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Abstract— In 2022, worldwide mpox outbreaks have called
attention to mpox virus infection and treatment opportunities
using the drugs cidofovir and tecovirimat, which target different
stages of in-host viral proliferation, respectively production and
shedding. We propose a new model of in-host viral infection
dynamics that distinguishes between the two stages, so as to
explore the distinct effects of the two drugs, and we analyse the
model properties and behaviour. Reducing the model order via
timescale separation is shown to lead to the classical target-cell
limited model, with a lumped viral proliferation rate depending
on both production and shedding. We explicitly introduce the
effect of the two drugs and we exemplify how to formulate
and solve an optimal control problem that leverages the model
dynamics to schedule optimal combined treatments.

I. INTRODUCTION: MPOX DYNAMICS AND TREATMENT

Since its discovery in 1970, the monkeypox, or mpox,
virus has been mostly confined to African tropical regions.
In 2022, mpox outbreaks were registered in non-endemic
countries in Europe and America [1]–[3]. As any virus, mpox
proliferates in the host by infecting host cells and turning
them into virus-producing (productive) cells. Antiviral agents
cidofovir and tecovirimat inhibit mpox proliferation. Cido-
fovir inhibits viral production: it binds to viral DNA poly-
merase, thereby inhibiting a crucial step in the viral assembly
inside a productive cell [4], [5]. Tecovirimat inhibits viral
shedding: it curbs the production of enveloped extracellular
virus by inhibiting envelope protein p37; although non-
enveloped mature internal viruses can also leave the host
cell at cell death, enveloped virus is thought to be the major
contributor to cell-to-cell transmission [6]–[8].

Mathematical models have been successfully proposed to
describe the in-host evolution of infectious diseases and plan
the optimal treatment of viral infections, including HIV and
COVID-19 [9]–[15]. The classic target-cell limited model
[16], [17] of viral infection describes the interplay among
three populations (uninfected target cells; infected productive
cells; virus) and lumps the production of new virus within
infected cells and its subsequent shedding into a single
process. However, this prevents the exploration of the distinct
effects of cidofovir and tecovirimat on mpox infection.

The main contribution of this paper is to propose and
analyse a new model structure that explicitly shows the effect

The work of Maarten de Jong was supported by NWO through the
research project SYNERGIA under grant n. 17626. The work of Giulia
Giordano was supported by the European Union through the research project
ERC INSPIRE under grant n. 101076926.

a Delft Center for Systems and Control, Delft University of Technology,
The Netherlands. m.n.dejong@tudelft.nl

b Department of Industrial Engineering, University of Trento, Italy.
{f.calacampana;giulia.giordano}@unitn.it

c Department of Gastroenterology and Hepatology, Erasmus MC –
University Medical Center, Rotterdam, The Netherlands.

of reducing the viral production rate p and shedding rate η.
• Our new model (Section II) considers five populations:

uninfected target cells, CU ; latent cells, CL, that are infected
but not yet producing virus; infected productive cells, CP ;
intracellular virus VI ; enveloped extracellular virus, VE , able
to infect cells. We show that reducing the model via timescale
separation techniques yields a target-cell limited model with
a lumped constant for extracellular virus production that
depends on both p and η; yet, we consider the full model to
capture the specific effect of each drug and exemplify how
therapies can be planned accordingly.

• We thoroughly analyse the model behaviour, characterise
the disease-free equilibrium set and assess its stability, also
in relation to the reproduction number (Section III).

• Considering mpox dynamics when cidofovir and tecovir-
imat can be infused, and possible parameter values from the
literature, we formulate and solve an optimal control problem
(Section IV), to demonstrate how our model could be used to
plan antiviral treatments that optimally combine both drugs.

II. MPOX VIRUS INFECTION MODEL

We consider in-host mpox infection dynamics involving
five state variables associated with the populations of: unin-
fected cells, CU [N]; latent cells, CL [N]; productive cells,
CP [N]; intracellular virus, VI [N]; infective extracellular
virus, VE [N], where [N] is the number of cells or virus
particles in a given volume. The infection cycle is visualized
in Fig. 1, and the dynamics are described by the system

ĊU (t) = −βCU (t)VE(t) (1a)

ĊL(t) = βCU (t)VE(t)− γCL(t) (1b)

ĊP (t) = γCL(t)− δCP (t) (1c)

V̇I(t) = pCP (t)− ηVI(t)− fδ(CP ) (1d)

V̇E(t) = ηVI(t)− cVE(t) (1e)

where all the parameters are positive: β
[
(t N)−1

]
represents

the infection coefficient; γ
[
t−1

]
is the rate constant of

progression of an infected cell from latent to productive; δ[
t−1

]
is the death rate constant of productive cells; p

[
t−1

]
is the viral production rate constant; η

[
t−1

]
is the viral

shedding rate constant; c
[
t−1

]
is the clearance rate constant

of extracellular virus. Vital dynamics of uninfected cells,
death of latent cells and clearance dynamics of intracellular
virus are assumed to be negligible over the considered time
scale. The dynamics of VI involve production, shedding, and
viral loss occurring due to productive cell death events at a
rate fδ(CP ) ≥ 0. Virus lost in such events is not enveloped,
thus it does not add to the external virus population [8].
The reaction of the immune system is implicitly accounted
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Fig. 1: Virus reproduction cycle corresponding to system (1). Uninfected
cells CU are infected by external virus VE with rate constant β. The
resulting latent cells CL are transformed with rate constant γ into virus
producing cells CP , which produce internal virus with rate constant p and
die with rate constant δ. Internal virus VI is shed with rate constant η, thus
producing external virus, which is cleared with rate constant c. Internal virus
is also lost, due to the death of productive cells, at rate fδ .

for by the parameters: the immune response reduces β and
increases δ and c. The two drugs cidofovir and tecovirimat
would reduce p and η, respectively.

To find an expression for the reduction of intracellular
virus caused by productive cell death, we consider the virus
population inside a single productive cell, VI,C(t). Experi-
ments on isolated host cells have shown that, after the latent
period, internal virus particles are produced at a constant rate
p [18] and are then shed from the cell through the process
of extracellular enveloped virus formation, which requires
membrane protein p37 [8], [19]. The shedding process is
modelled as proportional to the amount of internal virus,
with rate constant η. Therefore, the internal virus population
evolves as:

V̇I,C(t) = p− ηVI,C(t). (2)

The average lifespan of a productive cell is δ−1. Given the
solution VI,C(t) = p

η (1− e−ηt) to (2), the average number
of intracellular virus copies lost due to one cell death is
VI,C(δ

−1) = p
η

(
1− e−

η
δ

)
, corresponding to the intracellular

virus population in the average productive cell at the end of
its life. Multiplying this term by the death rate δCP for all
productive cells yields fδ(CP ) =

p
η

(
1− e−

η
δ

)
δCP . Hence,

V̇I(t) = pCP (t)− ηVI(t)−
δ

η

(
1− e−

η
δ

)
pCP (t). (3)

By defining

pr
.
= ψ

(η
δ

)
p, with ψ

(η
δ

)
.
=

[
1− δ

η

(
1− e−

η
δ

)]
, (4)

we can rewrite (3) so that the full model, with state x(t) =
[CU (t)CL(t)CP (t)VI(t)VE(t)]

⊤, becomes

ĊU (t) = −βCU (t)VE(t) (5a)

ĊL(t) = βCU (t)VE(t)− γCL(t) (5b)

ĊP (t) = γCL(t)− δCP (t) (5c)

V̇I(t) = prCP (t)− ηVI(t) (5d)

V̇E(t) = ηVI(t)− cVE(t) (5e)

The state variables, associated with population densities,
cannot become negative, or arbitrarily large.

Proposition 1 (Positivity and boundedness). System (5) is
positive (∀i, xi(t) ≥ 0 for all t ≥ t0 if xi(t0) ≥ 0) and
bounded (for any initial state with xi(t0) ≥ 0 ∀i, there exist
positive constants ki such that xi(t) ≤ ki for all t ≥ t0).

Proof. All the system parameters are positive, including pr.
In fact, since η

δ > 0, also ψ(ηδ ) is positive: it is monotonically
increasing, with lim η

δ →0 ψ
(
η
δ

)
= 0 and lim η

δ →∞ ψ
(
η
δ

)
=

1. Then, the state variables cannot become negative, because
for all i, when xi = 0, ẋi ≥ 0.

Since ĊU + ĊL+ ĊP ≤ 0, it is CU (t)+CL(t)+CP (t) ≤
κ
.
= CU (t0)+CL(t0)+CP (t0) ∀ t ≥ t0. Variables CU , CL

and CP are individually upper bounded by κ, because they
cannot be negative. Then, VI(t) ≤ κpr

η and VE(t) ≤ κpr

c
∀t ≥ t0. Boundedness of the trajectories is ensured.

We can reduce the model by exploiting two time-scale
separation arguments. If cells start producing virus very soon
after infection, the dynamics of the latent cell population
CL can be neglected and γCL = βCUVE . Also, if the
intracellular virus population is assumed to be in a quasi-
steady state, then VI = p

ηψ
(
η
δ

)
CP can be plugged into the

equation of V̇E . The resulting reduced-order model with state
x(t) = [CU (t)CP (t)VE(t)]

⊤

ĊU (t) = −βCU (t)VE(t) (6a)

ĊP (t) = βCU (t)VE(t)− δCP (t) (6b)

V̇E(t) = prCP (t)− cVE(t) (6c)

has the same form as the classical target-cell limited model,
but the production rate pr of extracellular virus depends on
both the shedding rate η and the production rate p, as in (4).

To be able to capture the specificity of each drug action
at best, henceforth we focus on the complete model (5).

III. ANALYSIS OF THE IN-HOST INFECTION DYNAMICS

We provide a qualitative analysis of the dynamics of the
complete system (5). Similar results are known to hold for
the target-cell limited model, as proven e.g. in [9].

A. Equilibria, reproduction number, critical cell number

As shown in Proposition 1, system (5) is positive, since
R5

≥0 is an invariant set for the system, and its trajectories are
ultimately bounded in the compact and convex set X∞ =
{x ∈ R5 : 0 ≤ x ≤ xmax}. This ensures the existence of a
steady state in X∞ [20], [21]. Only two types of steady states
are possible: the trivial equilibrium, where all state variables
are zero; and the disease-free equilibrium, where only CU

has a strictly positive value, while all other variables are zero.
The equilibrium set is therefore

Xeq = {x ∈ R5 : CU ≥ 0, CL = CP = VI = VE = 0}.
(7)

We consider the set of meaningful initial conditions

X = {x ∈ R5
≥0 : CU > 0, VE > 0}. (8)

If the infection occurs at time t0, it leads to a discontinuity
in VE(t): when t < t0, all variables are zero apart from
the strictly positive CU (healthy state); for t = t0, all state
variables are zero apart from the strictly positive CU and VE .

The infection progression can be related to the in-host
basic reproduction number R0 (defined as the number of
host cells infected by a single infected cell when a small
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initial viral load targets a population of CU,0 > 0 uninfected
cells), which can be computed as the spectral radius of the
next-generation matrix [22], [23]. For system (5), we have

R0 =
prβ

δc
CU,0. (9)

The critical number C∗
U of uninfected cells, defined as the

value of CU,0 that solves (9) for R0 = 1, is

C∗
U =

δc

prβ
. (10)

Note that CU (t) < C∗
U if and only if R(t)

.
= prβ

δc CU (t) < 1.
To perform a local stability analysis, we evaluate the

system Jacobian matrix at the equilibrium x̄ = [C̄U 0 0 0 0]:

Jx̄ =

 0 0 0 0 −βC̄U

0 −γ 0 0 βC̄U

0 γ −δ 0 0
0 0 pr −η 0
0 0 0 η −c

 =

[
0 c
0 A

]
. (11)

The block-triangular matrix Jx̄ is singular and its spectrum
is completed by the eigenvalues of A, whose characteris-
tic polynomial has all positive coefficients apart from the
constant term a0 = γη(δc − prβC̄U ). The Routh-Hurwitz
table reveals that the disease-free equilibrium is unstable,
due to the presence of a positive real eigenvalue, if a0 < 0,
i.e., R̄ > 1 or, equivalently, C̄U > C∗

U . When R̄ < 1,
or equivalently C̄U < C∗

U , matrix A is Hurwitz, but the
zero eigenvalue prevents us from drawing conclusions on the
stability of the equilibria based on the system linearisation.

B. Asymptotic behaviour

Here, we show that the equilibrium subset

X ∗
eq = {x ∈ Xeq : 0 ≤ CU ≤ C∗

U} (12)

is the smallest set that is attractive in X (the distance from
X ∗

eq of all trajectories originated in X converges to zero as
t → ∞) and is Lyapunov stable (for all ϵ > 0, there exists
ζ > 0 such that, if the distance of x(t0) from X ∗

eq is smaller
than ζ, then the distance of x(t) from X ∗

eq is smaller than
ϵ for all t ≥ t0). Hence, X ∗

eq is the smallest asymptotically
stable equilibrium set, with domain of attraction X .

All trajectories starting in X converge to a state in Xeq .

Proposition 2 (Asymptotic behaviour). For system (5), if
x(t0) ∈ X at some time t0, then limt→∞ x(t) = xeq ∈ Xeq ,
with limt→∞ CU (t) = C∞ ∈ [0, CU (t0)).

Proof. Being ĊU (t) < 0 ∀t ≥ t0 when x(t0) ∈ X , CU is
monotonically decreasing, hence limt→∞ CU (t) = C∞ is a
constant value in the interval [0, CU (t0)). As a consequence,
limt→∞ ĊU (t) = 0 and, from (5a), limt→∞ CU (t)VE(t) =
0. Then limt→∞ ĊL(t) = −γCL(t) ⇒ limt→∞ CL(t) = 0
⇒ limt→∞ ĊP (t) = −δCP (t) ⇒ limt→∞ CP (t) = 0
⇒ limt→∞ V̇I(t) = −ηVI(t) ⇒ limt→∞ VI(t) = 0 ⇒
limt→∞ V̇E(t) = −cVE(t) ⇒ limt→∞ VE(t) = 0.

We can show that X ∗
eq is an attractive set, since C∞ ∈

[0, C∗
U ], and is actually the smallest.

Theorem 1 (Attractivity of X ∗
eq). For system (5), X ∗

eq in (12)
is the smallest attractive equilibrium set in X .

Proof. To prove attractivity, we show that C∞ ∈ [0, C∗
U ].

Summing the first three equations of system (5) yields ĊU +
ĊL + ĊP = −δCP . Rearranging (5d) gives

−ηVI = V̇I − prCP = V̇I +
pr
δ
(ĊU + ĊL + ĊP ),

while from (5e) we have

−cVE = V̇E − ηVI = V̇E + V̇I +
pr
δ
(ĊU + ĊL + ĊP ).

Dividing both sides of (5a) by CU yields

ĊU

CU
= −βVE =

β

c
(V̇E + V̇I) +

prβ

δc
(ĊU + ĊL + ĊP ).

Integrating and taking the limit for t → ∞ of both sides,
since CL(∞) = CP (∞) = VI(∞) = VE(∞) = 0, yields

ln

(
CU (∞)

CU,0

)
=
prβ

δc
CU (∞)−R0 −Q0,

where R0, defined as in (9), and Q0 = prβ
δc (CL,0 +CP,0) +

β
c (VI,0 + VE,0) depend on the initial conditions. Taking the
exponential of both sides and suitably rearranging leads to
an equation of the form aea = b, where a = −prβ

δc CU (∞)
and b = −R0e

−(R0+Q0). A solution exists iff b ≥ −1/e,
which is the case here because −R0e

−(R0+Q0) ∈ [−1/e, 0],
and is a =W0(b), where W0(·) is the principal branch of the
Lambert function, which maps [−1/e, 0] into [−1, 0]. Hence,

C∞ = CU (∞) = − δc

prβ
W0(b) = −C∗

UW0(b) ∈ [0, C∗
U ].

Moreover, X ∗
eq is the smallest attractive set in X : from

two different initial conditions, the system converges to two
different equilibria in X ∗

eq , hence neither single states in X ∗
eq

nor subsets of X ∗
eq are attractive in X ; for more details, see

the proof of [9, Theorem 3.1] for a model of the form (6).

We can also prove that X ∗
eq is Lyapunov stable.

Theorem 2 (Lyapunov stability of X ∗
eq). For system (5), the

equilibrium set X ∗
eq in (12) is Lyapunov stable.

Proof. Given the generic equilibrium x̄ = [C̄U 0 0 0 0] with
C̄U ∈ [0, C∗

U ), we consider the candidate Lyapunov function

V(x) = CU−C̄U−C̄U ln

(
CU

C̄U

)
+CL+CP +

δ

pr
(VI+VE),

which is continuously differentiable, zero at the equilibrium
and positive for all other x ∈ R5

≥0. The Lyapunov derivative

is V̇(x) = ∇V(x)·ẋ =
[ (

1− C̄U
CU

)
1 1 δ

pr
δ
pr

]  −βCUVE

βCUVE−γCL

γCL−δCP

prCP−ηVI

ηVI−cVE


and

V̇(x) = VE

(
βC̄U − δc

pr

)
≤ 0 (13)

whenever C̄U ≤ C∗
U . Hence, V is a Lyapunov function for

system (5), proving stability of all equilibria in X ∗
eq .

In view of Theorems 1 and 2, X ∗
eq is asymptotically stable.
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Theorem 3 (Asymptotic stability of X ∗
eq). For system (5),

X ∗
eq in (12) is the smallest asymptotically stable equilibrium

set, with domain of attraction X .

The domain of attraction cannot be the whole nonnegative
orthant: all states with CU = 0 or VE = 0 are equilibria when
CL = CP = VI = 0.

The asymptotic number of uninfected cells enjoys proper-
ties akin to those proven in [9] for a system of the form (6).
We state and prove the properties, visualised in Fig. 2.

Proposition 3 (Asymptotic value of CU ). For system (5)
starting from the initial condition [CU,0 0 0 0VE,0] ∈ X ,
with VE,0 > 0 small enough, denoting by C∞(CU,0) the
asymptotic value of CU with initial condition CU,0, we have:

(i) C∞(CU,0) → 0 if CU,0 → ∞ or CU,0 → 0;
(ii) C∞(CU,0) → C∗

U if CU,0 → C∗
U ;

(iii) 0 < C∞(C1) < C∞(C2) < C∗
U if C1 < C2 < C∗

U ;
(iv) 0 < C∞(C2) < C∞(C1) < C∗

U if C∗
U < C1 < C2.

Proof. From the proof of Theorem 1, we know that C∞ =
−C∗

UW0

(
−R0e

−(R0+Q0)
)
. Given an initial condition with

CL,0 = CP,0 = VI,0 = 0 and VE,0 ≈ 0, it is Q0 ≈ 0 and thus
C∞ ≈ −C∗

UW0

(
−R0e

−R0
)
. Then: (i) W0

(
−R0e

−R0
)
→

0 when −R0e
−R0 → 0, which happens if R0 → ∞

(CU,0 → ∞) or R0 → 0 (CU,0 → 0). (ii) When CU,0 → C∗
U ,

R0 → 1. Thus, C∞(CU,0) → −C∗
UW0(−e−1) = C∗

U .
(iii) CU,0 < C∗

U means R0 < 1. Since −R0e
−R0 is

decreasing for R0 ∈ (0, 1), while −W0(·) is decreasing
for (−e−1, 0), the composed function is increasing: 0 <
−W0(−R1e

−R1) < −W0(−R2e
−R2) if R2 > R1 (i.e.,

C2 > C1). (iv) CU,0 > C∗
U means R0 > 1. Since −R0e

−R0

is increasing for R0 ∈ (1,∞), the composed function is
decreasing: 0 < −W0(−R2e

−R2) < −W0(−R1e
−R1) if

R2 > R1 (i.e., C2 > C1).

Remark 1 (Transient behaviour). The evolution of (5) is
different from that of (6), analysed e.g. in [9], for which, if
R0 ≤ 1, V̇E(t) ≤ 0 for all t > t0 when only CU (t0) and
VE(t0) are non-zero. For some parameter choices, model
(5) can yield an increase in VE even when R0 < 1. Two
typical behaviours of system (5), shown in Fig. 3, correspond
to monotonic healing (V̇E(t) ≤ 0) when R0 < R̄ < 1
is small enough, and acute infection spreading otherwise.
The different transient evolution suggests the importance of
considering the full model to plan treatment, whenever the
dynamics of CL and VI cannot be safely neglected.

IV. OPTIMAL TREATMENT WITH ANTIVIRAL DRUGS

We demonstrate how our novel model could be used to
support optimal mpox treatment. Interest in mpox has only
very recently arisen and therefore the available data are
still scarce. Our model parameters are thus not identified
from time series, due to the lack of specific clinical data,
but inferred from the literature, also on the closely related
Vaccinia virus [24]. Here, we exemplify the general method-
ology and the insight that our novel model could provide
within an optimal control framework for therapy design,
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Fig. 2: Asymptotic value C∞ of CU as a function of the initial condition
CU,0, when β = e and all other parameters are set to 1, resulting in
C∗
U = 1. All the statements in Proposition 3 hold for VE,0 = 10−5. As

the initial amount of external virus VE,0 is increased, C∞(C∗
U ) < C∗

U ,
but all statements except for (ii) still hold.
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Fig. 3: Time evolution of the state variables in (5) and of R(t). Left: R0 <
R̄ < 1; VE decreases monotonically. Right: R0 > 1; VE first decreases,
reaches a minimum, then grows up to a maximum (and keeps growing while
R̄ < R(t) < 1) before finally decreasing to zero.

once the most appropriate parameter values for the specific
clinical case have been chosen. The resulting optimal therapy
depends on the parameter values, which are subject to large
uncertainties and variability across patients. Even though all
the model parameters are specific for each patient, given
the typical infection and treatment duration of about 14
days [5], [30], the time required for data collection on the
single patient would lead to late therapeutic interventions;
a possible practical approach towards personalised treatment
is to plan specific therapies for different patient categories,
taking into account e.g. age, sex, weight, specific risk factors.

We assume that the antiviral drugs cidofovir (inhibiting
intracellular virus production, thus reducing p) and tecovir-
imat (inhibiting intracellular virus excretion, thus reducing
η) can be infused daily (for 12 hours) through inputs u1
and u2 respectively. Each drug administration cannot exceed
a maximum tolerated dose. The drug concentrations Di(t),
i = 1, 2, in the body exhibit first-order decay, as is common
in pharmacokinetic modelling:

Ḋi(t) = ui(t)− kiDi(t), i = 1, 2.

Each drug inhibits its target process through a Michaelis-
Menten function of Di, with half-inhibitory concentration
hi [31]. Hence, the drug-dependent rate constants are:

p̂(D1) =
h1

h1 +D1
p and η̂(D2) =

h2
h2 +D2

η. (14)

Our goal is to minimise the viral load VE over a finite
horizon, both throughout the dynamic evolution (with an
integral cost) and at the final time (with a terminal cost),

736



0 2 4 6 8 10 12 14
0

50

100

171
[m

g/
da

y]

0

20

40
A

u1

u1
max

D1

0 2 4 6 8 10 12 14
0

400

800

1200

[m
g/

da
y]

0

1000

0 2 4 6 8 10 12 14
[days]

10-5
10-2100
102
105
108

[N
]

0 2 4 6 8 10 12 14
0

50

100

171

0

20

40
B

0 2 4 6 8 10 12 14
0

400

800

1200

0

500
u2

u2
max

D2

0 2 4 6 8 10 12 14
[days]

10-5
10-2100
102
105
108

0 2 4 6 8 10 12 14
0

50

100

171

0

20

40
C

0 2 4 6 8 10 12 14
0

400

800

1200

0

500

1000

0 2 4 6 8 10 12 14
[days]

10-5
10-2100
102
105
108

0 2 4 6 8 10 12 14
0

50

100

171

0

20

40

[m
g]

D

0 2 4 6 8 10 12 14
0

400

800

1200

0

500

1000

[m
g]

0 2 4 6 8 10 12 14
[days]

10-5
10-2100
102
105
108 CU

CL

CP

VI

VE
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about 4 hours and 24 hours; h1 = 56 [mg] and h2 = 0.19 [mg]; umax

1 = 171 [mg day−1] and umax
2 = 1200 [mg day−1], assuming constant infusion

for 12 hours followed by 12 hours without infusion. The initial conditions are set as CU,0 = 5 · 105 [N], CL,0 = CP,0 = VI,0 = 0 [N], VE,0 = 5 · 104
[N], D1,0 = D2,0 = 0 [mg]. As for the cost weights, α1 = 0.01 and α2 = 0.001 in all cases, while the scenarios shown in the four columns differ for
the choice of w1, w2, w3. A: w1 = 100, w2 = 1, w3 = 0; B: w1 = 100, w2 = 1, w3 = 10; C: w1 = 10, w2 = 1, w3 = 0; D: w1 = 10, w2 = 1,
w3 = 0.1. The figure shows the time evolution of: u1 and D1, in the first row; u2 and D2, in the second row; the state variables of the infection system,
in logarithmic scale, in the third row, where solid lines represent the evolution of the controlled system, while dashed lines represent the evolution of
system (5), with the same parameters, in the absence of pharmaceutical treatment: u1(t) = u2(t) = 0.

and possibly also VI throughout the horizon. This maximises
the amount of surviving healthy cells CU . We also wish to
minimise the side effects caused by the two drugs [32], [33].
With weights w1, w2, w3, α1, α2 ≥ 0 and cost functional

F =

∫ T

0

(
w1VE(t) +α1D1(t) +α2D2(t) +w3VI(t)

)
dt+w2VE(T ),

(15)
the optimal control problem can be formulated as:

min
u1(t),u2(t)

F (VE , VI , D1, D2) (16a)

ĊU = −βCUVE (16b)

ĊL = βCUVE − γCL (16c)

ĊP = γCL − δCP (16d)

V̇I = p̂(D1)CP − η̂(D2)VI −
p̂(D1)

η̂(D2)

[
1− e−

η̂(D2)
δ

]
δCP (16e)

V̇E = η̂(D2)VI − cVE (16f)

Ḋi = ui(t)− kiDi, i = 1, 2 (16g)
0 ≤ ui ≤ umax

i , i = 1, 2 (16h)

where the input is piecewise constant: ui(t) = ui,j for t ∈
[tj , tj+1], with j = 1, . . . , N −1, t1 = 0, tN = T = 14 days
and tj+1 − tj = 12 hours ∀j; and it is ui,j = 0 for j even.

We numerically solve the optimal control problem with
a multiple shooting method using CasADi [34] through its
MATLAB interface. We assume a treatment period of 14
days. The chosen parameter values are discussed in the
caption of Fig. 4, which compares the effects of the optimal
treatment schedules obtained with different choices of the
cost weights.

The four scenarios illustrate the type of conceptual insight
that we can expect from embedding our model within an
optimal control approach. In the clinical practice, tecovirimat
is preferred over cidofovir [5], [31], because it has a stronger

efficacy for the same dose (in fact, we set h1 ≫ h2) and
milder side effects (in fact, we choose the cost weights as
α2 = 0.001 < α1 = 0.01). Even though all the advantages
of tecovirimat are reflected in our chosen parameters, our
numerical results show that the optimal choice is not to
administer tecovirimat only (as is typically done in practice),
but to use (small) doses of cidofovir in synergy with it.

To allow a complete comparison, not only between the
considered treatment scenarios, but also between the treated
and untreated evolution, all the bottom panels of Fig. 4
also report, with dashed lines, the dynamic evolution of the
system with the same parameters, but without any treatment
(u1 = u2 = 0). Without treatment, in 15 days CU would be
reduced from its initial value of 5 · 105 to 5 · 104 (while the
viral load values would have a peak around 107), leading to
tissue necrosis and to the patient’s death. In Fig. 4A (w1 =
100, w2 = 1, w3 = 0), both controls are saturated, although
cidofovir (u1) is only given for the first two days, while
tecovirimat (u2) for the whole therapy horizon; however,
even though VE is brought below one, VI decreases very
slowly. When a fast reduction of the amount of intracellular
virus is an important objective, as in Fig. 4B (w1 = 100,
w2 = 1, w3 = 10), an even stronger use of cidofovir becomes
necessary. Conversely, in Fig. 4C (w1 = 10, w2 = 1,
w3 = 0), cidofovir (u1) is only given for the first day at
the maximum dose and for the second day at a small dose,
while tecovirimat (u2) is given for the whole therapy horizon,
at the maximum dose for the first two days and at smaller
doses afterwards. In Fig. 4D (w1 = 10, w2 = 1, w3 = 0.1), a
slightly faster reduction of VI is required (barely noticeable
in logarithmic scale) and is obtained with higher doses of
cidofovir and smaller doses of tecovirimat.

It is worth stressing that, to successfully reach the treat-
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ment goal, it is not necessary to drive VE and VI to zero:
once the viral load goes below a safe threshold, the patient’s
immune system will take care of it and suppress the infection.

V. CONCLUDING DISCUSSION

We have proposed a new model of in-host virus infection
dynamics that explicitly captures internal virus production
and shedding, to account for the respective effects of the
antiviral drugs cidofovir and tecovirimat, candidates in the
treatment of mpox. The classic target-cell limited model is
recovered from the proposed model as a quasi-steady-state
approximation; we have shown that our model shares many
features with the target-cell limited model, such as equilibria
and asymptotic behaviours, but can have different transient
behaviours. With model parameters taken from the medical
literature, we have showcased the general methodology to
formulate and solve an optimal treatment control problem,
illustrating how our model can be used to support the optimal
scheduling of antiviral drug therapies. Future work includes
quantitative model validation and parameterisation based on
infection time-series data from in vitro experiments and/or
patients suffering from mpox infection, so as to inform real
therapies through optimal control approaches with tailored
parameter values. Since previous studies have effectively
used the target-cell limited model with constant coefficients
to fit real viral infection data (e.g. for HIV, West Nile virus
and Influenza [35]–[37]), we expect that our proposed model,
which is more detailed and thus more flexible, will be able
to match real data even with constant coefficients.
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