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Abstract— A novel conception of phase for linear time-
invariant multivariable systems was recently introduced. It
enables robustness of such systems to be determined in terms of
a phase-bounded set of perturbations via a so-called small phase
theorem, in analogy to the well-known small gain theorem.
However, it requires the system’s frequency response to satisfy
the relatively strong condition known as “sectoriality”, which
not all practical systems have. This paper aims to show
that if the perturbation is assumed to have a block diagonal
structure, a matrix-valued multiplier function can be calculated
that can enable phase-based robustness margins to be defined
in some cases when the original system is not sectorial. A
real-world power systems example is presented to show how
the small phase criterion using a multiplier can significantly
reduce the conservatism of the small gain theorem, providing
computationally straightforward methods to inform further
nonlinear stability analysis of power systems.

I. INTRODUCTION

The small gain theorem is a cornerstone result in the field
of robust control. It generalizes the classical gain margin of
LTI SISO systems to nonlinear and MIMO systems. Given
a known system G, it provides a generalized “gain margin”
that bounds a set of possible uncertainties or perturbations ∆
producing a stable closed loop system, as illustrated in Fig.
1. In SISO analysis, the phase is as important as gain, but
phase-based results for MIMO systems are relatively sparse.

Addressing this shortcoming, a novel conception of phase
for LTI MIMO systems was introduced by [1], [2]. Any
theory of phase for LTI MIMO systems rests upon a
definition of matrix phase. Much earlier, [3] defined the
principal phases, in terms of the unitary part of the polar
decomposition of a matrix. In contrast, the recent paper [4]
defined matrix phase in terms of the numerical range and
the related sectorial decomposition. Using this definition of
matrix phase, [1], [2] present a small phase theorem that
generalizes the concept of SISO phase margin to MIMO
systems while also generalizing the passivity theorem and
the associated concepts of passivity and positive realness for
LTI systems. Several extensions of this concept have already
been made. [5] presents a version of the result for discrete-
time systems, while [6] and [7] extend the concept of phase
to nonlinear and linear time-periodic systems, respectively.
[8] shows how the small gain and small phase theorems can
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be integrated on a frequency-wise basis to produce stability
tests akin to classical Bode analysis for SISO systems.

An area of active research for applications of robust
control is the small-signal stability of grid-connected power
converters. Many power converters employ so-called “grid-
following” control. For this type of control, the stability of
the grid-connected converter can be analyzed as a robustness
problem with the impedance of the grid connection playing
the role of the uncertainty [9].
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Fig. 1: Negative feedback interconnection of two systems.

Robust control techniques are a natural fit for this problem.
For example, [10] and [11] apply H∞ synthesis to produce
controllers stabilizing grid-connected power electronics over
wide ranges of operating conditions. [12] provides a fixed-
structure H∞ design procedure for a network of power
converters with a decentralized stability criterion, but makes
strict assumptions about the dynamics of the network it-
self. [13] compares the efficacy of several small-gain based
stability criteria, which exhibit significant conservatism. In
general, robust control results for grid-connected power
converters are specific to a particular system structure, or
are highly conservative.

This paper introduces a mixed gain/phase stability crite-
rion. The phase portion of the criterion requires the plant
frequency response satisfy a condition known as “sectorial-
ity”. We show that in the case of a structured perturbation,
the criterion can be augmented with a multiplier function,
allowing phase bounds to be calculated in some cases where
the plant model is not sectorial. This might be thought of
as a first step towards a phase analogue of the structured
singular value concept for the small gain theorem [14]. [15]
addresses conditions for the existence of related integral
quadratic constraint (IQC) multipliers for robustness against
gain-type perturbations, but does not address general block-
wise perturbations, nor provide robustness bounds on the
phase of a perturbation system. We then apply the mixed
gain/phase criterion to estimate the stability boundary for a
grid-connected converter system derived from an Australian
wind farm, achieving lower conservatism than the small gain
theorem alone.
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Section II collects relevant mathematical concepts, includ-
ing the definition of matrix phase [4]. Section III summa-
rizes standard results in robust control and introduces the
small phase theorem [2]. Section IV contains this paper’s
main contributions, including the modified mixed gain/phase
criterion and the application of multipliers for structured
perturbations. In Section V, we present the grid-connected
power converter example.

II. MATHEMATICAL PRELIMINARIES [16] [4]

The set of real and complex numbers are denoted R and
C respectively. The set of imaginary numbers is denoted jR.
We denote a sector of the complex plane as

S(θ, θ) := {ρejθ | ρ ≥ 0 and θ ∈ [θ, θ]}. (1)

The set of complex column vectors is denoted Cn. The
Euclidean norm of a vector x is denoted ||x||. The set of n×
m complex matrices is denoted Cn×m. In and 0n denote the
n-dimensional identity and square zero matrix, respectively.
The conjugate transpose of a matrix A is denoted A∗. The set
of proper real rational functions with no poles in the closed
RHP is denoted RH∞, and matrices thereof as RHn×m

∞ .
In the following, A, B ∈ Cn×n. The spectrum (set of

eigenvalues) of A is denoted λ(A) and its largest singular
value by σ(A). A has a Cartesian decomposition A =
R(A) + jI(A), where R(A) = (A + A∗)/2 and I(A) =
(A−A∗)/2j are both Hermitian. A positive (semi-)definite
Hermitian matrix A is denoted A > 0 (A ≥ 0). The notation
A > B (A ≥ B) means that A−B is positive (semi-)definite.

The numerical range of A is defined as

W (A) := {x∗Ax | x ∈ Cn, ||x|| = 1}. (2)

It has the following relevant properties:
(W1): W (A) is a convex and compact set in C.
(W2): λ(A) ⊂W (A).
(W3): W (cA) = cW (A) for c ∈ C.
(W4): W (R(A)) = {x ∈ R | x = Re(z), z ∈W (A)}.

The angular numerical range of A is defined as

W ′(A) := {x∗Ax | x ∈ Cn, x ̸= 0}. (3)

For any A, W ′(A) ∪ {0} = S(θ, θ) for some θ, θ ∈ R. It is
the smallest sector containing W (A). Define the field angle
of A as δ(A) := θ−θ. We say that a matrix A is sectorial if
0 /∈ W (A), quasi-sectorial if δ(A) < π, and semi-sectorial
if δ(A) ≤ π. If A is non-semi-sectorial, then W ′(A) = C
and we define δ(A) = 2π. Fig. 2 illustrates these cases.

Any quasi-sectorial A is congruent to a diagonal matrix:

A = T ∗ [D 0
0 0n−m

]
T, (4)

where D ∈ Cm×m is unitary with m ≤ n and T ∈ Cn×n

is invertible. The matrix D is unique up to the ordering of
its diagonal elements. By noting that (3) is invariant under
congruence, it can be seen that W ′(A) is the set of strictly
positive linear combinations of the elements of D, including
0 if m < n. Because δ(A) < π, we may choose a unique
pair ϕ(A), ϕ(A) so that W ′(A)∪{0} = S(ϕ(A), ϕ(A)) and
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Fig. 2: A1 is sectorial, A2 is quasi-sectorial but not sectorial,
A3 is semi-sectorial but not quasi-sectorial, and A4 is non-
semi-sectorial.

φ(A)

φ(A)

W (A)

W ′(A)

γ(A)

Fig. 3: Relationship between ϕ(A), ϕ(A) and W (A).

the phase center γ(A) = (ϕ(A) + ϕ(A))/2 of A lies in
(−π, π], as illustrated in Fig. 3. The phases of the elements
of D may be selected to lie in [ϕ(A), ϕ(A)]. Then, the m
phases of D are called the matrix phases of A, and ϕ(A)

and ϕ(A) are phases of A. This definition can be extended
to semi-sectorial matrices, but we omit the details [2].

The matrix phases of the factors of a matrix product bound
the phases of the product’s eigenvalues (just as the factors’
singular values bound the magnitudes of the eigenvalues.)
We restate Lemma 3 of [4], avoiding technical issues around
multiples of 2π due to the choice of phase center.

Lemma 1: [4] Suppose that A ∈ Cn×n is quasi-sectorial,
and B ∈ Cn×n is semi-sectorial. Then:

λ(AB) ⊂ S(ϕ(A) + ϕ(B), ϕ(A) + ϕ(B)). (5)
This leads to a sufficient condition for |I + AB| ̸= 0–or

equivalently, for −1 /∈ λ(AB). For a quasi-sectorial A, we
define the phase-bounded set of matrices:

P(A) = {B ∈ Cn×n |B is semi-sectorial and

− 1 /∈ S(ϕ(A) + ϕ(B), ϕ(A) + ϕ(B))}. (6)

This membership test is illustrated in Fig. 4a. The shaded
regions labeled A and B are respectively S(ϕ(A), ϕ(A))
and S(ϕ(B), ϕ(B)), and the sector shaded AB is S(ϕ(A) +

−1
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φ(B)

φ(A)
φ(A)

(a)

A A′ B

(b)

Fig. 4: Illustration of (a) (6) and (b) (7)
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ϕ(B), ϕ(A) + ϕ(B)). This sector contains −1, so we may
conclude B /∈ P(A).

An equivalent test for the membership of B in P(A) is:

S(ϕ(B), ϕ(B)) ∩ S(π − ϕ(A), π − ϕ(A)) = {0}. (7)

This intersection-based test is illustrated in Fig. 4b. The
sector labeled A′ is S(π−ϕ(A), π−ϕ(A)). As this intersects
the sector labeled B, we again conclude that B /∈ P(A).

From Lemma 1, it is clear that if B ∈ P(A), then |I +
AB| ≠ 0. We define the norm-bounded set of matrices:

N(A) = {B ∈ Cn×n : σ(A)σ(B) < 1}. (8)

If B ∈ N(A) then |I +AB| ̸= 0.

III. ROBUST STABILITY OF FEEDBACK
INTERCONNECTIONS

Consider the feedback interconnection of G and ∆ shown
in Fig. 1. If G, ∆ ∈ RHn×n

∞ , the loop is stable if and only
if the transfer function (I+G∆)−1 ∈ RHn×n

∞ . We consider
G a known “plant” and ∆ an unknown “perturbation”. The
set of ∆ forming a stable loop with G is denoted:

S(G) := {∆ ∈ RHn×n
∞ | (I +G∆)−1 ∈ RHn×n

∞ }. (9)

The MIMO Nyquist criterion [17] provides a test for the
membership of ∆ in S(G). To quantify G’s robustness, we
need a measure of the “size” of the perturbation, which
the Nyquist criterion does not provide. The famous small
gain theorem provides such a measure, and a corresponding
sufficient stability criterion.

Theorem 1 (Small gain theorem for LTI systems [14]):
Given G, ∆ ∈ RHn×n

∞ , (I + G∆)−1 ∈ RHn×n
∞ if for all

ω ∈ [0,∞],

σ (G(jω))σ (∆(jω)) < 1. (10)
We define the following set of ∆ satisfying the small gain
theorem together with G:

N (G) = {∆ ∈ RHn×n
∞ :

∀ω ∈ [0,∞], ∆(jω) ∈ N(G(jω))}. (11)

A Bode-style magnitude plot can be used to test the member-
ship of a particular perturbation in this set–if σ(∆(jω)) <
σ(G(jω))−1, then we conclude ∆ ∈ N (G).

An analogous small phase theorem, based on the phases
of the systems’ frequency responses was recently introduced
by [2]. We restate it here in terms of complex plane sectors.

Theorem 2 (Small phase theorem [2]): Suppose G, ∆ ∈
RHn×n

∞ with G(jω) quasi-sectorial and ∆(jω) semi-
sectorial for all ω ∈ [0,∞]. (I +G∆)−1 ∈ RHn×n

∞ if

−1 /∈ S(ϕ(G(jω)) + ϕ(∆(jω)), ϕ(G(jω)) + ϕ(∆(jω))),
(12)

for all ω ∈ [0,∞].
Given a known G with G(jω) quasi-sectorial for ω ∈ [0,∞],
the set of all ∆ satisfying the small phase theorem is:

P(G) = {∆ ∈ RHn×n
∞ :

∀ω ∈ [0,∞], ∆(jω) ∈ P(G(jω))}. (13)

Membership in P(G) can be tested by plotting the two
sectors in (7) against frequency on a Bode phase plot. If
the two regions do not intersect, we conclude ∆ ∈ P(G).

IV. MAIN RESULTS

The results of this paper aim at dealing with defining
phase-based robustness measures in the case when the
frequency response of G is non-quasi-sectorial over some
frequencies. We present a mixed gain-phase stability criterion
that requires G(jω) to be sectorial only when the gain
criterion fails to hold. The criterion incorporates multiplier
functions, which will be used to reduce the conservatism of
the phase criterion. In particular, these multipliers will allow
phase bounds to be found in some cases when G(jω) is
non-quasi-sectorial.

A. Small Gain/Phase Theorem

The small gain and phase criteria can be combined on
a frequency-wise basis to produce a criterion that is less
conservative than either taken alone. [8] provides such a
result proved with IQCs, but it requires G(jω) to be semi-
sectorial for all ω ∈ [0,∞]. We provide a Nyquist-based
proof for a mixed gain/phase criterion that only requires
quasi-sectoriality of G for frequencies where the gain cri-
terion fails, and allows for the introduction of a frequency-
domain multiplier function.

Theorem 3: Given G, ∆ ∈ RHn×n
∞ , and M : jR →

Cn×n with M(jω) bounded and invertible for all ω ∈ [0,∞],
(I+G∆)−1 ∈ RHn×n

∞ if, for every ω ∈ [0,∞], at least one
of the following is true.

(A) (10) is satisfied.
(B) G(jω)M(jω) is quasi-sectorial, M(jω)−1∆(jω) is

semi-sectorial, and (12) is satisfied for G(jω)M(jω)
and M(jω)−1∆(jω).

Proof: We will proceed by contraposition. Suppose that
(I + G∆)−1 is unstable. Then by the generalized Nyquist
criterion [17], an eigenlocus of G(jω)∆(jω) encircles or
intersects −1 at least once as ω increases from 0 to ∞. If an
eigenlocus encircles or intersects −1, then it must intersect
the negative real axis at a point ≤ −1. Therefore, for some
ω0 ∈ R and k ≥ 1, we may say −k ∈ λ(G(jω0)∆(jω0)).
By the properties of singular values, this implies that (A) is
not true at ω0. Because M(jω) is bounded and invertible, we
also have −k ∈ λ(G(jω0)M(jω0)M(jω0)

−1∆(jω0)). Ap-
plying contraposition to Lemma 1 with A = G(jω0)M(jω0)
and B =M(jω0)

−1∆(jω0), we see that (B) is also false at
ω0. This implies that if the loop is unstable, (A) and (B)
are simultaneously false for at least one ω0, completing the
proof by contraposition.
It should be remarked that M(jω) need not be the frequency
response of a stable, minimum phase system – the proof
above allows any matrix-valued function that is bounded and
invertible at every frequency.

Given G and M , the set of all ∆ that satisfy the premises
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of Theorem 3 is:

M(G,M) = {∆ ∈ RHn×n
∞ | ∀ω ∈ [0,∞],

∆(jω) ∈ N(G(jω)) or

M(jω)−1∆(jω) ∈ P(G(jω)M(jω))}.
(14)

In the case where M(jω) = I , it is simple to see that N (G)∪
P(G) ⊂ M(G, I) ⊂ S(G).
B. Structured Perturbations

Often, a mixed phase/gain criterion may provide little
benefit over the small gain theorem because G’s frequency
response is non-quasi-sectorial at important frequencies. We
show that if a block diagonal structure for ∆ is assumed, a
phase criterion for the perturbation can be found in some
cases when the frequency response of G is non-quasi-
sectorial.

Define the set of block diagonal matrices in Cn×n :

∆ = {blkdiag(X1, . . . , Xb) |Xi ∈ Cni×ni}. (15)

for some number of square blocks b with dimensions
n1, . . . , nb so that

∑
ni = n. In the remainder of the paper,

we suppose ∆ has the matching structure:

∆ = blkdiag(∆1, . . . ,∆b), ∆i ∈ RHni×ni
∞ . (16)

We will now show how a multiplier can potentially reduce
the conservatism of the phase criterion under a structured
∆. The cost of introducing a multiplier M is that the
phase criterion applies not to ∆(jω), but to M(jω)−1∆(jω).
Generally there is no relationship between the matrix phase
of two matrices and their product [2], so we must consider
multipliers so that the phases of ∆(jω) and M(jω)−1∆(jω)
have a tractable relationship.

Consider the following set of invertible matrices and
corresponding multiplier functions:

M := {blkdiag(c1In1
, . . . , cbInb

) | ci ∈ C \ {0}}, (17)
M(jω) := blkdiag(m1(jω)In1

, . . . ,mb(jω)Inb
). (18)

where each mi(jω) : jR → C \ {0}. A multiplier of this
type commutes with ∆(s) and preserves its block-diagonal
structure:

M(jω)−1∆(jω) = ∆(jω)M(jω)−1

= blkdiag(∆1(jω)/m1(jω), . . . ,∆b(jω)/mb(jω)).
(19)

Multipliers of this form are closely related to those used
in the so-called D-scaling procedure for estimating the
structured singular value. However, we consider a single
sided transformation G → GM , rather than the similarity
transformation G→ D−1MD used in D-scaling. The phases
of each block mi(jω)

−1∆i(jω) are the phases of ∆i(jω)
minus the phase of mi(jω), and by (4), the phases of
M(jω)−1∆(jω) are comprised of the blocks’ phases up to
adjustments for phase center. The phase criterion imposed
on M(jω)−1∆(jω) by (14) may then be interpreted as a
criterion on the phases of each block ∆i(jω) adjusted by
the phase of mi(jω).

W (GM)
θ+

θ−

Fig. 5: Illustration of W (GM) when R(GM) ≥ ϵI

How should we select multipliers from this structured
set? Recalling (14), at each frequency ω ∈ [0,∞], we
require G(jω)M(jω) to be quasi-sectorial if possible. Ad-
ditionally, applying the criterion (7) to G(jω)M(jω) and
M(jω)−1∆(jω) we see from Fig. 4b that minimizing
δ(G(jω)M(jω)) maximizes the angular size of the sector
that the phases of ∆(jω) can lie in. These considerations
motivate the following optimization problem.

Problem 1: Given some G ∈ RHn×n
∞ , find M : jR → M

so that for each ω ∈ [0,∞], δ(G(jω)M(jω)) is minimized.
We address this problem by calculating optimal values for
the multiplier pointwise in frequency.

Theorem 4: Suppose ϵ > 0 and G ∈ Cn×n are given.
There exists M ∈ M so that GM is quasi-sectorial if and
only if the LMI constraints:

R(GM) ≥ 0, (20)
MM∗ ≥ ϵI, (21)

τR(GM) ≥ −I(GM), (22)
τR(GM) ≥ I(GM), (23)

are feasible for some τ ∈ R. Additionally, if M minimizes
the τ required for feasibility, then that M minimizes δ(GM),
and therefore solves Problem 1.

Proof: Recall that if GM is semi-sectorial then
W (GM) lies in a closed half-plane. Then by (W3) there
always exists a c ∈ C \ {0} so that all z ∈W (cGM) satisfy
Re(z) ≥ 0. Then, by (W4), the existence of M so that GM
is sectorial is equivalent to (20), while (21) enforces M ’s
invertibility.

Define the following angles (see Fig. 5):

θ+(GM) = π/2− ϕ(GM), (24)
θ−(GM) = π/2 + ϕ(GM). (25)

Define ψ(GM) = min(θ+(GM), θ−(GM)). Because
δ(GM) = π − (θ+(GM) + θ−(GM)) and δ(ejαGM) =
δ(GM) for any α ∈ R, any solution maximizing ψ(GM)
will also minimize δ(GM). To express the maximization of
ψ(GM) as an LMI condition, we note ψ(GM) is the largest
possible angle α ∈ [0, π) that simultaneously satisfies:

R(ejαGM) ≥ 0, (26)

R(e−jαGM) ≥ 0. (27)

If α ̸= 0, then applying ejα = cosα+ j sinα yields

cotαR(GM) ≥ −I(GM), (28)
cotαR(GM) ≥ I(GM). (29)
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Fig. 6: One-line diagram of Stockyard Hill, eastern substation

TABLE I: System parameters. A per-unit base of Sb = 100
MVA, Vb = 132 kV and ωb = 100π rad/s is used.

Variable Value Variable Value Variable Value

L 0.2 p.u. kpPLL 420 Lf 1.329 p.u.
R 0.02 p.u. kiPLL 45000 Rf 9.183 p.u.
Cdc 1.6 p.u. kpac 0.175 Cf1 0.752 p.u.
Rdc 0 p.u. kiac 220 Cf2 0.251 p.u.
kpi 3.5 kpdc 0.3 Lg 0.981 p.u.
kii 80 kidc 7 Rg 0.196 p.u.

As cotα is decreasing on α ∈ (0, π) with range R and
minimising cotα maximises ψ(GM) as required. (22-23)
follow by setting τ = cotα.

This optimization problem is a generalized eigenvalue
problem for which solvers exist, such as gevp from MAT-
LAB’s LMI Toolbox. Numerical issues can arise for singular
G, in which case a bisection algorithm is more appropriate.

V. EXAMPLE

During its commissioning, the Stockyard Hill Wind Farm
in Victoria, Australia suffered a small-signal stability issue
related to the interaction of a static synchronous compensator
(STATCOM) and a harmonic filter. Fig. 6 illustrates the
relevant portion of the system.

The STATCOM is a power converter intended to regulate
the system voltage. Its connection to the power grid is
represented by an RL Thevenin equivalent circuit shown
in the top branch. The bottom branch is the harmonic
filter circuit. When designing a converter’s controller, it is
important to understand the range of grid impedances under
which the system will be stable. We will show how the mixed
small gain/phase criterion predicts the boundary of stability
with less conservatism compared to the small gain theorem.

To this end, we vary the grid strength parameter γ ≥ 0,
which scales the grid impedance Rg , Lg in Fig. 6. γ = 0
represents a perfectly stiff grid, where the filter is shorted out
by the grid Thevenin voltage, and the system is guaranteed
to be stable. As γ increases, representing a weaker grid or
longer transmission line, the grid impedance increases and
the filter becomes more weakly damped. We aim to estimate
the smallest γ for which the system becomes unstable.

We divide the system into a converter subsystem repre-
senting the STATCOM with bus voltage vb and current ib
as input and output respectively, and a network subsystem
combining the grid and filter models, with ib and vb as input
and output respectively. The linearized subsystem models are
derived in dq-frame variables [18], yielding 2 × 2 MIMO
transfer functions. The STATCOM transfer function Yc(s) is

Yc

Zn Yg
Vb Vg

Ib

Fig. 7: Grid/converter interaction feedback loop

taken from (9) in [19] using parameters given in the first two
columns of Table I, and:

Ib(s) = Yc(s)Vb(s), (30)

where Yc(s) ∈ RH2×2
∞ .

The network model has a per-phase impedance Zn,1ϕ(s) ∈
RH∞. Its dynamics rewritten in dq frame variables remain
LTI [20]. Define the unitary matrix UJ =

[
1 1
−j j

]
/
√
2. Then

the dq-frame transfer matrix of the network impedance is

Zn(s) = UJ

[
Zn,1ϕ(s+jωb) 0

0 Zn,1ϕ(s−jωb)

]
U∗
J . (31)

[20] shows that Zn ∈ RH2×2
∞ . Then:

Vb(s) = −Zn(s)Ib(s) + Zn(s)Yg(s)Vg(s). (32)

(30) and (32) comprise a feedback loop, illustrated in Fig.
7. We identify G = Yc as the plant, and ∆ = Zn as
the perturbation. Yc is non-quasi-sectorial at all frequencies
of interest, so we must use a multiplier. We perform a
change of variables Ĩb(s) = UJIb(s) and Ṽb(s) = UJVb(s),
yielding equivalent subsystems G̃(s) = U∗

JYc(s)UJ and
∆̃(s) = U∗

JZn(s)UJ . ∆̃ has a diagonal structure (15) with
b = 2 and n1 = n2 = 1. We then solve the LMI problem
of Theorem 4 for G̃(jω) to find a diagonal multiplier
M̃(jω), which can be transformed to the structure of (31)
by M(jω) = UJM̃(jω)U∗

J . It can be shown that M(jω)
still solves Problem 1 for G with respect to the perturbation
structure in (31).

The frequency responses Yc(jω) and M(jω) were cal-
culated for a frequency range [1, 200] Hz. Zn(jω) was
calculated using the parameters in the right-hand column of
Table I for three values of γ. Singular value and phase plots
are shown in Fig. 8 for Yc(jω)M(jω) and M(jω)−1Zn(jω)
to test the membership Zn ∈ M(Yc,M). The gain criterion
of (14) is satisfied at frequencies where σ(Zn(jω)) <
σ(Yc(jω))

−1, and the phase criterion is satisfied for frequen-
cies where the sectors defined in (7) do not intersect, where
A = Yc(jω)M(jω) and B = M(jω)−1Zn(jω). Nonlinear
simulations were performed for each case and the q-axis
converter current on startup is plotted in Fig. 9.

For γ < 0.36, stability is guaranteed by the gain cri-
terion alone. For γ = 0.74, the gain criterion fails for
frequencies up to 40 Hz and a small region around 135
Hz, but the phase criterion is satisfied at these frequencies.
Therefore, the combined gain/phase criterion with multiplier
provides a substantially less conservative estimate of the set
of permissible grid impedances. For γ = 1, Fig. 9 reveals
the onset of instability. The gain and phase criterion fail
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Fig. 9: Transient q axis current of ib

simultaneously for a region from 32-38 Hz, in which the
oscillatory frequency of 33.4 Hz falls.

VI. CONCLUSION

The recent definition of multivariable system phase is
highly promising. To bridge the gap between this novel
theory and practice, this paper provides a mixed gain/phase
stability test that only requires sectoriality at frequencies
where the gain criterion fails and augments it with a mul-
tiplier for structured perturbations, broadening the range of
cases where the phase criterion applies. The practical use-
fulness of these methods for robustness analysis is demon-
strated on a scenario based on a real-life incident of small-
signal instability in an Australian wind farm. Substantial
improvements in conservatism are achieved over the small
gain theorem, which has practical implications in terms of
informing nonlinear analysis and design for power systems.
The authors hope that this paper’s contribution will be the
first step toward a general theory of phase for structured

perturbations in analogy to the structured singular value.
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