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Abstract— We study how to construct optimization problems
whose outcome are sets of feasible, close-to-optimal decisions
for human users to pick from, instead of a single, hardly
explainable “optimal” directive. In particular, we explore two
complementary ways to render convex optimization problems
stemming from cyber-physical applications “flexible”. In doing
so, the optimization outcome is a trade off between engi-
neering best and flexibility for the users to decide to do
something slightly different. The first method is based on
robust optimization and convex reformulations. The second one
is stochastic and inspired from stochastic optimization with
decision-dependent distributions.

I. INTRODUCTION

Modern cyber-physical systems, such as the smart energy
grid, are becoming tightly interlocked with the end users.
Optimizing the operations of such systems is also being
driven to the limits, by proposing personalized solutions
to each user, e.g., to regulate their energy consumption.
Sometimes we refer to these highly integrated systems as
cyber-physical and human systems (CPHS) [1, Chapter 4D].

In this paper, we ask the question of whether we can
optimize these systems by still allowing the end users to have
a choice between different, yet reasonably similar, decisions.
This becomes key in unlocking flexibility of the optimized
decision to account for transparency and ease technology
adoption. To fix the ideas on a concrete example, we could
refer to optimizing a building heating control, where the set
temperatures are determined by an algorithm. In this paper
then, we study how to build algorithms that can deliver an
allowed range of potentially good temperatures to the users
to choose from independently from each other.

Human behavior and satisfaction modeling is a well-
studied research area, and therefore optimizing a cyber-
physical system with pre-trained or online-learned human
models has received much attention (see, e.g., [1]–[7]). An
active area of research in robotics and control is preference
learning [8]–[10], whereby we try to capture users prefer-
ences among different actions. However, unlocking flexibility
by delivering sets and not single optimal solutions to the
users to choose from is not well explored, and mostly novel
in optimization. In this paper, we were mainly inspired
from the pioneering works [11], [12] which propose a set-
delivering controller. Their analysis techniques stems from
robust control and inverse optimization, which we will not
use here since our setting is different.

In this paper, we propose the following main contributions,
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[1] We propose a novel deterministic flexible optimization
problem that can deliver to end users a set of feasible
solutions to pick from. The problem is then solved by
leveraging robust optimization reformulations;
[2] we propose a novel stochastic flexible optimization prob-
lem, which is less conservative and can fine tune the human-
machine interaction. To solve this problem, we propose two
primal-dual methods and prove their theoretical properties.
To prove these results, we use tools from stochastic opti-
mization with decision-dependent distributions [13]–[17].

The contributions yield two complementary views in flex-
ible optimization and we finish by proposing a complete
workflow, labeled Flex-O.

Numerical experiments showcase our theoretical develop-
ment and their empirical performance.

II. PROBLEM FORMULATION

Let f : Rn Ñ R be a convex cost, and let X Ď Rn
be the convex feasible set defined as the intersection of m
inequalities, X :“ tx P Rn|hpxq ď 0u, for convex function
h : Rn Ñ Rm. We model the problem we want to solve as
a convex optimization problem,

P1 : min
xPRn

fpxq, subject to hpxq ď 0, (1)

where we partition the decision variable x “ rx1 P

Rn1 , . . . , xN P RnN s P Rn to highlight the presence of N
users. For the sake of simplicity, we will let ni “ 1 without
an over loss of generality.

Problem (1) has been used to model relevant cyber-
physical systems, e.g., [18], and a variety of methods exist to
find the optimal decisions. Here however, we wish to modify
it to allow the users to have a choice: that is, we would like
to assign to each user, not a single decision, but a set from
which they can choose from independently from each other.

As described in [1, Chapter 4D], Problem (1) features
a cyber-physical part: a system designer that wishes to
optimize the decisions x, possibly subjected to physical
constraints as hpxq ď 0, and a human part: a set of users
taking part in the decision making process and aiming at
picking their best xi, possibly in a selfish way. Our setting
offers an alternative approach to learning preferences [8]–
[10], since we do not want necessarily to learn users’ wishes,
just giving them a choice to pick from. Our setting offers
also an alternative approach to multi-objective optimization,
whereby one could compute the Pareto front and let the
users decide a specific point. The latter workflow however
has the disadvantage to have to compute the Pareto front,
and to ensure that each user can decide their own solution
independently.

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy 

Copyright ©2024 IEEE



x?

β?
2

β?
1

x1

x2

X

Fig. 1. Setting of the problem formulation in two dimensions with the best
decision x‹ and the optimal variations around it β‹. We give to each user
i the optimal set rx‹i ´ β

‹
i , x

‹
i ` β

‹
i s.

We present now two ways that can be used to render
Problem (1) flexible.

A. Deterministic approach
We start by looking at a deterministic approach. The

intuition is to find the best decision x‹ and an hyperbox
of optimal size centered on it, so that all the points in the
hyperbox are in the feasible set. This will allow us to assign
to each user their component of x‹ and the possible variations
around it, determined by the size of the hyperbox.

To fix the ideas, Figure 2 depicts the intuition in a bi-
dimensional setting. As we can see, depending on the nature
of each user, we may allow for more or less flexibility.

Let us introduce scalar weights wi ě 0 and new scalar
non-negative flexibility variables βi ě 0 for each user. We
also introduce an uncertain variable zi P r´1, 1s Ă R
for each user. We collect βi and zi in column vectors as
β “ pβ1, . . . , βnq

J; z “ pz1, . . . , znq
J P r´1, 1sn, where

r´1, 1sn is the unitary hyperbox. We further let y :“
rxJ, βJsJ, Y :“ Rn ˆ Rn`. We also define rdiagpβqs as a
nˆn matrix with β as its diagonal. With this, we introduce
the notation Apyq “ rdiagpβqs and vector bpyq “ x, so that
flexible hyperbox can be spanned with Apyqz` bpyq for all
z P r´1, 1sn. Then, we render P1 flexible by solving instead
the following robust optimization problem,

P2,d : y‹ P argmin
yPY

gpyq :“ fpxq `
n
ÿ

i“1

wiϕipβiq, (2)

subject to hpApyqz ` bpyqq ď 0, @z P r´1, 1sn,

for any convex function ϕi : R Ñ R. Typical examples
would be ϕipβiq “ ´βi, maximizing the flexibility for the
user, and ϕipβiq “ ´βi ` ε

2β
2
i trading-off flexibility (small

ε) and system performance (large ε).
Problem P2,d yields feasible solutions for all decisions in

the hyperbox X‹ :“
śn
i“1X

‹
i , with X‹i :“ rx‹i ´ β‹i , x

‹
i `

β‹i s. The set X‹i can be given to the user i for them to
decide their optimal action, independently of the other users.
Here, we are trading-off optimality of x‹ while increasing the
flexibility ensured by β‹. That is, we are finding the optimal
point x‹ and the optimal variation around it β‹, which still
guarantees feasibility.

Problem (2) is a difficult optimization problem, for which
however some approximation and reformulation procedures
exist. We will discuss some of them in the following section.

Example 1: We consider the task of deciding the reference
temperatures in different areas in an office building. Each
group of users can set their thermostat in their office within

an allowed range which we need to provide. Let x P Rn be
the temperature in n different areas, and xref P Rn be the
engineering-best temperatures, which have been determined
via an economic welfare trade-off. The problem we would
like to solve can be the following one,

y‹ P argmin
yPY

1

2
}x}2 `

n
ÿ

i“1

wi

´

´βi `
ε

2
β2
i

¯

, (3)

subject to
}Apyqz ` bpyq ´ xref}

2 ď γ,
D pApyqz ` bpyqq ď e,

*

@z P r´1, 1sn.

Here, the cost represents the wish to pick the smallest
possible temperature, while the constraints impose a limited
deviation with xref via a nonnegative scalar γ, and some
additional affine constraints D P Rcˆn, e P Rc. The latter
ones impose additional temperature bounds, and the fact that
close-by areas cannot have very different temperatures. ˛

B. Stochastic approach
In order to refine, and possibly render Problem (2) less

conservative, we introduce a stochastic variant. Here, we
assume that the users, given a certain optimal decision x‹i
and allowed variation β‹i , they pick a variable in the optimal
set, say xi, with a certain probability.

In this case, by introducing a nonnegative scalar δ P r0, 1s,
Problem (2) can be formulated as a chance-constrained
decision-dependent non-convex problem as,

P2,s : y‹ P argmin
yPY

gpyq, (4)

subject to Pz„Dpyq rhpApyqz ` bpyqq ą 0s ď δ,

where Pr¨s is the probability of a certain event, and Dpyq is
the decision-dependent distribution from which z is drawn
from, whose support we assume is r´1, 1sn.

The chance constraint in Problem (4) can be conservatively
rewritten in a convex-in-hpyq form, by employing several
bounds. Here, for reasons that will be clear later, we crucially
need a smooth reformulation and we employ the Chernoff’s
bound. This allows one to write, for any scalar u ą 0

Pz„Dpyq rhpApyqz ` bpyqq ą 0s ď δ ðù

E
z„Dpyq

pexpruhjpApyqz ` bpyqqsq ď δ, for j“1, . . . ,m,

see for instance [19]. With this in place, Problem (4) can be
innerly approximated as,

P3,s : y‹ P argmin
yPY

gpyq, (5)

subject to
E

z„Dpyq
pexpruhjpApyqz ` bpyqqsq ď δ, for j“1, . . . ,m.

Note that, contrary to the case of decision-independent distri-
bution, the constraints in (5) are still non-convex in y. Finally,
we can write Problem (5) by its minimax formulation,

P4,s : min
yPR2n

max
λPRm

`

Φpy, λq :“ gpyq`

ÿ

j

λjpEz„Dpyq pexpruhjpApyqz ` bpyqqsq ´ δq (6)

where the variables λ P Rm` are the Lagrangian multipliers
associated to the constraints.



III. SOLVING THE FLEXIBLE PROBLEM

A. Robust optimization problem

Approximately (and conservatively) solving robust opti-
mization problem (2) is possible, but the techniques depend
on the type of constraints h one has. A recent framework,
based on an extension of the Reformulation-Linearization-
Technique, has been proposed by Bertsimas and coauthors
in [20]. This framework is able to deal with any convex
function hpApyqz ` bpyqq ď 0 and any uncertainty set,
and therefore it can be used here. The method is very
general, so for specific problems, one would still use more
standard techniques. For the sake of argument, we will
show how one can transform Problem (3) into its convex
worst-case reformulation, and let the reader explore different
reformulations for their own settings. Problem (3) can be
rewritten as,

py‹, s‹q P argmin
yPY,sPRn

1

2
}x}2 `

n
ÿ

i“1

wi

´

´βi `
ε

2
β2
i

¯

, (7)

subject to }s}2 ď γ,

si ě |βi| ` |xi ´ xref,i|, @i P t1, nu

djx´ ej ` }rdiagpdjqsβ}1 ď 0, @j P t1, cu

see for instance [21] and [22] for completeness, where dj
are the rows of D and ej are the components of e.

The resolution of such convex reformulations, like (7),
yields the optimal decision x‹, as well as the optimal interval
around it β‹. As this may be conservative, we turn to the
stochastic approach to refine it.

B. Stochastic optimization problem

We start our resolution strategy by rewriting (6) in the
compact form,

min
yPY

max
λPRm

`

Φpy, λq :“ Ez„Dpyqrφpy, λ, zqs. (8)

Problem (8) is a stochastic saddle-point problem with
decision-dependent distributions, which is in general non-
convex and intractable in practice since one would need a
full (local) characterization of D. For this class of problems,
since the optimizers are out of reach, one is content to find
equilibrium points, as the points that are optimal w.r.t. the
distribution they induce. In particular, one would start by
assuming that the search space in y and λ is compact. In our
case, this would be a reasonable approximation for y, since
we can get an educated guess of a bounded search space by
solving the deterministic problem (2) first. For λ, that would
amount at clipping the multipliers, which is also a reasonable
practice in convex and non-convex problems [23], [24]. With
this in place, we let the search space for y be Y Ă Y and
λ P M Ă Rm` . Then, one searches for equilibrium points,
such that,

ȳ P arg min
yPY

"

max
λPM

Ez„Dpȳqrφpy, λ, zqs

*

(9)

λ̄ P arg max
λPM

"

min
yPY

Ez„Dpȳqrφpy, λ, zqs

*

. (10)

For continuous convex (in y) concave (in λq uniformly
in z functions φ, as in our case, assuming compactness of
the sets Y and M, as well as a continuous distributional
map D under Wasserstein-1 distance W1, then we know that
the set of equilibrium points is nonempty and compact [15,
Thm 2.5]. Consider further the following requirements.

Assumption 1: (a) Function φ is continuously differen-
tiable over Y ˆ Rm` uniformly in z, as well as µ-strongly-
convex-strongly-concave (respectively in y and λ) for all z.

(b) The stochastic gradient map ψpy, λ, zq :“
p∇yφpy, λ, zq,´∇λφpy, λ, zqq is jointly L-Lipschitz in
py, λq and separately in z.

(c) The distribution map D is ε-Lipschitz with respect to
the Wasserstein-1 distance W1, i.e.,

W1pDpyq,Dpy1qq ď ε}y ´ y1}, @y P Y.
˛

Strong convexity is ensured by properly defining the
cost function, as well as ϕi, while differentiability holds
thanks to the use of Chernoff’s bound. If the engineering
function is just convex, a regularization may be added. Strong
concavity can be achieved by adding the dual regularization
term ´ν

2 }λ}
2, ν ě µ, as in [25]. The various Lipschitz

assumptions are mild (the ones on the gradient map hold
trivially under compactness of the sets Y,M and compact
support for D as assumed).

With these assumptions in place, one can show that the
distance between equilibrium points and optimal points of
the original problem (8) is upper bounded by the constant
of the problem and therefore solving for the former is a
proxy for finding good approximate saddle points for the
latter. Furthermore for εL{µ ă 1, then the equilibrium point
is unique [15, Thm 2.10]. To find such unique equilibrium
point pȳ, λ̄q we employ a stochastic primal-dual method by
generating a sequence of points tyk, λku, k “ 0, 1, . . . , as,

zk „ Dpykq, (11a)
yk`1 “ PY ryk ´ η∇yφpyk, λk, zkqs , (11b)
λk`1 “ PM rλk ` η∇λφpyk, λk, zkqs , (11c)

with step size η ą 0 and projection operator Pr¨s. The
stochastic gradient obtained by drawing zk from the distribu-
tion generated at yk is unbiased at k. Furthermore, we assume
(as usual in the stochastic setting) that, for any given y, λ:

E
ω„Dpyq

r}∇yφpy, λ, ωq ´ E
z„Dpyq

r∇yφpy, λ, zqs} ď
σ
?

2
,

(12a)
E

ω„Dpyq
r}∇λφpy, λ, ωq ´ E

z„Dpyq
r∇λφpy, λ, zqs} ď

σ
?

2
,

(12b)
for a nonnegative constant σ.

Then we can derive the following result.
Theorem 1: Let p “ ryJ, λJsJ. Let Assumption 1 and

the stochastic setting (12) hold. Assume εL
µ ă 1 and pick

the step size η as η P
´

0, 2pµ´εLq
L2p1´ε2q

¯

. Then, the primal-dual
method in Eq. (11) generates a sequence of points tyk, λku,
such that in total expectation,

lim sup
kÑ8

Er}pk ´ p̄}s “
ησ

1´ %
,



with % :“
a

1´ 2ηµ` η2L2 ` ηεL ă 1. ˛

Proof: Consider the deterministic method,

y̌k`1 “ PY
“

y̌k ´ ηEzPDpy̌kq∇yφpy̌k, λ̌k, zq
‰

, (13a)

λ̌k`1 “ PM
“

λ̌k ` ηEzPDpy̌kq∇λφpy̌k, λ̌k, zq
‰

, (13b)

which is the deterministic version of (11), where we have
substituted the stochastic gradients with their expectation.
Under εL{µ ă 1, for [15, Prop. 2.12], the fixed point
of (13) is the unique equilibrium point pȳ, λ̄q. Compactly
write (13) as, p̌k`1 “ Gpp̌k; p̌kq, where we have indicated
as p̌ “ ry̌J, λ̌JsJ, and in the map Gpp̌k; p̌kq the second
argument represents the dependence of z on p̌k. In the same
way, we write (11) as, pk`1 “ G̃ppk; pkq. Then, for the
Triangle inequality,

}pk`1´p̄} “ }G̃ppk; pkq´Gpp̄; p̄q} ď }Gppk; p̄q´Gpp̄; p̄q}`
` }Gppk; pkq ´ Gppk; p̄q} ` }G̃ppk; pkq ´ Gppk; pkq}. (14)

For Assumption 1-(a) and (b), the gradient map ψ is µ-
monotone and L-Lipschitz in py, λq [15]. As such, we can
bound the first right-hand term as,

}Gppk; p̄q ´ Gpp̄; p̄q} ď
a

1´ 2ηµ` η2L2}pk ´ p̄}. (15)

For Assumption 1-(b-c) and [15, Lemma 2.9], the second
right-hand term becomes,

}Gppk; pkq ´ Gppk; p̄q} ď ηεL}pk ´ p̄}. (16)

Passing now in total expectation, and defining % “
a

1´ 2ηµ` η2L2 ` ηεL,

Er}pk`1´p̄}s ď %Er}pk´p̄}s`Er}G̃ppk; pkq´Gppk; pkq}s

ď
loomoon

(12)

%Er}pk ´ p̄}s ` ησ. (17)

Finally, by iterating (17), the result is proven.
Theorem 1 tells us that if the step size is chosen suf-

ficiently small, we can generate a sequence of points that
approximates the unique equilibrium up to an error ball. The
size of this ball depends on the variance of the stochastic
gradient, as in many stochastic settings.

IV. A HUMAN-ADAPTED ALGORITHM

Both solving the robust problem of Section (III-A) and
the stochastic decision-dependent variant with (11) have their
advantages and drawbacks. The robust program offers hard
guarantee on feasibility but may be conservative. The primal-
dual method can be closer to reality, however it achieves
feasibility only asymptotically and it requires humans to give
feedback at each iteration (since (11a) is achieved by asking
humans to select their zk), which can be unreasonable from
an user-oriented perspective (e.g., if you are asked to adjust
your thermostat multiple times).

A possible middle ground is to approximate the user’s
choice (11a) by a model, which we can run without asking
the users to give feedback. Here, a pertinent notion of
convergence will be provided in terms of the miss-match
between the chosen model and the real distribution.

We approximate users as intelligent agents who respond
to the requests by employing a best-response mechanism. In
particular, we consider distributions as,

zi
d
“ rΨipxi, βiq ` ξis

`1
´1 , ξi „ Di, (18)

where Di is a static distribution, d
“ indicates equality in

distribution, and r¨s`1
´1 indicates that the distribution is then

truncated to have a r´1, 1s support. The reasoning behind
(18) is that the users are selecting their best zi depending on
xi, βi, plus a static noise. The function Ψipxi, βiq : R2 Ñ

R can be thought of as a function that encodes a user’s
optimization problem parametrized by pxi, βiq. Models like
(18) have been studied in economics and in game theory [16],
[26] as well as in optimization [27] and control [12].

Let Dmspyq be the decision-dependent distribution induced
by considering model (18). We assume that we are able to
estimate the parameters of the approximate model (18) which
is misspecified up to an error B ą 0 as follows.

Assumption 2: Cf. [16], [26]. The distribution Dmspyq is
B-misspecified, in the sense that there exists a nonnegative
scalar B, such that

W1pDmspyq,Dpyqq ď B, @y P Y.
˛

Trivial bounds for B can be derived since z P r´1, 1sn

for both true and estimated distributions, but better bounds
can also be obtained with enough data on the users.

With this in place, we then use the misspecified model to
run a deterministic model-based primal-dual method as,

yk`1 “ PY

„

yk ´ η E
z„Dmspykq

∇yφpyk, λk, zq



, (19a)

λk`1 “ PM

„

λk ` η E
z„Dmspykq

∇λφpyk, λk, zq



. (19b)

The advantage of Eq.s (19) is that they can be run without
human intervention. For model (18), we need Assumption 1
to hold, which requires that the model is Lipschitz with
respect to y as,

W1pDpyq,Dpy1qq “ }Ψpyq ´ Ψpy1q} ď ε}y ´ y1}, @y P Y.
(20)

For iterations (19), we have the following result.
Theorem 2: Let p “ ryJ, λJsJ. Let Assumption 1 and the

misspecified setting of Assumption 2 hold. Assume εL
µ ă 1

and pick the step size η as η P
´

0, 2pµ´εLq
L2p1´ε2q

¯

. Then, the
model-based primal-dual method in Eq. (19) generates a
sequence of points tyk, λku, such that deterministically,

lim sup
kÑ8

}pk ´ p̄} “

?
2ηLB

1´ %
,

with % :“
a

1´ 2ηµ` η2L2 ` ηεL ă 1. ˛

Proof: It follows by adapting the proof of Theorem 1
and by using Kantorovich and Rubinstein duality for the W1

metric on the missmatch, and the Lipschitz assumption (Cf.
Assumption 1-(b)). It is reported in [22].

Theorem 2 says the iterations (19) converge up to an error
bound, whose size is determined by the misspecification.



A. Warm-start and guarding step
Considering (19), we can now describe a final human-

adapted algorithm. Consider the following workflow:

FleX-O: Flexible optimization algorithm

1) Solve the robust optimization problem (2) with the techniques
of Section III-A;

2) Use the solution from 1) to warm-start the iterations (19)
with an estimated model for T iterations;

3) (Optional: Guarding step) to make sure the solution is
feasible @z P r´1, 1sn, project the solution obtained from
2), say yT , onto the robust feasible set, i.e., solve

P3,d : y‹ P argmin
yPY

1

2

`

}x´ xT }
2
` ς}β ´ βT }

2
˘

, (21)

subject to hpApyqz ` bpyqq ď 0, @z P r´1, 1sn.

with ς ě 0 and the techniques of Section III-A;
4) Output: an optimal set rx‹i ´ β

‹
i , x

‹
i ` β

‹
i s for each user i.

The Flex-O algorithm operates as follows. First, it solves
the robust optimization problem to find a starting solution.
Second, it uses this solution as a warm start from the primal-
dual stochastic method (19). In T iterations, the stochastic
method delivers a solution yT , which comprises of the
collection of sets rxi,T´βi,T , xi,T`βi,T s to give to the users.
Not all the points in the set will be feasible, but according
to our probability model, the users will choose a solution
in the set whose probability to be unfeasible is ď δ. If we
want to be sure that we are feasible for any choice z, we
can always do an optional guarding step, projecting yT onto
the robust feasible set. In this step, we can choose ς ě 0 to
weigh more or less either x or flexibility β.

V. NUMERICAL RESULTS

Consider the setting of Example 1 with n “ 7 for the cost:

gpyq “
εx
2
}x}2 `

7
ÿ

i“1

wi

´

´βi `
εβ
2
β2
i

¯

, (22)

with εx “ 0.001, εβ “ 0.01, the weights wi randomly drawn
from the uniform distribution Up0.1, 1q. We recall that we
have set y :“ rxJ, βJsJ and we express the temperatures,
i.e., the units of y, in degrees Celsius. We also set xref
randomly from a normal distribution N p19.5, 1.q. We let
γ “ 2n. We consider a corridor with n “ 7 offices, and
therefore D is the matrix that represents the fact that two
adjacent offices cannot have a very different temperature. In
this case c “ 6, and we let e “ r1, . . . , 1sJ. For the primal-
dual methods we let the dual regularization be ν “ 0.01,
u “ 1.5, and δ “ 0.2. By trial-and-error, we fix the step size
at η “ 0.05 for all the methods.

In Table I, we report the optimal solution of the problem
obtained by the robust convex reformulation (7). We see that
the variations around the optimal “imposed” temperature are
zero for certain users. We then use this solution as a warm
start for the primal-dual methods. In Figure 2, we report the
evolution of the primal distance }yk ´ ȳ} for the baseline
primal-dual (11) [B-PD], for the misspecified-model-based
primal-dual (19) [MS-PD], and for Flex-O with a guarding
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Fig. 2. Optimality gap vs. iterations for the considered algorithms. For [B-
PD] we indicate mean and standard deviation over 50 realizations. Recall
that [B-PD] cannot be implemented in practice, since it would require the
users to select their best temperature at each iteration.

step (21) with ς “ 1, 400 at T “ 50, 500, 5000, [Flex-O].
In all the cases, a nearly optimal value ȳ is computed as
follows. First we model the true but unknown distribution
Dpyq as,

zi
d
“

»

–ξi `

$

&

%

βip19.0´ xiq if xi ď 19.0
´βipxi ´ 20.5q if xi ě 20.5
0 otherwise

fi

fl

`1

´1

, (23)

with ξi „ N p0, 0.1q. Then ȳ is computed by running the
model-based primal-dual (19) on the true distribution (23).
For the misspecified model, we instead take the deterministic,

zi “ maxt´1,mint1,´βipxi ´ 19.75quu, (24)

which induces the distribution Dmspyq.
Model (23) indicates the natural propensity to accept

the proposed optimal solution if it is within a suitable
temperature range, while reacting if it falls outside. The
strength of the reaction depends on the allowed variations.

In Figure 2, both [B-PD] and [MS-PD] reduce the optimal
gap with respect to the stochastic equilibrium point ȳ,
eventually reaching the error bound. For [B-PD] we have
averaged the solution over 50 realizations. We also see the
effect of the guarding step on [Flex-O], which makes the
solution less optimal w.r.t. ȳ, but feasible for all z’s. More
interestingly, if we observe the last iterate values in Table I,
we see how the proposed primal-dual algorithms offer more
flexibility (i.e., higher values of β). In the table xCVpzqy
indicate the average value over the last 100 iterations of the
constraint violation,

max
j
tEz„Dpyq rhjpApyqz ` bpyqqsu.

From the results, we can appreciate the importance of having
a good model for optimality. For [Flex-O], we see how
projecting onto the robust set trades-off flexibility with
robustness. We note that even a few steps „ 50 of the primal-
dual (for both ς) can unlock more flexible solutions.

In summary: the robust problem (7) ensures feasibility,
but it allows for flexibility to a limited number of users
(the others have β‹i “ 0). This may be considered not



TABLE I
SOLUTIONS OF DIFFERENT ALGORITHMS ON THE TEST PROBLEM.

Algorithm Found x, found β

Robust (7)
x‹ “ r19.4, 19.4, 18.8, 18.3, 18.3, 18.3, 18.3s

β‹ “ r1.0, 0.0, 0.5, 0.0, 1.0, 0.0, 1.0s

True Dpyq p.-d. (19)
x̄ “ r17.7, 17.7, 17.7, 17.7, 17.7, 17.7, 17.7s

β̄ “ r1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0s
xCVpzqy “ 0.023

[MS-PD] (19)
x “ r17.3, 17.3, 17.3, 17.3, 17.3, 17.3, 17.3s

β “ r1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0s
xCVpzqy “ ´0.450

[B-PD] (11)
x “ r18.0, 17.9, 17.9, 17.9, 17.9, 17.9, 17.9s

β “ r1.0, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9s
xCVpzqy “ ´0.018

[Flex-O], ς “ 1 at T “ 50
x “ r19.1, 19.1, 18.6, 18.3, 18.3, 18.4, 18.3s

β “ r0.7, 0.2, 0.3, 0.3, 0.6, 0.3, 0.5s

[Flex-O] at T “ 500
x “ r18.8, 18.5, 18.3, 18.1, 18.1, 18.4, 18.1s

β “ r0.3, 0.3, 0.3, 0.4, 0.5, 0.1, 0.5s

[Flex-O] at T “ 5000
x “ r18.5, 18.3, 17.9, 17.7, 17.7, 18.2, 17.8s

β “ r0.0, 0.0, 0.3, 0.4, 0.5, 0.0, 0.5s

[Flex-O], ς “ 400 at T “ 50
x “ r19.4, 19.3, 19.0, 18.7, 18.7, 18.7, 18.7s

β “ r0.5, 0.3, 0.3, 0.3, 0.6, 0.3, 0.6s

[Flex-O] at T “ 500
x “ r19.4, 19.3, 18.9, 18.7, 18.7, 18.7, 18.7s

β “ r0.5, 0.3, 0.3, 0.4, 0.5, 0.4, 0.5s

[Flex-O] at T “ 5000
x “ r19.4, 19.3, 18.9, 18.7, 18.7, 18.7, 18.7s

β “ r0.5, 0.3, 0.3, 0.4, 0.5, 0.4, 0.5s

acceptable. Then, [MS-PD] is doing better in allowing for
greater flexibility (all β’s are 1) but reducing the temperature
with respect to x‹. [Flex-O] with ς “ 1 or 400, with
T “ 50 seems to be the best compromise, allowing for shared
flexibility, guaranteed feasibility, and a reasonable x.

VI. CONCLUSIONS

We have formulated flexible optimization problems that
yield optimal decisions and per-user optimal variations
around them. This allows the user to be given sets of
possible decisions to take. The algorithms are based on robust
optimization and stochastic decision-dependent distribution
programs and they have been analyzed in theory and on
a simple numerical example. Future research will look at
possible links between this work and set-valued optimiza-
tion [28] as well as decision-dependent distributionally robust
optimization [29].
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