and frequency domain data.

3) An empirical analysis of the trade-offs between the
competing goals of minimizing the ν-gap and keeping
the order of the identified model low.

4) Illustration of the efficacy of the proposed approach on
a system that is not strongly stabilizable.

II. PRELIMINARIES

A. Notation

G(z)
.
=

∑∞
i=0 giz

i is a discrete-time transfer function that is
analytic inside the unit disk.H∞,ρ denotes space of functions
analytic inside the disk of radius ρ > 1, equipped with the
norm ∥G(z)∥∞,ρ

.
= sup|z|<ρ|G(z)| (e.g. exponentially stable

systems with a stability margin of ρ− 1). Hκ
∞,ρ denotes the

κ-ball in H∞,ρ, e.g. Hκ
∞,ρ

.
= {G ∈ H∞,ρ : ∥G∥∞,ρ≤ κ}.

We will denote H∞,1 as simply H∞. The symbol “⊛”
represents the convolution operator. Tg denotes the Toeplitz
matrix associated with the impulse response sequence, g(t),
of G(z). G(z)̃ denotes the conjugate of G(z): G(z)̃

.
=

GT (1/z). Finally, νgap(G1, G2) denotes the ν−gap metric
between plants G1 and G2.

B. Predictor Model

Consider a linear model G̃(z) that aims to perform the
best prediction of the output of another, potentially unstable,
linear system G(z) = Bp(z)/Ap(z) one step into the future
using all available measurements of G(z) up to a given time
instant t. Under a stochastic embedding framework, the opti-
mal predictor can be expressed in terms of the system’s true
and noise dynamics. For example, consider a Box-Jenkins
model structure where the data-generating system contains
additive colored noise so that ym(t) = Bp(q)/Ap(q)u(t) +
Cp(q)/Dp(q)e(t), where ym(t) is the noisy output generated
owing to the input u(t) and disturbance e(t), and q denotes
the backward shift operator. The optimal predictor (in the
prediction mean squared error (MSE) sense) is given by [1]:

ỹ(t) =
Dp(q)Bp(q)

Cp(q)Ap(q)
u(t) +

Cp(q)−Dp(q)

Cp(q)
ym(t) (1)

The predictor for a single-input single-output (SISO) system
is thus another system with one output ỹ(t) and two inputs
u(t), and ym(t). The fundamental assumption underlying the
PEM framework is that the predictor is stable. This implies
that Cp(q) is a stable polynomial and that the unstable roots
of Ap(q) are canceled by those of Dp(q). Succinctly, Eq. (1)
can be written as:

ỹ(t) = gu ⊛ u(t) + gym
⊛ ym(t) (2)

Ỹ (ω) = Hu(ω)U(ω) +HymYm(ω) (3)

where gu, and gym
denote the impulse responses from u(t)

and ym(t), and Hu(ω), Hym
(ω) the corresponding frequency

responses. Ỹ, U, Ym are the Fourier transforms of the corre-
sponding time-domain signals ỹ, u, and ym respectively. In
this paper, gu, gym , Hu(ω), and Hym(ω) are the primary

design variables. Note that the true plant response can be
obtained from that of the predictor as follows:

H(ω) = Hu(ω)/(1−Hym(ω)) (4)

C. Nu-Gap Metric and Robust Stabilizability

Given two SISO models G1(z), G2(z) with frequency re-
sponses H1(e

jω) and H2(e
jω), the ν-gap between G1, G2 is

given by ( [9], Theorem 17.6):

νgap(G1, G2) =


∥Ψ(H1(e

jω), H2(e
jω))∥∞

if det((I +H2(e
jω )̃ H1(e

jω)) ̸= 0 and
wno det(I +H2̃ H1) + η(H1)− η(H2)
−η0(H2) = 0,

1 otherwise
(5)

where wno denotes the winding number, η(H) and η0(H)
denote the number of unstable and unit circle poles of G,
respectively, and where

Ψ(H1(ω), H2(ω))
.
=

|H1(ω)−H2(ω)|√
1 + |H1(ω)|2

√
1 + |H2(ω)|2

(6)

The advantage of this expression is that it can be calculated
directly from the frequency response data. Given a controller
C that stabilizes a certain plant G1, define:

bopt = ∥
[
C
I

]
(I +H1C)−1

[
I H1

]
∥−1
∞

Then, if bopt > νgap(H1, H2) the controller C also stabilizes
H2 (Theorem 17.8 in [9]). We will exploit this result to
ascertain whether or not a controller designed using the
identified model is guaranteed to stabilize the actual plant.

D. Generalized Interpolation Framework for Robust Identi-
fication

The generalized interpolation framework, as established in
[10], [11] and further used in [12] for finding the minimal
order interpolant, generalizes the Nevanlinna-Pick interpola-
tion conditions to incorporate time-domain data. The main
result in [10] shows that the problem of finding a function
in Hκ

∞,ρ that interpolates given time- and frequency-domain
measurements can be reduced to a semidefinite program
(SDP). For our current purpose, it suffices to recall that a
rational interpolant G(z) exists if and only if the following
Hermitian matrix Z(H,g, ρ, κ) is positive semidefinite:

Z(H,g, ρ, κ)
.
=

[
M−1

0
1
κX

1
κX

T M0

]
≽ 0

|H(ωi)−Hm(ωi)|≤ ϵf , i = 1, 2, . . . , Nf

|ym(t)− g(t)⊛ u(t)|≤ ϵt, t = 1, 2, . . . , Nt (7)

where g denotes the impulse response vector of G(z) and
H(ω) its frequency response. (ym, u), and Hm(ωi) are the
corresponding noisy measurements. The matrices M0,X are
defined as:
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M0 =

[
Q S0R

−2

R−2SH
0 R−2

]
, X =

[
H 0
0 Tg

]
R = diag([1, ρ, ρ2, . . . , ρNt−1])

Q =
[

ρ2

ρ2−zizj

]
ij
, zi = ejωiT , i, j = 1, 2, . . . , Nt

S0 = [zji ]ij , i = 1, 2, . . . , Nf , j = 1, 2, . . . , Nf

H = diag([H(ω1), H(ω2), . . . ,H(ωNf
)]) (8)

E. Rank Revealing Properties of the Loewner Matrices

Loewner matrices are presented in the context of Lagrange
interpolants of rational functions in [13]. Their use for
system identification within the generalized interpolation
framework is further described in [12]. For the current
work, we lean on the rank of an almost square Loewner
matrix L(HNf ,ω) that is composed of frequency response
vector HNf computed over Nf points on the unit circle
zi = ejωi ,ω

.
= (ω1, . . . , ωNf

). If rank(L) = n, n < Nf/2,
and all possible n-by-n Loewner sub-matrices formed using
(HNf ,ω) are full-rank, then there exists a unique transfer
function corresponding to this data (see Theorem 1.2 in [13]).

III. IDENTIFICATION OF CONTROLS-FRIENDLY
PREDICTORS

This section presents the main ideas of the paper.

A. Robust Prediction Using Generalized Interpolation

For robust prediction, we need that prediction errors e(t) =
ym(t) − ỹ(t) are bounded in the worst-case sense, that is,
|e(t)|≤ ϵt(t),∀t. This is achieved by using the generalized
interpolation formulation.

Lemma 1: Given Nt time-domain samples of input/output
data (u(t), ym(t)) and Nf frequency response samples
Hm(ejω), with the following apriori measurement error
bounds:

|ym(t)− y(t)| ≤ ϵt(t),∀t = 1, 2, . . . , Nt (9)
|Hm(ωi)−H(ωi)| ≤ ϵf (ωi),∀i = 1, 2, . . . , Nf (10)

there exists a set of stable predictors for the plant G(z)
provided the following feasibility conditions are met:

Z(Hu,gu, ρ, κ1) ≽ 0

Z(Hym
,gym

, ρ, κ2) ≽ 0

|y(t)− g(t)⊛ u(t)| ≤ ϵt(t), t = 1, 2, . . . , Nt

|H(ωi)−Hm(ωi)| ≤ ϵf (ωi), i = 1, 2, . . . , Nf (11)
Proof: See Theorem 3, and proof therein, in [11].

B. Chebyshev Center Approximation

Given measurements Hm(ω) and the corresponding uncer-
tainty bound ϵω over a grid of ω values, what is the most
desirable location of the identified plant response Hid(ω)?
The ersatz proposed here aims to answer this question.

Let D(hm, ϵ)
.
= { z ∈ C | |z−hm|2≤ ϵ2 } denote the disk

of uncertainty of radius ϵ centered at hm for the measurement

at a given frequency. Suppose h1, h2 are two feasible points
with stereographic projections P1, P2 on the Riemann sphere
(that is the intersection of the sphere and the lines connecting
hi to the north pole N

.
= (0, 0, 1)). The explicit expression

for Pi in a coordinate system where the x − y plane is the
complex plane is given by:

Pi =

(
Re(hi)

1 + |hi|2
,
Im(hi)

1 + |hi|2
,
|hi|2)

1 + |hi|2

)
, i = 1, 2. (12)

Then, Ψ(h1(ω), h2(ω)) defined in (6) is precisely the chordal
distance between the projections P1, P2. To estimate the
Chebyshev center of the uncertainty set D(hm, ϵ), in the gap
metric sense, we need to find the points h1, h2 ∈ D(hm, ϵ)
such that their corresponding stereographical projections
maximize the chordal distance. To this effect, consider a fixed
point h1 ∈ D(hm, ϵ) and maximize Ψ(h1(ω), h2(ω)) w.r.t.
h2. Tedious algebra shows that the unconstrained maximum
is achieved for hmax

2 = −h1/|h1|2, with the corresponding
Ψ(h1(ω), h

max
2 (ω)) = 1. Geometrically, this corresponds

to the case where the chord P1, P
max
2 passes through the

sphere’s center and hence has length 1 (see Figure 1). This
observation leads to the following two cases:
B.1. hmax

2 ∈ D: This corresponds to the situation where the
uncertainty ϵ in a measurement is high relative to its
magnitude |hm|. In this case, D contains the origin, and
the chordal distance is maximized by pairs of points
contained in the disk such that the chords connecting
their projections all pass through the sphere’s center.
Hence the best guess for the Chebyshev center is hcc =
0. This choice supports the commonly known closed-
loop objective of small gain at frequencies where the
open-loop uncertainty is large.

B.2. hmax
2 /∈ D: This is the more common scenario and

is the main focus here. In this case, setting h2 =
αhmax

2 , 0 ≤ α < 1, shows that Ψ is maximized
by taking h1 = h̄, the farthest point in D from the
origin, and h2 =

¯
h, its diametrically opposed point in

D. This suggests approximating the Chebyshev center
by the point corresponding to the mid-point of the
stereographic projections of h̄ and

¯
h:

hcc = (1− γ)h̄+ γ
¯
h, γ =

1 + |h̄|2

2 + |h̄|2+|
¯
h|2

(13)

Remark 1: Note that while hcc is inside the uncertainty
disk by construction, it may not belong to the consistency
set, since there is no guarantee that there exists a function in
Hκ

∞,ρ that interpolates these data points. Thus, one may not
be able to use hcc directly as the identified plant. Further,
when computing hcc we did not impose the winding number
condition. Thus hcc is only an approximation (ersatz) to the
true center.

C. Main Algorithm

Let H
Nf
cc denote the Nf -long reference response vector

obtained by using the Chebyshev center ersatz (section III-
B). The ersatz indicates that the identification goal should be
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to stay as close as possible to Hcc, at all frequencies, in the
gap-metric sense. In the best-case scenario, with no priors
other than that the unknown system is linear time-invariant
(LTI) and that there are no restrictions on the model order,
the identified model response can match Hcc arbitrarily well.
However, doing so implicitly assumes no additional priors
regarding (or preference for) lower-order models, which is
often not the case. From an H∞-synthesis perspective, it is
desirable to keep the plant model order low since the plant
order is reflected in the designed compensator order. Thus
there is a trade-off between the choice of model order and
the achievable gap in the worst case. The following problem
statement quantifies this trade-off.

Problem 1: Given noisy time- and frequency-domain
measurements, determine the closest stable predictor to Hcc,
in the νgap metric, such that the corresponding plant is (a)
in the consistency set, (b) has low order, and (c) satisfies
(9)-(10).

Proposition 1: Let gNt

id denote the Nt-long impulse re-
sponse vector, and H

Nf

id the Nf -long frequency response
vector of the plant to be identified Gid. The estimates are
obtained as a solution to the following optimization problem:

minimize
Θ

max
i

(Ψ̂i(Hu, Hym
, ωi))

+ λ(rank(L(Hu)) + rank(L(Hym
)))

subject to Z(Hu,gu, ρ, κ1) ≽ 0,

Z(Hy,gy, ρ, κ2) ≽ 0,

|y(t)− g(t)⊛ u(t)|≤ ϵt(t),

|Hm(ωi)(1−Hym
(ωi))−Hu(ωi)|

|1−Hym
(ωi)|

≤ ϵf (ωi),

t = 1, . . . , Nt, i = 1, . . . , Nf

where Θ
.
= {gu,gym

, Hu, Hym
, κ1, κ2} (14)

Ψ̂i(·) =
|Hcc(ωi)(1−Hym

(ωi))−Hu(ωi)|2

|Hu(ωi)|2+|1−Hym
(ωi)|2

(15)

gu,gym
∈ RNt , Hu, Hym

∈ CNf , κ1, κ2 ∈ R+

Here (15) uses (4) and (6) to minimize the gap between the
identified plant and Hcc, while λ ≥ 0 trades off the small
νgap objective against the low order objective for Gid. The
constraints enforce that Gid is in the consistency set.

Proof: Follows from combining (4) and (6)-(8) with the
properties of Loewner matrices.

1) Convex Relaxations: We use nuclear norm as a convex
relaxation of the matrix rank and further use reweighted
trace heuristics to reduce the conservatism introduced by
this relaxation [14]. The rational terms in the objective
(Ψ̂i) and the frequency domain noise constraint (the last
one) can be convexified by using a Sanathanan-Koerner
(SK)-type iterative approach wherein a non-convex objec-
tive mina,b|h − b/a| is replaced by the convex objective
minak,ak

|(hak− bk)/ak−1| for kth iteration [15]. This leads
to the following convex minimization problem (for a single
iteration k):

minimize
Θ(k)

J(Θ(k))

subject to

Z(H(k)
u ,g(k)

u , ρ, κ1) ≽ 0,

Z(H(k)
y ,g(k)

y , ρ, κ2) ≽ 0,

|ỹ(t)− g(k)
u (t)⊛ u(t)− g(k)

y (t)⊛ ym(t)| ≤ ϵ̃t(t),

|Hm(ωi)(1−H(k)
ym

(ωi))−H(k)
u (ωi)|2 ≤ ϵ2f (ωi)W(k)

f ,

|Hcc(ωi)(1−H(k)
ym

(ωi))−H(k)
u (ωi)|2 ≤ δ(k)ν W(k)

ν ,

t = 1, . . . , Nt, i = 1, . . . , Nf

where J(Θ(k)) = δ(k)ν +λ

(
Tr(W(k−1)

u,1 U1) + Tr(W(k−1)
u,2 U2)

Tr(W(k−1)
y,1 Y1) + Tr(W(k−1)

y,2 Y2)

)
+η(

∥∥∥|1−H(k)
y (ω)|−W(k)

f

∥∥∥2
2
), (16)

ϵ̃t(t) = (1− g(k)
y (t))⊛ ϵt(t);U1, U2, Y1, Y2 ≻ 0

Θ(k) = {δ(k)ν ,g(k)
u ,g(k)

y ,H(k)
u , H(k)

y , U1, U2, Y1, Y2, κ1, κ2}

The weights W(k)
∗ ∈ RNf are updated in the outer iterative

loop. η is the penalty associated with a regularization term
that is added to keep the changes over the iterations relatively
small. The complete algorithm is summarized in Algorithm
1.

Algorithm 1 Minimization Approach for Problem 1
1: Inputs:

Data: u(t), ym(t), Hm(ω) samples
Priors: ρ, ϵf (ω), ϵt(t), δmin

ν , δmin
f

2: Initialize:
k = 0 ▷ iter counter
Weights: W(0)

ν ,W(0)
f (e.g., using PEM)

W(0)
u,1 =W(0)

u,2 =W(0)
y,1 =W(0)

y,2 = I
η = 1e3, ϵ0 = 1e− 4

3: while δν > δmin
ν | δf > δmin

f do
4: k ← k + 1
5: Θk ← argmin J(Θ(k)) ▷ Eq. (16)
6: W(k)

ν ← |H(k)
u |2+|1−H

(k)
y |2

7: W(k)
f ← |1−H

(k)
y |2

8: W(k)
u,∗ ← (U∗ + ϵ0I)

−1 ▷ ∗ = 1, 2

9: W(k)
y,∗ ← (Y∗ + ϵ0I)

−1

10: end while
11: Use Algorithm 1.2 in [13] to find Gid

Step 10 of Algorithm 1 yields a candidate identified
frequency response Hid, The last step obtains a state-space
realization, Gid, of this response by imposing a cut-off
threshold on the singular values of the Loewner matrix
L(Hid).

2) Other Numerical Aspects: The domain mapping and
the linear matrix inequality (LMI) rescaling arguments made
in [2] (Section IV.A.4) apply here as well. In particular, the
feasibility matrices Z(H

(k)
u , ...), Z(H

(k)
y , ...) of (11) become

ill-conditioned as ρ increases and necessitate the use of both
of these techniques.
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Fig. 2. Measured FRF with uncertainty bounds. The green curve shows
the true plant (Oracle) response.
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Fig. 3. Measured chirp signal response with prescribed uncertainty bounds.

Remark 2: The output δν of Algorithm 1 is a valid νgap
only if the winding number condition in (5) holds. This can
be checked numerically by first estimating the number of
unstable poles of Hm from its Bode plot and then plotting
det(1 + Hid˜Hm). In the absence of such knowledge, the
most feasible candidate must be determined by trying out all
the candidates and picking the one with the largest stability
margin (bopt). The chances of finding a plant model with
a verifiable νgap can be improved by generating a set of
results corresponding to multiple orders, all corresponding
to similar singular values near the cut-off threshold.

IV. EXAMPLE: NON-STRONGLY-STABILIZABLE PLANT

Consider the non-strongly stabilizable plant G(z) =
0.1(z − 1.1)/(z − 0.95)(z − 1.2), used previously in [2]
to analyze a coprime factor identification approach. The
data is collected by simulating the plant in an open-loop
setting using band-limited random and chirp profiles. The
measured responses are corrupted by additive noise. The
random input response is used for deriving an empirical
estimate of the frequency response with the Hann window.
33 samples of the frequency response and 50 samples of the
chirp signal time-domain response are used for identification.
These responses along with their prior uncertainty bounds are
shown in Figures 2 and 3. The stability radius prior is taken
to be ρ = 1.01.

The (per-frequency) worst-case locations of the true and
identified plants are at the uncertainty limits, not unexpected
for measurements with relatively small uncertainty relative
to the response amplitude. The estimated Chebyshev center
(Eq. (13)) along with the worst-case limits (in the ν-gap
sense) is shown in Figure 4. Hcc stays close to measured
values Hm. Assuming that the true plant stays as far as
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Fig. 4. Estimated Chebyshev center and worst-case νgap responses. Red:
Chebyshev center Hcc, Blue: Measured response Hm.
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Fig. 5. νgap vs. λ. νcc is the chordal distance from the Chebyshev
center Hcc. ν0 is the chordal distance to the true (Oracle) system. ”FRF”
suffix denotes empirical value computed only on the measurement frequency
points (using Ψ̂), while ”TF” suffix denotes the gap of the identified transfer
function.

possible from the Chebyshev center at each frequency, the
best achievable gap is νgap(Hcc, Hworst) ≈ 0.121, where
Hworst is the response corresponding to the boundary (the
dotted black curves in Figure 4). Here the true plant order
is assumed to be unknown. If we imposed a prior regarding
the order, such as the true order is as small as possible, it
is likely to achieve a smaller gap since then the true plant
response must be a smoother curve than Hworst and closer
to Hcc.

To investigate the gap versus order trade-off, Algorithm 1
was run with λ values ranging from 0 to 1e4, leading to the
results shown in Figure 5. As expected, as λ is increased,
the number of significant singular values of the Loewner
matrices, and hence system order, drops, while the ν-gap
measured from the empirical Hcc (= maxi(Ψ̂i)) increases
(blue line). On the other hand, the gap between the identified
and true plants, νgap(H0, Hid), decreases (orange line). This
is due to the fact that, for larger values of λ, the order of
the identified model happens to be closer to the order of the
true plant.

The best result, νgap ≈ 0.0245, is obtained for ρ =
1.01, λ = 1e4, for the identified model:

Gid(z) =
0.113(z − 1.105)

(z − 1.235)(z − 0.949)
(17)

The Nyquist plot of 1 + H0̃ Hid for this model is shown
in Figure 6 which reveals a winding number of zero. Since
Gid has 1 unstable pole, the winding number condition is
satisfied. Indeed, the estimated value of νgap ≈ 0.0245
was verified using the gapmetric command of MATLAB®
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Fig. 6. Nyquist plot of 1 +H0˜Hid. There is no encirclement of z = 0.
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Fig. 7. Frequency response of the best identified model (Hid, red)
compared against that of the true plant (H0, blue)) and the empirical
Chebyshev center used as fitting data (Hcc, red).

Robust Control ToolboxTM [16]. For the true plant, bopt =
0.072. This threshold is shown by a dotted black line in
Figure 5. Hence it is possible to find identified models with
νgap < bopt for many λ values, provided a prior regarding
the highest permissible order is placed, which is roughly
fourth-order or smaller. Figure 7 compares the identified
model’s frequency response to the true plant response as
well as to the empirical Chebyshev center Hcc. Some final
comments regarding the computation time and effectiveness:

• The estimation took 3 iterations of solving (16) using
CVX [17] (each iteration ∼ 7 minutes, running on a
WIN64 PC with 3.6 GHz Intel processor, 64 GB RAM).

• A similar approach but based on coprime factorization
was reported earlier [2]. The reported νgap value was
0.041 for a given choice of the error bounds ϵt and ϵf .
The estimation took roughly half the amount of time
as one iteration of Algorithm 1. However, it did not
attempt to directly minimize the νgap or the order of
the interpolant model and required ad hoc selection of
the error bounds.

• The traditional fit to the data under PEM approach
(which does not guarantee worst-case bounds) can be
obtained using the ssest command of MATLAB®

System Identification ToolboxTM [18], under default
settings. This yields an 8th order model with 98% fit (in
the normalized root means square sense) but producing
a gap value of 1.

V. CONCLUSIONS

The ultimate goal of control-oriented identification is to
generate a model that can be used to synthesize a controller
guaranteed to meet given design specifications when com-
bined with the true, unknown plant. This paper addresses
this scenario from a νgap perspective. Leveraging the fact
that predictors are stable even for unstable plants allows
for bringing to bear a generalized interpolation framework
to parameterize all candidate models in the consistency
set. This parameterization enables searching for models that
minimize a composite measure consisting of the ν-gap w.r.t.
an empirical Chebyshev center of the feasible model set,
and model order, allowing for trading off robustness against
model order. These results were illustrated identifying a
non-strongly stabilizable plant and guaranteeing closed-loop
stability of the actual plant using an H∞ controller designed
with the identified model.
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