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Abstract— Following Kolokoltsov’s work [1], we present an
extension of mean-field control theory in quantum framework.
In particular such an extension is done naturally by considering
the Belavkin quantum filtering and control theory in a mean-
field setting. In this setting, the dynamics is described by a
controlled Belavkin equation of McKean-Vlasov type. We prove
the well-posedness of such an equation under imperfect mea-
surement records. Furthermore, we show under purification
assumption the propagation of chaos for perfect measurements.
Finally, we apply particle methods to simulate the mean-
field Belavkin equation and we provide numerical simulations
showing the stabilization of the mean-field Belavkin equation
by a feedback control strategy towards a chosen target state.

Keywords : Quantum filtering, Stochastic control, Mean-field
Belavkin equation, Quantum state reduction, Stabilization in
mean-field.

I. INTRODUCTION

Mean-field (MF) game theory, lying at the intersection
of game theory and stochastic control theory, is the study
of strategic decision made by interacting indistinguishable
agents in very large populations. This class of problems was
considered in the engineering literature by Huang, Malhame
and Caines [2] and independently and around the same time
by mathematicians Lasry and Lions [3]. Namely, consider
N agents whose states evolve according to the stochastic
differential equations below: for j = 1, . . . , N ,

dXu,j
t = b(Xu,j

t , uj
t , µ̂

u,N
t )dt+ σ(Xu,j

t , uj
t , µ̂

u,N
t )dW j

t

µ̂u,N
t :=

1

N

N∑
k=1

δXu,k
t

, µ̂u,N = (µ̂u,N
t )0≤t≤T ,

where T is supposed as the final time, and b, σ are suit-
able functions and W 1, . . . ,WN are independent Brownian
motions. Here Xu,j

t stands for the state of agent j at time
t subject to strategy profile (u1, . . . , uN ) =: u, and each
agent interacts with the others through the empirical measure
µ̂u,N
t . Provided some set U of admissible strategies and a

time horizon T , agent j aims to minimize its cost U ∋ u 7→
Jj(u) ∈ R with Jj(u) ≡ J (u, µ̂uj ,N ):

Jj(u) := E

[∫ T

0

f(X
uj ,j
t , ut, µ̂

uj ,N
t )dt+ g(X

uj ,j
T , µ̂

uj ,N
T )

]
,

where uj := (u1, . . . , uj−1, u, uj+1, . . . , uN ) and f, g are
some cost functions. Nash equilibrium, where no player can
do better by unilaterally changing their strategy, is the most
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common way to define the solution of such a non-cooperative
game. Namely, u∗ := (u∗,1, . . . , u∗,N ) ∈ UN is said to
achieve a Nash equilibrium if

J (u∗,j , µ̂u∗,N ) = inf
u∈U

J (u, µ̂u∗
j ,N ),

where u∗
j := (u∗,1, . . . , u∗,j−1, u, u∗,j+1, . . . , u∗,N ). Gener-

ally there is no explicit expression for the Nash equilibrium,
and its numerical computation is quite costly. Given the
importance for applications, as well as its active theoretical
interest, it becomes increasingly important to consider the
MF limit as N → ∞. Hence, the corresponding MF game
consists of finding a pair (û, X̂) satisfying

dX̂t = b(X̂t, ût,L(X̂t))dt+ σ(X̂t, ût,L(X̂t))dWt,

J (û, µ̂) ≤ J (u, µ̂),

where µ̂ := (L(X̂t))0≤t≤T , and L denotes the law of random
variable X̂t.

The empirical measure playing a major role in clas-
sical MF game, does not have an analogue in quantum
setting, since N−particle quantum evolution particles are
not separated in individual dynamics due to entanglement
between particles. The other difficulty is related to quantum
measurements which perturb the state of the system, which
is known as a back-action effect. Moreover, measuring
continuously freezes the dynamics of the system [4]. Hence
a new methodology is required to build a quantum MF game
theory.

In a remarkable series of papers [5], [6], [1], [7],
Kolokoltsov has developed a methodology for quantum MF
games, where indirect measurements are considered to con-
serve the system’s dynamics. In this framework, the dy-
namics is described by matrix-valued stochastic differential
equations. As same as for the classical case, the propagation
of chaos has been derived by adopting the approach of Pickl
[8] to a stochastic version. It should also be noted that this
new framework allows us to deal with a measurement-based
feedback control problem of quantum systems with high
dimensionality. Feedback control of quantum systems plays
a major role in controlling quantum systems in a robust fash-
ion, see e.g., [9], [10], [11], [12]. Due to high dimensionality
of the system, realization of a feedback control in real-time
is time-consuming and not practical in a real experiment.

In the following, we recall Belavkin quantum filtering
theory [13], [14], [15], [16] and we discuss the extension
of classical MF games and control characteristics in the
quantum filtering framework, which is proposed in [1].
The quantum filtering framework represents a natural one
to construct a quantum MF game theory. Later, motivated
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by games with incomplete information, we extend the MF
Belavkin equation in the case of imperfect measurement
records, and give a proof of the well-posedness of such the
equation. Furthermore, for perfect measurements, we show
the propagation of chaos under the purification assumption,
i.e., asymptotically the mixed states become pure states, see
e.g., [17]. Finally, we use particle methods algorithm to sim-
ulate the MF equation. We suggest the use of quantum MF
filtering as a method to reduce the complexity representation
of open quantum systems, which is usually high. In the
case of quantum non-demolition measurement, simulations
illustrate a quantum state reduction (see e.g., [18], [19], [20],
[21]) for MF particles. This is encouraging to apply such
a method, for instance, in feedback stabilization based on
such an MF theory. Inspired by [22], we construct a control
law depending on the MF equation, through simulations, we
observe stabilization of the system toward the target state.

A. Preliminaries

We fix throughout the paper a finite set X = {1, . . . , d}
and set H := Cd. Let Md be the set of d × d complex
matrices. For every A ∈ Md, denote by A† its conjugate
transpose. Define further the set of density matrices Sd :=
{ρ ∈ Md : ρ = ρ†, ρ ≥ 0, tr(ρ) = 1}. For any A,B ∈ Md,
set [A,B] := AB−BA and {A,B} := AB+BA. For every
N ∈ N, let H⊗N denote the N−tensor product of H.

For any operator B : H → H and for j = 1, . . . , N, denote
by Bj : H⊗N → H⊗N the operator acting only on the sub-
system living on the j-th Hilbert space H, i.e. Bj(h1⊗· · ·⊗
hj ⊗ · · · ⊗hN ) := (h1 ⊗ · · · ⊗B(hj)⊗ · · · ⊗hN ). Similarly
for any operator O : H ⊗ H → H ⊗ H, i.e. O(· ⊗ ·) :=
(O1(· ⊗ ·)⊗O2(· ⊗ ·)), and for j ̸= k ∈ {1, . . . , N} denote
by Ojk : H⊗N → H⊗N the operator acting only on the
sub-systems living on the product of j-th and k-th Hilbert
spaces H, i.e. Ojk(h1 ⊗ · · · ⊗ hj ⊗ · · · ⊗ hk ⊗ · · · ⊗ hN ) :=
(h1 ⊗ · · · ⊗O1(hj ⊗ hk)⊗ · · · ⊗O2(hj ⊗ hk)⊗ · · · ⊗ hN ).

II. QUANTUM FILTERING AND CONTROL

Having examined the characteristics in the classical case,
we want to extend them to the case where particles obey the
principles of quantum mechanics.

In a dynamic game situation with N -players, the strategies
are made in real-time, and therefore the system must be
measured continuously. The quantum system to consider is
therefore necessarily open, in order to observe the evolution
of the state and to avoid quantum Zenon effect, we have to
pass through indirect measurements [23, Section 4 ]. The
control induced by each player is done via a controlled
electromagnetic field.

An open quantum system undergoing continuous-time
measurements can be described mathematically by a matrix-
valued stochastic differential equation called Belavkin quan-
tum filtering equation

dρt =

(
−i[H + u(ρt)Ĥ, ρt] +

(
LρtL

† − 1

2

{
L†L, ρt

})
dt

+
√
η
(
Lρt + ρtL

† − tr
(
(L+ L†)ρt

)
ρt
)
dWt.

Here H and Ĥ represent respectively the free and controlled
Hamiltonian matrices. The matrix L is the measurement
operator associated to the probe. The observation process
of the probe Y is a continuous semimartingale with dYt =
dWt+

√
η tr

(
(L+L†)ρt

)
dt, where W is a classical Wiener

process. Here u denotes the feedback controller adapted to
FYt and η ∈ (0, 1] represents the efficiency of the detector.

Remark 1: In the absence of control input and measure-
ment, the dynamics is described by a deterministic linear
master equation, called Lindblad master equation.

III. N -QUANTUM PARTICLE SYSTEM AND MEAN-FIELD
LIMIT

A. Belavkin equation for a controlled N -particle system

Now we consider a system of N -quantum particles, where
each particle interacts with the others through an interaction
Hamiltonian denoted by A. Each particle is measured in-
directly through an appropriate observable, i.e., N -quantum
channels are considered. To each particle, a feedback control
is applied to achieve certain goals like minimizing a cost
function, maximizing a reward, stabilizing the system, etc.
Under our setting, A is given as a symmetric self-adjoint
integral operator with Hilbert-Schmidt kernel, i.e. A : X 4 →
C is so that A(l, l′; k, k′) = A(l′, l; k′, k), A(l, l′; k, k′) =
A(l, l′; k, k′).

A : L2(X 2) → L2(X 2).

Af(l, l′) :=
∑

(v,v′)∈X 2

A(l, l′; v, v′)f(v, v′).

By setting O := A as in Preliminaries, we define similarly
Ajk.

Hence, the dynamics of the system, identified by the
density matrix ρN , satisfies the Belavkin equation

dρN
t =−i[H,ρN

t ]dt+

N∑
j=1

(
Ljρ

N
t L†

j −
1

2
{L†

jLj ,ρ
N
t }

)
dt

+
√
η

N∑
j=1

(
ρN
t L†

j + Ljρ
N
t − tr

(
(Lj + L†

j)ρ
N
t

)
ρN
t

)
dW j

t ,

(1)

where ρN
0 = ρ⊗N

0 , H :=
∑

j(Hj + u(ρjt )Ĥj) +∑
i<j Aij/N , where ρjt represents the state of the particle j

(for j = 1, · · · , N ), which can be obtained by taking a partial
trace over the other particles. The corresponding observation
process Y j for particle j is given by

dY j
t = dW j

t +
√
ηtr

(
(Lj + L†

j)ρ
j
t

)
dt.

Here we note that Equation (1) is well posed by using similar
arguments as in [24, Propositions 3.3 and 3.5].

B. Mean-field limit

As in classical case, we expect that for an appropriate
interaction Hamiltonian, when N is large, each particle
interacts with an MF instead of interacting individually with
the others, and a typical behavior for particles emerges.
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For a closed quantum system described by the Schrödinger
equation, the MF dynamics is given by the well-known
Schrödinger-Hartee equation [25], [8], and Lindblad-Hartee
equation for open quantum systems [26]. Later, this equation
is extended by Kolokoltsov [5], [1], [7] to treat the case
of an open quantum system undergoing continuous-time
measurements.

In the following, we consider the later treatment and
we assume in addition that measurements are not perfect,
inspired by the previous treatment, we recover formally the
following Belavkin equation of MF type

dγt = (−i[H + u(γt)Ĥ +Amt , γt])dt

+

(
LγtL

† − 1

2
{L†L, γt}

)
dt

+
√
η
(
γtL

† + Lγt − tr
(
(L+ L†)γt

)
γt

)
dWt, (2)

where mt := E[γt], γ0 = ρ0 ∈ Sd, and Am =∑
X 2 A(l, l′; k, k′)m(k, k′).
Remark 2: In the absence of control, by taking expecta-

tion, a new nonlinear equation of Lindblad version can be
obtained as follows

dmt =− i[H +Amt ,mt]dt+
(
LmtL

† − 1

2
{LL†,mt}

)
dt.

IV. MAIN RESULT

To justify the above approximation in the MF limit, we
have to show that ρN asymptotically becomes close to γ⊗N .
To measure a deviation from ρN to γ⊗N , we take the
following quantity considered by Pickl in [8]

αN,j(t) = 1− tr
(
γtρ

j
t

)
= 1− tr(γj

tρ
N
t

)
, (3)

which is calculated only for the particle j and we recall that
ρjt corresponds to the partial trace of ρN with respect to the
particles other than the particle j. Here γj := I ⊗ · · · ⊗ γ ⊗
· · ·⊗I, where j-th component of γj is identified with γ and
the other components are all identity operator I.

For the sake of simplicity, we denote αN := αN,j for
any fixed j. By an inequality obtained in [1, Proposition
A.1], it is sufficient to control E[αN (t)] by αN (0) to state a
propagation of chaos result.

In the following theorem, we state the main result of
this paper concerning the well-posedness of Equation (2)
(existence and uniqueness of the solution) and propagation
of chaos.

Theorem 1 (well-posedness and propagation of chaos):
Let T > 0, U > 0, and let u : Sd → [−U,U ] be bounded
and Lipschitz, i.e. |u(ρ)− u(ρ′)| ≤ κ ∥ρ− ρ′∥, with κ > 0.
Then (2) is well posed and valued in Sd.

Furthermore for η = 1, there exists a constant c ≡
c(||A||, ||Ĥ||, ||L||) such that

E
[
αN (t)

]
≤ ect

(
αN (0) +

1√
N

)
,

where ||·|| corresponds to any matrix norm. In particular, the
propagation of chaos is verified under purification assump-
tion.
Proof.

a) Well-posedness: The proof will be a combination of
arguments in [24] and [27, Pages 235-237]. For each ξ ∈
C
(
[0, T ], Sd

)
, we consider the following equation

dγξ
t = −i[F ξ

t , γ
ξ
t ]dt+

(
Lγξ

tL
† − 1

2

{
L†L, γξ

t

})
dt

+
√
η
(
γξ
tL

† + Lγξ
t − tr

(
(L+ L†)γξ

t

)
γξ
t

)
dWt, (4)

where F ξ
t := H + u(γξ

t )Ĥ + Aξt . This is well posed by
similar arguments applied in [24, Propositions 3.3 and 3.5].
From the existence of the family of equations parametrized
by ξ, we define the following mapping Ξ : C

(
[0, T ], Sd

)
→

C
(
[0, T ], Sd

)
by Ξ(ξ) := (E[γξ

t ])0≤t≤T . Therefore the
process γm corresponds to the solution of (2) if and only
if m = Ξ(m). So we should prove the existence and
uniqueness by showing that the mapping Ξ has a unique
fixed point.

To show this, we prove that the map Ξ is a contraction
with respect to the uniform norm on C

(
[0, T ], Sd

)
. Let us

pick two arbitrary elements ξ1 and ξ2 in C
(
[0, T ], Sd

)
. Set

∆γt := γξ1

t − γξ2

t , ∆ξt := ξ1t − ξ2t , and K := L+L†. Then
it follows that

∆γt =

∫ t

0

(
− i[F ξ1

s ,∆γs] +
(
L∆γsL

† − 1

2

{
L†L,∆γs

}))
ds

+
√
η

∫ t

0

(
∆γsL

† + L∆γs
)
dWs −

∫ t

0

(
i[F ξ1

s − F ξ2

s , γξ2

s ]
)
ds

−√
η

∫ t

0

(
tr
(
Kγξ1

s

)
γξ1

s − tr
(
Kγξ2

s

)
γξ2

s

)
dWs,

which yields to the following by Hölder inequality and Itô’s
isometry

∥Ξ(ξ1)t − Ξ(ξ2)t∥ ≤ E
[
∥∆γt∥

]
≤

∫ t

0

E
[∥∥[F ξ1

s ,∆γs]
∥∥+

∥∥∥L∆γsL
†
∥∥∥+

1

2

∥∥∥{L†L,∆γs
}∥∥∥] ds

+

∫ t

0

E
[∥∥∥[F ξ1

s − F ξ1

s , γξ2

s ]
∥∥∥]ds

+

∫ t

0

(
E
[∥∥∥∆γsL

† + L∆γs

∥∥∥2])1/2

ds

+

∫ t

0

E
[∥∥∥tr(Kγξ1

s

)
γξ1

s − (tr
(
Kγξ2

s

)
γξ2

s

∥∥∥2]1/2ds
≤

∫ t

0

CE
[
∥∆γs∥+ ∥∆ξs∥

]
ds,

where C > 0 is some constant depending on
T, ||H||, ||A||, κ, η, ||Ĥ||, ||L||. In view of Gronwall’s in-
equality, one concludes the existence of some constant, still
denoted by C without any danger of confusion

max
0≤r≤t

∥Ξ(ξ1)r − Ξ(ξ2)r∥ ≤ C

∫ t

0

∥∆ξs∥ds, ∀t ≤ T.

Replacing ξi by Ξ(ξi) for i = 1, 2, it follows that

∥Ξ(2)(ξ1)t − Ξ(2)(ξ2)t∥ ≤ C2

∫ t

0

(∫ s

0

∥∆ξr∥dr
)
ds

≤ C2t2 max
0≤r≤t

∥∆ξr∥.
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Repeating the above reasoning, one has for any k ≥ 1

∥Ξ(k)(ξ1)t − Ξ(k)(ξ2)t∥ ≤ Cktk−1

(k − 1)!
max
0≤r≤t

∥∆ξr∥,

where Ξ(k) denotes the k−composition of Ξ. So for k large
enough Ξ(k) is a contraction. To show the uniqueness, it is
sufficient to pick two arbitrary solutions m1,m2. We have

∥m1
t −m2

t∥ = ∥Ξ(k)(m1)t − Ξ(k)(m2)t∥ ≤ c∥m1
t −m2

t∥,

where c < 1 denotes some constant. Hence m1 = m2.
b) Propagation of chaos : Here our objective is to

estimate the mean of deviation defined in Equation (3) by
an inequality depending on the deviation in initial time.

In order to do this, it’s sufficient to estimate this quantity
for one of the particles, for instance here we consider the j-
th particle. For the sake of simplicity, we adapt our notations
as follows: γ := γj , L := Lj . By Itô’s formula, we get

dαN (t) = −tr
(
dρN

t γt

)
− tr

(
ρN
t dγt

)
− tr

(
dρN

t dγt

)
.

=
(
P

(1)
t + P

(2)
t )dt+

∑
k

P
(3,k)
t dW k

t ,
where,

P
(1)
t = itr

([ 1
N

∑
k ̸=j

Akj −Amt
j +

(
u(ρjt)− u(γt)

)
Ĥ, I− γt

]
ρN
t

)
P

(2)
t =−tr

(
γtLρ

N
t L†+ γtL

†ρN
t L+ γtL

†ρN
t L† + γtL+ ρN

t L
)

+
[
tr
(
γtρ

N
t L† + γtLρ

N
t

)
tr
(
γt(L

† + L)
)
+

tr
(
γtρ

N
t L† + γtLρ

N
t

)
tr
(
ρN
t (L† + L)

)
−

tr
(
ρN
t γt

)
tr
(
ρN
t (L† + L

))
tr
(
γt(L+ L†)

)]
,

and P
(3,k)
t are bounded quantities. By taking an expectation

of the above equation, it follows from the proof of [1,
Theorem 3.1] that there exists C > 0 such that
dE[αN (t)]

dt
= E

[
|P (1)

t |
]
+ E

[
|P (2)

t |
]

≤
(
C||A||+ κ||Ĥ||

)
E[αN (t)] +

C√
N

+ E
[
|P (2)

t |
]
.

As for P
(2)
t , we combine Lemma 1 and [5, Inequality

(44) of Lemma 1], and obtain |P (2)
t | ≤ C ′||L||2αN (t) for

some C ′ > 0. Therefore, the proof is fulfilled by Gronwall
inequality.
It remains to prove Lemma 1 which generalizes [5, Inequality
(43) of Lemma 1] and proves (5) without assuming that γ
is a one-dimensional projector.

Lemma 1: Let A,B be in Sd, and L be a hermitian matrix.
Then∣∣∣∣∣tr(LALB)− 1

2
tr(B(LA+AL))tr(BL+AL) (5)

+ tr(BA)tr(BL)tr(AL)

∣∣∣∣∣ ≤ 18||L||2tr
(
(I −A)B

)
.

Proof. Without loss of generality, we consider a basis where
A is diagonal so that we may rewrite A =

∑
k AkkIkk,

where
∑

k Akk = 1 and Ikk is the matrix whose only non-
zero element is one on the k-th diagonal element. Hence,

α := tr
(
(I −A)B

)
= tr

(
(I −B)A

)
=

∑
k

Akkαk,

with αk := tr((I−Akk)B). By the positivity of B, it follows
that (see [5] for further details)

|Bjr| ≤ αk, j, r ̸= k, max
(
|Bjk|, |Bkj |

)
≤

√
αk, j ̸= k

(6)
Rewrite the left hand side of Inequality (5) as follows:∣∣∣∣∣∑

k

Akktr(LIkkLB) + tr(BL)tr(BA)tr(AL)

− 1

2

∑
k

Akktr
(
B(LIkk + IkkL)

)
tr
(
BL+

∑
j

AjjIjjL
)∣∣∣∣∣

≤
∑
k,j

AkkAjj

∣∣∣∣∣BkkLjjtr(BL) + (LBL)kk

− 1

2

(
(BL)kk + (LB)kk

)(
tr(BL) + Ljj

)∣∣∣∣∣
≤
∑
k

5||L||2Akkαk +
∑
k ̸=j

AkkAjj

∣∣∣∣∣BkkLjjtr(BL) + (LBL)kk

− 1

2

(
(BL)kk + (LB)kk

)(
tr(BL) + Ljj

)∣∣∣∣∣,
where the second inequality follows from (6). By adding and
subtracting Bjj , Lkk, we deduce further

≤ 5||L||2α+
∑
j ̸=k

AkkAjj5||L||2αk

+
∑
j ̸=k

AkkAjj

∣∣∣∣∣[(Bkk −Bjj)]Lkktr(BL)

∣∣∣∣∣
+

∣∣∣∣∣∑
j ̸=k

(Lkk − Ljj)AkkAjj

(
(BL)kk + (LB)kk

)∣∣∣∣∣
≤ 12||L||2α+

∣∣∣∣∣∑
j ̸=k

(Lkk − Ljj)AkkAjj

(
(BL)kk + (LB)kk

)∣∣∣∣∣
≤ 12||L||2α

+

∣∣∣∣∣∑
k

∑
j ̸=k

AjjAkk(Lkk − Ljj)
∑
r ̸=j,k

[
BkrLrk + LkrBrk

]∣∣∣∣∣
+

∣∣∣∣∣∑
k

∑
j ̸=k

(Lkk − Ljj)AjjAkk

[
BkkLkk + LkkBkk

]∣∣∣∣∣
+

∣∣∣∣∣∑
k

∑
j ̸=k

AjjAkk(Lkk − Ljj)
[
BkjLjk + LkjBjk

]∣∣∣∣∣
≤ 12||L||2α+ 4||L||2α+ 2||L||2α,

where we apply Fubini and triangular inequality for the
second and third terms and use the fact that the last term
is equal to zero by symmetry. So the lemma is proved.

V. APPLICATIONS AND NUMERICAL ILLUSTRATION

In the following section, we consider N -quantum par-
ticles undergoing imperfect quantum non-demolition mea-
surements, where asymptotically the system converges to
pure states which correspond to the equilibria of the system,
this phenomenon is known as quantum state reduction, see
e.g., [19], [21], [18]. Here we derive the MF Belavkin
equation and consider its application in a feedback stabi-
lizing such a system, as propagation of chaos is proved
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by Theorem 1 for perfect measurement under purification
assumption, intuitively this motivates our study. This study
mathematically is true if the propagation of chaos is valid
for imperfect measurement. Here we focus on measurement-
based feedback control strategies, see e.g., [24], [28] for a
mathematical model description.

A. N -quantum particles

We consider the case of N -qubit system (i.e X = {1, 2}),
interacting through a Hamiltonian of MF type. Let the inter-
action operator between qubits be an operator describing the
exchange of photons [7, Discussion.6 ], [6, Remark 8], where
A = a†1a2 + a†2a1. This operator represents the exchange of
a single photon between two qubits, where a†j and aj are the
creation and annihilation operators respectively for the j-th
qubit. The first term describes the process where a photon
is absorbed by the first qubit, while the second qubit emits
a photon. The second term describes the opposite process.
This interaction is given by the tensor A(l, l′; k, k′) such that
A(2, 1; 1, 2) = A(1, 2; 2, 1) = 1 and zeros otherwise. For
each particle we associate a free Hamiltonian Hj = σz

j , an
observation channel Lj = σz

j and a controlled Hamiltonian
Ĥj = σx

j . The evolution of the N -particles is given by the
following equation:

dρN
t =− i[Ht,ρ

N
t ]dt+

N∑
j=1

(
σz

jρN
t σz

j − ρN
t

)
dt

+
√
η

N∑
j=1

(
ρN
t σz

j + σz
jρN

t − 2tr
(
σz

jρN
t

)
ρN
t

)
dW j

t .

Note that the simulation of ρN requires 4N − 1 real
stochastic differential equations and the complexity is
O(4N ).

B. Feedback stabilization based on MF Belavkin equation

Here we aim to make the feedback control depend on the
MF limit equation γ instead of the original filter equation ρN

and to control γ in situation where the interaction between
particles is of MF type, by doing this the complexity of
the problem can be reduced notably as it is sufficient to
control only the MF particle toward a target state. Here we
study numerically the asymptotic behavior for MF Belavkin
equation.

For the MF equation, the free Hamiltonian will be H =
σz , the observation channel is L = σz , and controlled
Hamiltonian is Ĥ = σx. Straightforward calculations in Pauli
basis give us Am =

(
0 E[x] − iE[y]

E[x] + iE[y] 0

)
. So the MF

Belavkin equation projected in Pauli basis is represented as
follows:

dxt =
(
− yt − xt + ztE[yt]

)
dt−√

ηxtztdWt,

dyt =
(
xt − yt + u(γt)zt − ztE[xt]

)
dt+

√
ηytztdWt,

dzt =
(
− u(γt)xt + ytE[xt] + xtE[yt]

)
dt+

√
η
(
1− z2t )dWt.

To simulate the MF equation, we need to solve only
three real stochastic differential equations. Nevertheless, we

need to approximate E[xt],E[yt],E[zt] using an N -particle
system, which yields a complexity O(N).

dxj
t =

(
− yj

t − xj
t + zjt

1

N

N∑
k=1

δyk
t

)
dt−√

ηxj
tz

j
tdW

j
t ,

dyj
t =

(
xj
t − yj

t + u(γj
t )z

j
t − zjt

1

N

N∑
k=1

δxk
t

)
dt+

√
ηyj

t z
j
tdW

j
t ,

dzjt=
(
− u(γj

t )x
j
t +

N∑
k=1

(yj
t

N
δxk

t
+
xj
t

N
δyk

t

))
dt+

√
η(1− z2t )dW

j
t .

Using Euler’s discretization scheme, classical results on the
propagation of chaos guarantees the convergence, see e.g.
[29, Pages 129-130].

We start by studying the asymptotic behavior of our
system when the feedback control is turned off, i.e., (u ≡
0). Through numerical simulations, we observe a quantum
state reduction property, i.e (γt)t≥0 converges to one of the
eigenstates of L, i.e., {ρe, ρg} with

ρg :=

(
1 0
0 0

)
, ρe :=

(
0 0
0 1

)
,

that are the equilibrium points of the MF equation (see Fig.
1). Further, to ensure that the system attains a prescribed
target, for example ρe, we adapt a feedback law proposed
in [22]. Our feedback control u is given by u(γ) :=
−7.6itr

(
[σx, γ]ρe

)
+5

(
1− tr(γρe)

)
. Numerical illustration

shows that the stabilization is achieved (see Fig. 2).

Fig. 1. Evolution of z-component for the MF equation. The red curve
represents mean trajectories for arbitrary 100 samples.

Fig. 2. Convergence of the fidelity F(γ, ρe) :=
(
tr
√√

γρe
√
γ
)2

toward
one with initial state (x0, y0, z0) = (1/4,−1/4, 0) and η = 1. The red
curve represents the mean value of 100 arbitrary samples.

VI. CONCLUSIONS

In this letter we have considered the works established
in [1], [5]. We show how this framework can be extended
to the case of imperfect measurements. We provide more
complete proof for the well-posedness of the MF equation.
We generalize a lemma to estimate the deviation between
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the quantum system and its MF approximation, that shows
propagation of chaos under purification assumption and per-
fect measurement. Numerical simulations suggest quantum
state reduction and stabilization by applying feedback control
toward a target state. This approximation in MF allows to
study control and stabilization of a system of N continuous
monitoring interacting particles.

In further research we will provide rigorous proof for the
long-time behavior and stabilization for the MF equation.
Also the link between such the study and quantum trajectory
formalism is interesting to be investigated, as it is already
established for Belavkin filtering equation, see e.g., [30].
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