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Distributed Adaptive Formation Control for Uncertain Point Mass Agents
with Mixed Dimensional Space
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Abstract— We propose distance-based distributed adaptive
formation control of point mass agents in port-Hamiltonian
(pH) framework that can deal with parameter uncertainties
and with mixed dimensional space (2D, 3D or mixed 2D/3D).
Adaptive control mechanism is subsequently proposed to main-
tain formation of uncertain pH systems with unknown damping
parameters. Numerical simulations are presented for both
known and uncertain point mass agents in mixed 2D/3D space.

I. INTRODUCTION

Multi-robot systems have been studied and deployed for
the past decade in a wide range of robotic applications, such
as, in construction works [1], in object transportation [2], and
in surveillance and exploration [3]. For completing the group
tasks in these applications, the coordination of these multi-
robot systems can be done in a centralized or distributed
fashion [4]. In the former approach, a centralized robot
(or a global coordinator/orchestrator) is typically required
to process information from all other robots. In the latter
approach, each agent relies only on local measurement and
relative information from its neighbors to accomplish the
group tasks. Such distributed method provides advantages
over the former approach, including resilience against single-
node failure, scalability, and robustness [5].

Existing distributed formation control methods can be
differentiated based on the type of relative information used
to maintain the formation. Some of the well-known methods
are the distance-based, position-based, and displacement-
based distributed formation control methods. The distance-
based formation control has been widely used due to its
simplicity and its ease-of-implementation using only the
local frame of reference of every agent [6]. The trade-off
in the distance-based formation control is the requirement of
rigidity and persistency on the underlying graph [7]. Recent
works that explore the use of different relative information
are bearing-based [8], [9] and internal-angle-based formation
control [10].

In most literature, every agent is commonly described
as a single-integrator [11] or a double-integrator [12]. The
physics-based model has also been considered in the design
of distributed formation control to represent the physical
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systems accurately. One such approach is using the port-
Hamiltonian (pH) framework to describe the agent’s dy-
namics [13]. Recent research on the distributed control
for moving formation control of pH systems is discussed
in [14], and a study that covers both distance-based and
displacement-based approaches is discussed in [15]. The
incorporation of energy in the pH framework suits well
to the formation control problem as it can be formulated
as a design problem of virtual mechanical spring coupling
where the minimum energy (associated with the equilibrium
point) corresponds to the desired formation shape. In the
presence of algebraic constraints, which may arise from
physical/interconnection constraints, the pH framework leads
to pH differential algebraic equations (pHDAE) [16], [17].

As one of our main results, we present a distance-based
formation control method for pHDAE systems that is applied
to point mass agents moving in a mixed 2D and 3D space,
which we will refer to as the mixed 2D/3D space. While
the approach works well for known parameters, the presence
of uncertainties can negatively affect the performance of
closed-loop systems. For instance, temperature-dependent
friction constant can greatly influence the dynamics of
electro-mechanical systems involving motors that generate
heat [18]. In the existing literature, adaptive control can be
combined with a distributed distance-based formation control
to handle system uncertainties such as unknown and bounded
disturbance [19]. As our next contribution, we design an
adaptive control for the proposed distance-based formation
control of phDAE systems. In summary, the main novelties
of our proposed approach are as follows:

o A distributed distance-based formation control design
for non-linear point mass agents is defined as pHDAE
systems that can deal with heterogeneous pH systems
moving in a mixed 2D/3D space.

o Adaptive distance-based formation control design for
pHDAE systems with uncertain non-linear damping
term.

The paper is organized as follows. In Section II, we present
the notation, dynamics of the multi-agent system (MAS) in
pH, and a short overview on rigidity graph framework. The
proposed distributed distance-based formation control strat-
egy for pH systems is presented in Section III. Subsequently,
the development of an adaptive control strategy is given in
Section IV. Simulation results are presented in Section V.
Finally, we conclude the paper with conclusions in Section
VI
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II. PRELIMINARIES

As usual, we denote the n-dimensional identity matrix
by I,. For a given square matrix R, we denote R =
R ® I,, where n = 2 or n = 3 for agents that move
in the 2D space or 3D space, respectively. For a set of
vectors z; € R™,4 € {1,...,k}, we write the corresponding
stacked vector z € RF" as @ £ [z ] z) T
For a set of sub-matrices z; € R™*" ¢ € {1,...,k}, we
define the corresponding block diagonal matrix by D, =
diag(wi)icq1,... k) € RFmxkn - The space % (Ry) is the
space of all continuous-time signals z : R, — R” that
are square-integrable, i.e. [ [z(t)||*dt < oo. The space
Z+(R,) is the space of all continuous-time signals z :
R4 — R™ that are essentially bounded.

A. Graph and infinitesimally rigid formation framework

Throughout this paper, we consider a graph G = (¥, &),
where ¥ = {1, ...,|7|} is a set of nodes and & C ¥ x ¥ is
the corresponding edge set. Each node of G is associated to
an agent, and together with the position of all agents g, the
tuple (G, q) defines a framework for the formation. In this
case, each edge represents a relative measurement between
two connected nodes in G, which can be distance, bearing,
internal angle or other mode of relative measurement. As
described in the Introduction, this paper focuses on the
distance-based formation control so that each edge &, €
& represents the distance between the two nodes in &j.
For describing the distance-based formation framework, the
graph G is represented by an undirected graph.

In the following, let us present the formulation of a rigid
formation framework using the tuple (or framework) (G, q).
Define the relative position at the edge (i,7) = &% by zx =
q; — q;. Using this notation, the associated incidence matrix
B e RI”IXI¢l is used to describe the relative position in
all edges and is defined by b;;, = —1 whenever i = &7,
b;r = 1 whenever i = cg’,iaﬂ, and b;;, = 0 otherwise, where
&Pead and &1 are the head and the tail nodes, respectively,
of the edge &. Using the incidence matrix B, we can define
the relative position z in a compact form by z = Bq, whereas
defined before B = B ® I, with p = 2 or 3 for 2D or 3D
space, respectively.

Let us recall the notion of infinitesimally rigid framework,
which has been discussed in detail in [20], [21]. For defining
a desired formation shape using distance variables, we firstly
define an edge function by fz(q) = col(; jyesilla: — g5ll}-
The rigidity matrix R(z) of the framework (G, ¢) is defined
by the Jacobian of the edge function fg(g), which satisfies
R(z) = D] BT. For a given desired formation shape where
the desired distance on every edges is given by d* :=
col( jyes{d;;} with dj; be the desired distance for the
edge (i,7), the set of all equilibrium points that satisfy
such distance constraint is E := {q| fc(q) = d*}. The
corresponding desired framework (G, ¢*) with the desired
distance d* is said to be infinitesimally rigid if the rank
of R(z) is 2|¥| — 3 for 2D formation, and 3|¥| — 6 for
3D formation. For distance-based formation framework, the

admissible infinitesimal displacement is translational and
rotational motion.

B. Point-mass Agents as Port-Hamiltonian Systems

In this section, we focus on the design of distributed
formation control law for heterogenous MAS described by
point mass systems moving in 2D/3D space. In particular,
for every agent i, we consider a pH system of the form

G| _1| 0 L, VH, (qi,pi) 0

[Pz] B |:Ini Ri(pi):| [vai(Qi7pi):| * |:In:| uis (1)
where ¢; € R™ is the generalized position in a n;-D space
with n; € {2,3}, p; € R™ is the generalized momentum, H
is the Hamiltonian function, and R;(p;) > 0 is the damping
matrix. In this pH formulation, the interconnection and input
matrices are given by identity matrices. For the point-mass

systems, the Hamiltonian function H is given by the kinetic
energy and potential energy
hd 1 |7]
H =Y —|pil]? P(q;), 2
(4,p) ;QmiIIPH +; (a:) )
where m; > 0 is the mass of agent i, P(g;) is the potential
energy of agent 1.

Distance-based distributed formation control design
problem of pH systems with mixed 2D/3D space: For
a given infinitesimally rigid framework with the agents be
as in (1) and with the desired distance vector d*, design a
distributed control law w; for all ¢ € ¥ such that fg(q(t)) —
d* as t — oo.

III. DISTANCE-BASED DISTRIBUTED FORMATION
CONTROL

Corresponding to the distance-based distributed formation
control problem above, we define the distance error at every
edge k by ey = ||2x||* — di, where dy, is the desired distance
for the k-th edge, ¢ > 1 can be any positive integer number
[22]. By utilizing distance error e, and relative position z,
one can obtain that distance error time-derivative satisfies

¢=(D:D] B, (3)
where D, = diag(z;), D; = diag(||z1]|*~2). Following [13],
we will solve the formation control problem by assigning
virtual springs between paired agents. In this case, let us

consider the following potential energy of the virtual springs
at every edge

1€
1 14 *0\2
He= ;> Killla]|” = dif)?, )
k=1
where K, is a positive constant for every k € {1,...,|&]}.

This setup provides flexibility in designing the parameter /.
In the case where / is equal to one, we have a linear virtual
spring, and for values of ¢ greater than one, we have non-
linear virtual springs.

Proposition III.1. For a given infinitesimally rigid frame-
work with the agents be as in (1) and with the desired
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distance vector d*, the following distributed control law
u=VP(q)+ (R(p) — Ra)Dsp — BD.DI Djce, (5)

where Dy, = D} = diag(mii), Dk = D}, = diag(Ky),
Ry = diag(Rg;) > 0 with Ry; be the desired damping
matrix for each agent i solves the problem of distance-
based distributed formation control of pH systems locally
and exponentially. Particularly, for all initial conditions
(g(0),p(0)) in the neighborhood of the desired shape with
zero momentum E x (0,0), the distance error ey, converge
exponentially to zero for all k € {1,...,|&|}, all agents’
position q;(t) is bounded and converges exponentially to the
desired formation shape, i.e., fz(q(t)) = d* as t — oo, and
all agents’ momentum p;(t) converge exponentially to zero
Sforalliin {1,.. |V}

The design of distributed control law in (5) is inspired
by the Interconnection and Damping Assignment Passivity-
Based Control (IDA-PBC) method as presented in [23]. The
topic of non-adaptive distributed implementation of IDA-
PBC for heterogeneous, underactuated, and non-holonomic
systems has been explored in a recent study [24]. By
employing the IDA-PBC approach, the closed-loop systems’
Hamiltonian function, interconnection, and damping matrices
can be shaped by the assignment of suitable control laws.
This method is particularly noteworthy as it preserves both
the passivity and the pH structure of the systems. In our
proposed control law, we assign the damping of the closed-
loop systems to be equal to R; and add the virtual spring
potential energy H to the Hamiltonian H.

Proof. Firstly, we will show the asymptotic convergence of
error e and momenta p to zero by using the following Lya-
punov function, which combines the Hamiltonian function
(2) and the potential energy of the virtual spring (4),

R 1
V(p.e) = 50" Dap+ o e Dice, (©)
—_—— Y
H(p) H

where Dy = diagycqq g3 (Kk). A routine computation
to the time-derivative of (6) along the trajectory gives

V=p'Dup+e DxkD:D]BTq,
=p' Dy (VP(q) — RDgmp +u)+e' DgD:D] BT Dyp.
By substituting (5) to the above equation, we obtain
V= —VP(q) —p DuRDmp+e' DxDsD] BT Dyp
+p" D (VP(q) + (R — Ry)Dynp — BD.D] Dfe),
= —p' D RaDip < —Aminlpll*. (7)
where Api, is the smallest eigenvalue of D;RyD,;,. From
this inequality, it follows that p € 4. Furthermore, it
follows from this inequality also that V is non-increasing

and bounded for all time ¢ > 0. In particular, |e(¢)] <

Kkl,min /V(0) for all t. In the following, we consider the

initial condition p(0) in the neighborhood of 0, ¢(0) in the
neighborhood of E such that -1 V(0) < dj Hence,

K, min k,min*

we have |e(t)| < df for all ¢ so that ||2zx(¢)|| > 0 holds for
all ¢.

By the definition of V, the inequality (7) implies that
p,e € L. Correspondingly, from the control law (5), we
have that u; is bounded (by the boundedness of p and e
and the boundedness of z follows from the relation ||z| =
er+dj, for all k). As a result of having all closed-loop signals
bounded and inequality (7), we have p € %. It follows from
the state equation (1) and the boundedness of VH,, that p
is also bounded. Consequently, we have Ve Lo, D € L,
and p € Z,., which, by applying the generalized Barbalat’s
lemma [25], implies that p(¢t) — 0 as ¢ — oo. Let us now
analyse the closed-loop system given by

G¢=Dup ®)
p=—RyDsup— BD.DIDj.e 9)
¢=D:D!B" Dsp (10)

where D, can be expressed as a function of the state q.
Note that the convergence of p to zero is exponential as V
is quadratic w.r.t. p, and its derivative in (7) is also bounded
by a quadratic term of p. Accordingly, we can conclude from
(9) that e also converges to zero exponentially and from (8)
that ¢ is bounded. [

The closed-loop systems of pH agent with control law (5)

can be described as a Hamiltonian systems of the form
HE [ h _BD‘LD;] [%Eizii] .
é 0 D:D!BT 0 VVe.(p,e)

In the mixed 2D/3D pH agents, the 2D agents can only move
on the (x, y)-axis, while the 3D agents can move on (z, y, 2)-
axis. Thus, the distributed formation control among these
sub-systems is subjected to the kinematic constraint ¢;, = 0
for all 2D agent :. In this case, the 2D agent is described as
a pHDAE system of the form
[§98] [31] = [ oo &) [omrcind |+ [

0001 | X; o -¢f o i 0

1D

where C; = [oo 1]T, and )\ represents the Lagrange
multipliers associated with the kinematic constraints. The
kinematic constraint on the z-axis is given by ¢;, = 0, i.e.
C;'VH,, =0 and C;)\; is the vector of constraint force in
the z direction.

Proposition IIL2. Consider a set of point mass agents
in a port-Hamiltonian (pH) framework composed of mixed
2D/3D agents interacted under a framework (G,q) that is
infinitesimally rigid with the desired distance constant d*. Let
each 2D agent i described by a pHDAE as in (11) with the
Hamiltonian H in (2). Then using the distributed control law
as in (5) which also accounts for the kinematic constraints on
the relevant axes, the closed-loop system under the presence
of kinematic constraints solves the problem of distance-
based distributed formation control of pH systems locally
and exponentially.

Proof. We will show the asymptotic convergence of error e
and momenta p for all the phDAE agents to zero by using
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the Lyapunov function (6) whose time-derivative along the
trajectory is given by
V=p'Dap+e' DxD:D;B'q,
=p D (—VP(q) — RDmp+u+ C;\)+e' DgD:D]
BTDﬁ@pa
=—VP(q) = p' D RDsip + p' Diu+p' DrCiA
+ GTDKDgD;rBTDmp.
Due to the constraint force C;'VH, = 0 (as noted after
(11)), we have p' D;;C; = 0. By substituting (5) and this
constraint force relation to the above equation, we obtain
V = —Vp(q) — pTDmRDmp + CTDKDED;—BTDmp
+p"' Dy (VP(q) + (R— Ry)Dmp — B'D.D:Djce),
= —p' DinRaDyup < —Aminllp]*. (12)
Following the same proof of Proposition III.1, we can
conclude the proof of the boundedness of all signals and local

exponential convergence of p — 0 and e — 0 as ¢ — oo for
formation of mixed 2D/3D pH agents. O

We remark that the closed-loop system of pHDAE agents
with the control law (5) can be described as a Hamiltonian

system of the form

~ o I VVa(p.e)

| = | I Ha YV (p:e)

X = 0T —C,T \ .
g D VVe(p,e)

IV. DISTRIBUTED ADAPTIVE DISTANCE-BASED
FORMATION CONTROL

q
p
A
é

In practice, we may encounter parameter uncertainties in
the modeling of electro-mechanical systems. A nice review
on the design of adaptive control for a single pH system is
presented in [26] that can handle uncertain pH systems. In
this letter, we investigate the design of distributed adaptive
formation control for pH agents where the uncertainties come
from the nonlinear damping term R;. The uncertainties in the
nonlinear damping function R; have been investigated in lit-
erature, and they can arise from various physical phenomena,
such as, temperature-dependent friction constants as studied
in [18]. In this case, the controller (5) cannot be implemented
as it requires precise knowledge on the nonlinear damping
terms. In order to address this, we propose the following
modified control law

u=VP(q)+(Orér(p)—Ra)Dip—B ' D.D] Djce, (13)

where R = OrEg(p) is the estimated nonlinear damping
term that is split in a linear-in-the-parameter form, and it
comprises of block diagonal matrices as in R(p) in Propo-
sition III.1; thus, they can be described in a distributed way.
Here, the regressand and the regressor are defined by © and
&, respectively, and correspondingly, we can define the linear-
in-the-parameter form of the actual damping parameters by
R* = O%&r. We note here that O and £ is a square
block matrix that combines the regressand and the regressor
for each agent, respectively. The error between the estimated

and real damping parameters satisfies O = O — O%.

Proposition IV.1. Consider a set of point mass agents in the
port-Hamiltonian (pH) framework interacted under a rigid
formation framework (G, q) that is infinitesimally rigid with
the desired distance constant d*. Suppose that each agent i
is described by a pH system in (1) with uncertain nonlinear
damping term R; and the Hamiltonian H is as in (2). Then
the closed-loop uncertain MAS with the distributed control
law defined in (13), and the distributed adaptive law

Or = —Trpp' D&4 D),

m?

(14)

where I'p = FE > 0 is the adaptive gain, solves the problem
of distance-based distributed formation control of pH systems
locally and exponentially.

Proof. Let us consider the following Lyapunov function
1

1~
%eTDKe + itr(GRFRIG—IE).

15)

~ 1 _
V(e,p,OR) = §pTDmp +

The time-derivative of (15) satisfies
V = fVP(q) — pTDmRDmp +pTDmU + BTDKDED:
BTDﬁlp + tr((:)RFgl(i)E).

By substituting the control law (13) to the above equation,
we obtain

V= —VP(q) — p' DisRDmp + eTDKDgD;I—BTDmp
+p" D (VP(q) + (Orér — Ra)Dinp — B' D, D5,
D}e)+tr(éRrglé}),
=" DsOrErDyp + tr(éRFﬁlég) —p' D RaDyip,
= 0" DaRaDsp + (O3 O + DD,

Here we use the property a'b = tr(ab’) in the above
computation. By substituting the adaptive laws (14), we
obtain .

V =—p" DaRaDinp < —Amin[pl|*. a7
From (17), it follows that p € % and V € %,. The
boundedness of V' implies that p,e,éR € Z.. Because
the actual parameters in ©F are bounded, the boundedness
of O follows suit. It is obvious that the control law (13)
is bounded by the boundedness of p, e, ©r. Then from state
equation (1) and boundedness of VH,,, we can conclude
that p; is also bounded. By generalized Barbalat’s lemma
[25], p € % and p € £ imply that p(t) — 0 as t — oo.
Subsequently, let us analyse the closed-loop system

4= Dpmp (18)
p=—RaDpp+OrérDip— B'D.D:Dge  (19)
¢ =D:D] B Dyp. (20)

As before, the convergence of p to zero is exponential
since V' is quadratic w.r.t. p and its derivative in (17)
is also bounded by a quadratic term of p. Accordingly,
we can conclude from (19) that e also converges to zero
exponentially, and from (18) that ¢ is bounded. O
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In mixed 2D/3D case with uncertain pHDAE agent, we can
obtain the same conclusion, which is similar to the results
presented in Proposition IIL.2.

V. NUMERICAL SIMULATIONS

In this section, we validate our main results in the previous
two sections via numerical simulations. The formation con-
trol simulations are performed using four agents that move
in mixed 2D/3D space. We consider three pH systems that
can only move in 2D space (z, y)-axis, which are labeled as
pH1, pH2 and pH3, respectively, and another pH system that
can move in 3D space (z, y, 2)-axis. For simulation setup, we
consider the setup of heterogeneous agents where the initial
conditions and nonlinear functions of R; for each agent are
presented in Table 1.

TABLE I
PH SYSTEM INITIAL CONDITIONS AND PARAMETERS.

Init.cond. Init.cond.
R:(p; R.:
qilz,y, 2] pilpz, py, P=] i(p:) i
diz 0 O 100
pH1  [0,0,0] [0,0,0] 0 d1y 0 [o 7 o]
0 0 gy 001
g2z O 0 200
pH 2 [3,4,0] [1,0,0] 0" 242, 0 [0 9 O]
0 0 24 002
343z O 0 300
pH3  [43,0] [0,1,0] 0" 3dg, 0 [0 3 0]
0 0 343 003
444, 0 0 400
pH4  [3.13] (1,11] 0" 4day 0 [040]
0 0 44y 004

In this research, only the 3D agent that has potential
energy along the z-axis corresponding to the gravity. An
exemplary application to this setup is the collaboration of
autonomous ground vehicles with an autonomous aerial
vehicle that conduct a joint task, such as goods transportation
or retrieval. Here, we define P(q;) = m;g, ¢;, and the
vector gravitational g; = 0 for agent ¢ € {1,2,3}, and
g4 = [009.8]". The incidence matrix B, the masses m;,
and the virtual spring constant K, are set as

1 -1-10 0 0
B=|g e g iy
00 1 0 1 1
m4=4,K1 = 1,K2 :2,K3:37K4:4,K5 :57K6 = 6.

A. Non-adaptive pHDAE Distributed Formation Control

A=2,m=1,mg=2,m3=3,

In this subsection, we show the first numerical result
where we use the non-adaptive version of our distributed
formation control for mixed 2D/3D pH systems. We set the
desired distance d;, = 5 for all six edges k that represent a
tetrahedron shape.

—pH,
—pH,
pH,
PH,

w & o

ly

Zz-position
S

o =

IS

2 Ez""m“ e 6

0 2 3 4 5

y-position x-position

Fig. 1. Simulation result of a distributed formation control of 4 pHDAE
systems in mixed 2D/3D space.

Distance error - Formation control in 2D and 3D (Heterogeneous pH)

Distance error (e, )

Fig. 2. 'The plot of distance error of 4 pHDAE systems in the numerical
simulation of non-adaptive pHDAE distributed formation control.

- Formation control in 2D and 3D

Norm of
50

Norm of momentum (i)

Fig. 3. The plot of momentum norm of 4 pHDAE systems in the numerical
simulation of non-adaptive pHDAE distributed formation control.

It can be seen in Figure 1 that the 2D agents pH1, pH2 and
pH3 remain on the 2D plane due to the kinematic constraints
¢iz, and only the pH4 that moves freely in z,y, z-axis. All
agents converge to the desired tetrahedron shape as desired.
The plots of the distance and momentum errors are shown
in Figure 2 and Figure 3 where all of them converge to zero

B. Adaptive pHDAE Distributed Formation Control

After validating the non-adaptive version of pHDAE dis-
tributed formation control, let us evaluate the performance
of the adaptive one. We use the same pH systems setup as

before and use the following setup for the regressor
G)R(O) = diag(()leQ)? §R = diag(qla 427 437 q4) (21)

with the adaptive gains given by I'p = I19x12-

2z-position
s o

N

oo
,@ \
i N
;b N
| \
' \
' \
-4 S
! .
'
'
'
i
'
'
13
)

y-position x-position

Fig. 4. Simulation result of a distributed adaptive formation control of 4
uncertain pHDAE systems in mixed 2D/3D space.

Distance error - Formation control in 2D and 3D (Unknown heterogeneous pH)

—e,—e,—0, e, —e, &

ww\ﬂﬁva\[w ,*y“‘ff&‘{":,jﬁ;\,;@fﬁ B

Distance error (e,)

Time (s)

Fig. 5. The plot of distance error of 4 uncertain pHDAE systems in the
numerical simulation of distributed adaptive formation control.

Figure 4 shows that all agents always move within the
space that they are constrained to and converge to the desired
tetrahedron shape as expected. The distance and momentum
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Norp of momentum - Formation control in 2D and 3D (Unknown heterogeneous pH)

Momentum error ([Ip,)
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25

Fig. 6. The plot of momentum norm of 4 uncertain pHDAE systems in
the numerical simulation of distributed adaptive formation control.

Estimated damping of unknown heterogeneous pH
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Fig. 7. The evolution of estimated damping parameters for each of 4
uncertain pHDAE systems.

error plots (Figure 5 and Figure 6) both converge to zero.
Figure 7 shows the behaviour of the regressand, where the
estimated damping parameters of every pH agent converge
to a constant. Due to the presence of kinematic constraints,
the damping parameters on the z-axis of pH1, pH2, and pH3
systems remain constant for all time.

VI. CONCLUSIONS

We present the design of distance-based distributed for-
mation control in a port-Hamiltonian framework with mixed
dimensional space. Particularly, in the presence of kinematic
constraints, it leads to a pHDAE systems. When uncertain
nonlinear damping terms are present in the systems, we
propose the adaptive version of the distributed controller. The
local exponential stability analyses are provided along with
numerical simulation results using nonlinear heterogeneous
pHDAE systems. For future works, we will consider the
incorporation of obstacles and collision avoidance [27], [28],
and the safety analysis of the closed-loop systems [29].
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