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Abstract— Direct transcription with collocation-
type methods (CTM) is a popular approach for solving
dynamic optimization problems. It is known that these
types of methods can fail to converge for problems that
feature singular-arc solutions, high-index differential-
algebraic equations and overdetermined constraints.
Recently, we proposed the use of quadrature penalty
methods (QPM) as an alternative numerical approach
to collocation-type methods. In contrast to the concept
of collocation, which requires constraint-residuals to
equal zero at individual points (e.g. at collocation
points), the main idea of QPM is to simply oversample
this number of points and use their respective quadra-
ture weights in a quadratic penalty term, coining
the name of quadrature penalty. In this paper, we
provide numerical case studies and a broad numerical
comparison on a wide range of problems, highlighting
the benefits of QPM over CTM not only in difficult
problems, but also in solving problems competitively to
CTM. These results show that QPM can be considered
an attractive first go-to method when solving general
dynamic optimization problems.

I . Introduction
Many dynamical processes in engineering can be de-

scribed as differential-algebraic equation (DAE) systems.
For example, the famous Van-der-Pol electrical circuit
oscillator [1] is illustrated in Figure 1 and given by

ẏ1(t) = y2(t) , (1a)
ẏ2(t) = −y1(t) + y[2](t) ·

(
1 − y1(t)2)

+ u(t) , (1b)
−1 ≤u(t) ≤ 1 , (1c)
y1(0) = 0 , (1d)
y2(0) = 1 . (1e)

These equations are from [2], augmented with a control
voltage u that can be used to dampen the oscillation in
y1.

Optimal Control describes the discipline of intervening
in dynamical systems, using controls, to achieve some
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Fig. 1. Top: Diagram of an electric circuit. Bottom: Dynamics of
measured voltage reveals a Van-der-Pol oscillation.

mission goals (e.g. to steer the system’s states towards a
target). In the Van-der-Pol problem, optimal control can
be used to construct a function u(·) that minimizes some
objective, such as, e.g.,

Φ(y, u) =
∫ tf

t0

f(ẏ(t), y(t), u(t), t) dt .

For the example of the Van-der-Pol controller, we can use

Φ(y, u) =
∫ 4

0

(
y1(t)2 + y2(t)2)

dt . (2)

For simple problems like the above, optimality criteria,
such as Pontryagin’s minimum principle, can be applied
to analytically determine the optimal solution for u(t).
However, for many practical engineering models of large
sizes, numerical algorithms may be required.

In this work, we numericallysolve the optimal control
problem arising from such dynamical systems with colloca-
tion type methods (CTM) and quadrature penalty meth-
ods (QPM). We work out differences in both methods’
solution processes. We then discuss sources in the problem
that result in challenges in numerical solutions, related
to singular arcs. We describe how QPM alleviates these
issues. Section IV considers another source of numerical
issues for CTM: consistent over-determination, and again
illustrates how QPM can resolve related issues. We also
compare the performance of CTM and QPM in Section V
for a wide range of optimal control problems in the
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literature, before presenting the concluding remarks in
Section VI to recommend the use of QPM as the preferred
method for solving dynamic optimization problems.

I I . Numerical Optimal Control via
Direct Transcription

The usual approach to numerically solving optimal con-
trol problems operates by fitting piecewise interpolation
polynomials for y(·), u(·) of some polynomial degree p ∈ N,
known as finite elements. The polynomials are denoted
by yh(·), uh(·), depending on a finite element mesh size
parameter h > 0. The nodal values of yh(·), uh(·) are
computed as the design vector of a nonlinear programming
problem (NLP). In describing this process, for simplicity
of exposition we imply treatment of general inequality
constraints by the usage of slack variables [3, Chap. 2].

1) Collocation Solution: In order to yield convergence
of any constraints c(ẏ(t), y(t), u(t), t) = 0 for t over the
domain [t0, tf ], CTM (e.g. [3]) uses a set Qh of pairs
of quadature abscissae τ and weights α over the finite
element mesh, and require

c
(

ẏh(τ), yh(τ), uh(τ), τ
)

= 0 ∀(τ, α) ∈ Qh . (3)

This principle is called collocation, and related meth-
ods are called collocation methods. It is known that
polynomial collocation methods are a special sub-class
of the famous Runge-Kutta methods. When replacing
the implicit DAE c(ẏ(t), y(t), u(t), t) = 0 with explicit
differential equations ẏ = c̃(y(t), u(t), t), general Runge-
Kutta methods can be used instead. Both kinds of
methods follow the spirit of solving dynamic equations
by virtue of a finite set of nonlinear equations. The NLP
reads

min
yh,uh

Φh(yh, uh) :=
∑

(τ,α)∈Qh

α · f(ẏh(τ), yh(τ), uh(τ), t)

s.t. c(ẏh(τ), yh(τ), uh(τ), τ) = 0 ∀(τ, α) ∈ Qh ,

uL(τ) ≤ uh(τ) ≤ uR(τ) ∀(τ, α) ∈ Qh ,

yh(t0) = y0 .

with uL and uR the lower and upper bounds of the input.
2) Penalty Solution: The idea of using quadratic

penalty functions to solve optimal control problems with
explicit initial conditions was studied in [4], focusing on
the maximum principles that arise from the penalty func-
tion and their connections to the Pontryagin’s maximum
principle. This work lays the groundwork for an indirect
solution to the penalty function, however a numerical
method is not introduced. In recent work [5], we have
proposed an efficient numerical framework named QPM
for the direct solution of optimal control problems of
generic forms.

In comparison to CTM, QPM work in a conceptually
different way, in that they do not translate the DAE
constraints c(ẏ(t), y(t), u(t), t) = 0 into a finite set of
nonlinear equations. Instead, QPMs form a penalty term
P , which is composed from quadrature points τ and

Optimal Control u(t)

Collocation PenaltyTime t

Fig. 2. Comparison of numerical solutions for the Van-der-Pol
example, using CTM (blue) and QPM (red). Both methods use
finite elements of polynomial degree p = 4 on an equidistant mesh
of 100 intervals (h = 0.25).

weights α > 0, given by a set Qh, with respect to the
finite element mesh:

Ph(yh, uh) :=
∑

(τ,α)∈Qh

α · ∥c
(

ẏh(τ), yh(τ), uh(τ), τ
)
∥2

2 .

The NLP reads

min
yh,uh

Φh(yh, uh) + Ph(yh, uh)
2 · ωh

s.t. uL(τ) ≤ uh(τ) ≤ uR(τ) ∀(τ, α) ∈ Qh ,

yh(t0) = y0 ,

where ωh > 0 is a small penalty parameter that ap-
proaches zero as h approaches zero.

I I I . Computational Results for the
Van-der-Pol Example

Optimal control problems usually feature solutions
that are piecewise smooth. This is also the case for
Example 1: The optimal control follows a bang-bang
structure, meaning it switches from one of its bounds
instantly to another. On the final sub-arc, the solution
smoothly approaches zero in an exponential fashion.

Figure 2 shows the numerical solution uh(·) of CTM
and QPM. In particular, both methods use finite elements
of polynomial degree p = 4 on an equidistant mesh of 100
intervals, resulting in a mesh size of h = 0.25. CTM uses
the Legendre-Gauss-Radau points of degree p. QPM uses
the Gauss-Legendre quadrature method of degree 2 · p
and a penalty parameter of ω = 10−6.

As the figure shows, the CTM solution significantly
overshoots the bound constraints −1 ≤ u(t) ≤ 1 in
the bang-bang region, whereas the QPM features no
visually noticeable overshoot. (The exact overshoot for
QPM is limited to 0.0031.) In addition, the CTM solution
oscillates on the last sub-arc. This phenomenon, known
as ringing, is common for CTMs when solving certain
classes of optimal control problems, known as singular-arc
problems.

Singular-arc problems are optimal control problems
where a certain kind of singularity in the equations
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that result from the Pontryagin minimum principle
occurs. While the exact analytic conditions are well-
analyzed, identifying and eliminating singular arcs from
complex real-world optimal control problem can be a very
challenging task.

Singular arcs can appear in any problem of any size
(e.g. number of states, controls) or kind (e.g. linear, non-
linear, convex, non-convex). Since singular arcs often only
occur on some parts of the solution trajectories and can
be affected by many factors, such as the activation status
of a constraint, it may not always be possible to eliminate
the singularity as a prior measure. Desirably, with QPM
we have a method at hand that can solve optimal control
problems efficiently, regardless of whether singular arcs
are present.

IV. Large-Scale Compound Models
The examples that we give in this paper are relatively

small problems for demonstration purposes, but in prac-
tical applications, dynamical system models often consist
of several hundreds or thousands of states, controls, and
are described by a DAE. Frameworks like Modelica or
COMSOL are commonly used to automatically generate
these models by composing them from smaller sub-
modules. In particular when linking modules, high-index
DAE or consistently overdetermined equations can result.

For example, consider framework models that use
hinges instead of ball joints, or any consistently over-
determining type of connector. General models may
consist of hundreds of sub-modules and thousands of
variables and equations, hence it is practically hard to
identify cases like these manually and altering the model
using mathematical expertise so as to assert the resulting
DAE system is well-determined.

To illustrate the challenges of an overdetermined model,
we use a small toy example to illustrate the numerical
issues that result from consistent over-determination.
The following example studies the d = 1-dimensional
rotational degree of freedom for a quaternion q(t). For d
dimensions, a quaternion is a d + 1-dimensional vector.
Consider

min
q,u

∫ 5

0
u(t)2 + u̇(t)2 dt

s.t. q(0) =
[
1
0

]
, q(5) =

[
−0.96
0.28

]
,

q̇(t) = q(t) · u(t) , ∥q(t)∥2
2 = 1 .

The quaternion q rotates with a controlled angular speed
u that minimizes some functional, subject to rotating the
quaternion from a specified initial angular position into a
final angular position within a prescribed amount of time.
With input u and the initial conditions, q would already
be well determined from the differential equation for q.
Thus, the optimal control problem is over-determined due
the constraint ∥q(t)∥2

2 = 1 and the boundary conditions
on q.

Fig. 3. Explicit Euler solution in state space. The Euler solution
features a spiral shape, thus violating the circular constraint
∥q(t)∥2

2 = 1.

Elimination of overdetermination for this example can
be non-trivial. One approach would be to replace q with
an angle φ, but for d > 1 this approach would not work;
our reason for using d = 1 here is to simplify the example
in order to illustrate the problems that could occur. We
thus intend to keep q and the path constraint. At each
time t, one of the differential equations would have to be
removed in order for the problem to be well-determined
and avoid singularity (e.g. when q1 = 0 and we remove
the differential equation for q2). Finally, we would have to
introduce a parameter to neutralize the scaling of the end
condition. Otherwise, both the path constraint and the
end-condition imply ∥q(5)∥2

2 = 1, thus again consistently
overdetermining the problem.

Figures 3 and 4 show three collocation solutions, where
— to allow the problem to be solved — we removed the
pathconstraint and replaced the end condition with 0.28 ·
q[1](tf ) + 0.96 · q[2](tf ) = 0. The figures show numerical
solutions of Explicit Euler, Trapezoidal, and Legendre-
Gauss-Radau degree 2 collocation. We see that all three
methods violate the path constraint (denoted in black).

QPM faces no issues when solving overdetermined
problems, because it treats any equality constraints in a
least-squares manner. Thus, since the overdetermination
is consistent, the least-squares solution’s residual will be
in O(hp), where h is the mesh size and p depends on the
finite element method’s order of consistency.

V. Numerical Experiments
In previous sections, we presented a couple of challeng-

ing cases that cause CTM to struggle. Although problem
reformulations and ad-hoc fixes are available in the CTM
literature, they often require the identification of the root
causes beforehand, which can be practically prohibitive
for real-world engineering problems. In contrast, QPM
has the ability to reliably yield accurate and piecewise-
smooth solutions for these difficult problems without the
need for special considerations.

In this section, we compare computational results
4287



Fig. 4. Trapezoidal and Legendre-Gauss-Radau (p = 2) collocation
solution in trajectory space. Both methods violate the equation
∥q(t)∥2

2 = 1.

between CTM and QPM on a wide selection of benchmark
problems from the literature, focusing on the differences
in solution accuracy and computational cost. Specifically,
we will show that QPM could be used as a reliable first
go-to method and as a competitor to CTM.

A. Experimental Setting
Our presentation comprises 20 problems. Each problem

is solved with CTM and QPM of polynomial degree 4 on
three meshes; a coarse mesh of N intervals, a medium
mesh of 4 · N intervals, and a fine mesh of 16 · N
intervals. We use equidistant meshes because different
refinement strategies may favour either method, resulting
in unfair comparison. In terms of quadrature order Qh,

for collocation, it matches with the polynomial degree
hence we select the Legendre-Gauss-Radau (LGR) points
of degree 4 (i.e. we use LGR collocation with polynomial
degree 4). For QPM we select for Qh the Gauss-Legendre
of degree 8 in conjunction with a fixed penalty parameter
of size ω = 10−6.

As convergence measures, we use the smallest non-
negative scalars δ, ρ, γ which satisfy the following bounds.∣∣∣Φ(yh, uh) − Φ(y, u)

∣∣∣ ≤ δ ,√∫ tf

t0

∥c(ẏh(t), yh(t), uh(t), t)∥2
2 dt ≤ ρ ,

uL(t) − γ ≤ uh(t) ≤ uR(t) + γ ∀t ∈ [t0, tf ] .

The measures δ, ρ, γ are called the optimality gap, fea-
sibility residual and bound violation [5]. In addition, we
measure the computation time to solve each problem with
each method.

B. Test Problems
Table I depicts the test problems with their respective

properties from left to right: active inequality constraints
on y, u; smoothness properties of the solution in the liter-
ature y⋆, u⋆; properties of the minimizer, and numerical
properties such as stiffness (see definition in [6]) of the
optimality system, scaling issues due to large discrepancy
in magnitude of variables, and long timespans [t0, tf ].

The problems are sorted into categories. Some models
permit analytic solutions while others stem from actual
engineering applications. Finally, there are two classes of
challenges, commonly seen in nonlinear optimal control.
These challenges are explained in the following.

The first class of challenges deals with non-strictness
and non-uniqueness of solutions: We compute two distinct
minimizers to the same problem (one global and one local),
to confirm that both methods are able to converge to
both minimizers. We also compute non-strict minimizers
for a landing-abortion problem that features a family
of equally good solutions with regard to how the plane
escapes from the wind-shear.

The second class of challenges deals with irregular
constraints: The constrained brachistochrone problem
features a singular Jacobian [3]; the pendulum determines
the beam force implicitly from a differential-algebraic
equation of varying index and eventually also imposes
a bound on the beam forces. This results in singular
optimality conditions. Details on each problem are given
in the references in Table I.

C. Results and Discussion
Figure 5 presents the convergence measures on each

mesh of each problem from Table I for both CTM and
QPM. Both direct transcriptions succeed on all problems
in the sense that they generate reasonably good numerical
solutions.
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TABLE I
List of numerical test problems. Abbreviations: “ineq.”=inequalities; “cont.”=continuity.

problem properties
ineq. cont. minimizer conditioning
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b
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sc
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e

lo
n

g
sp

an

re
fe

re
n

ce

Analytic solution available

1 Hager Problem unique [7]
2 Bryson-Denham Problem ✓ ✓ unique [8]
3 Singular Regulator ✓ ✓ ✓ ✓ unique [9]

Applications
Robotics

4 Two-Link Robot Arm ✓ ✓ ✓ strict [10]
5 Container Crane ✓ ✓ strict [11]

Aircrafts
6 Alp-Rider ✓ strict ✓ ✓ [3]
7 Dynamic Soaring ✓ ✓ strict ✓ [12]

Rockets
8 Goddard Rocket Max Height ✓ ✓ ✓ ✓ ✓ strict [3]
9 Spaceship Control ✓ strict [13]
10 Spaceshuttle Reentry ✓ ✓ ✓ strict ✓ ✓ ✓ [3]

Satellites
11 Orbit Raising ✓ strict [14]
12 Low-Thrust MEO-GEO Transfer ✓ strict ✓ [15]

Biochemistry
13 Tuberculosis Treatment ✓ ✓ ✓ strict ✓ ✓ ✓ [16]
14 Batch Fermentation ✓ ✓ ✓ ✓ ✓ strict ✓ [17]
15 Kiln Heating PDE ✓ ✓ strict ✓ [3]

Challenges
due to non-uniqueness

16a Obstacle Avoidance below ✓ ✓ strict [5]
16b above ✓ ✓ strict
17a Free-Flying Robot book ✓ ✓ ✓ strict [3]
17b asymmetric ✓ ✓ ✓ strict
18a Landing Abortion low Exit ✓ ✓ ✓ ✓ ✓ non-strict ✓ [3]
18b high Exit ✓ ✓ ✓ ✓ ✓ non-strict ✓

due to non-regularity
19a Brachistochrone unconstr. unique [3]
19b constr. h = 0.1 ✓ ✓ unique
19c constr. h = 0 ✓ ✓ ✓ unique
20a Pendulum Index 1 ✓ strict [18]
20b Index 2 ✓ strict
20c Index 3 ✓ strict
20d Index 3 + constr. ✓ ✓ ✓ strict [5]

1) General Observations: Comparing solutions of CTM
and QPM on the same mesh, the optimality gap δ is
similar in magnitude for QPM and CTM. QPM is a bit
slower than CTM, but in return QPM yields on average
three orders of magnitude smaller equality constraint
residuals ρ and QPM yields on average one order of
magnitude smaller inequality constraint residuals γ.

In many problems (index 3, 4, 5, 6, 8, 11, 16, 18, 19, 20),
we can observe that the equality constraint residuals and
inequality constraint residuals obtained by QPM with the
coarse mesh are already smaller than those obtained by
CTM with the finest mesh, but using less time. Therefore,

when comparing solution time based on a given accuracy
level, QPM has the potential to outperform CTM as it
can roughly achieve the same accuracy on a much coarser
mesh.

2) Exceptions: The three biochemistry problems (index
13–15) are very stiff, with some states’ derivatives have
very large values. Therefore, the equality feasibility
residual ρ is large in these cases. Nonetheless, the solution
arcs of both methods match those of the solution in the
literature.

On the problems with index 6, 17, 20d (Alp-Rider, Free-
Flying Robot, constrained Pendulum), the optimality
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Fig. 5. Convergence measures for CTM (blue) and QPM (red).
Three bars per method per cell give the measure from coarsest (top)
to finest mesh (bottom). Problem 15 took 10× as many seconds as
plotted because the dynamics equation is a PDE (significantly more
states).

gaps of QPM are significantly larger than of CTM. In
all of these problems, QPM converges to very accurate
solutions (in terms of feasibility) whereas CTM converges
to inaccurate solutions. However, a comparison of com-
putation time and optimality gap makes sense only when
both methods have similarly feasible solutions which is
not the case for these problems.

VI. Conclusions
In this paper, we presented a comprehensive numer-

ical study comparing two types of direct transcription
methods: the current state-of-the-art direct collocation
approach (CTM) and the quadrature penalty method
(QPM). This numerical study contains a wide range of

representative optimal control problems covering different
engineering fields with varying degrees of difficulty. The
experiments show that both methods can solve a variety
of applications successfully, yet QPM has favourable con-
vergence performance and can reliably solve challenging
problems such as singular arc problems and problems
with consistently overdetermined constraints.
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