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Abstract— Model predictive control presents remarkable po-
tential for the optimal control of dynamic systems. However, the
necessity for an online solution to an optimal control problem
often renders it impractical for control systems with limited
computational capabilities. To address this issue, specialized
dimensionality reduction techniques designed for optimal con-
trol problems have been proposed. In this paper, we introduce
a methodology for designing a low-dimensional subspace that
provides an ideal representation for a predefined finite set of
high-dimensional optimizers. By characterizing the subspace
as an element of a specific Riemannian manifold, we leverage
the unique geometric structure of the subspace. Subsequently,
the optimal subspace is identified through optimization on
the Riemannian manifold. The dimensionality reduction for
the model predictive control scheme is achieved by confining
the search space to the optimized low-dimensional subspace,
enhancing both efficiency and applicability.

I. INTRODUCTION

At the core of a model predictive control scheme, a
constrained optimization problem must be solved online at
every sampling instance over a finite horizon [1], [2]. The
first element of the optimal sequence is applied to the plant,
and the procedure is repeated with a shifted horizon at
the subsequent time instance. However, the repeated online
solution of the optimal control problem might be challenging,
depending on the hardware that solves the problem, the size
of the plant under consideration, the prediction horizon of the
MPC scheme, and the sampling time of the control system. In
this paper, the key idea to alleviate the computational burden
is to reduce the dimension of the decision variables.

One approach to reduce the number of decision variables
in MPC is move blocking [3], [4]. Other methods to reduce
the dimension rely on either singular value decomposition
(SVD) [5], [6], [7] or Laguerre functions [8], [9], see
[10] for further details. Recently, an approach to ensure
stability and recursive feasibility for an MPC scheme with
a lower-dimensional input space U was presented [10].
Therein recursive feasibility is established by constructing
an admissible solution for the current time step from the
admissible (sub-)optimal solution from the last time step,
and handing the admissible guess to the solver as a “fall-
back” option. Considering the shifted sequence from the last
time step is also the classical procedure to establish recursive
feasibility in move blocking [3], [4]. At the very first time
step, however, the original (i.e., not reduced in dimension)
MPC scheme is solved in [10], which establishes initial
feasibility in their case. This requirement to solve the original
problem once is exactly what we seek to avoid.
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Our contribution improves on that by explicitly consider-
ing initial feasibility in the lower-dimensional input space
U. More precisely, given a data set C containing a finite
number of feasible states xr and the corresponding optimal
input sequences zr, we aim to construct – in a systematic way
– an U which admits at least one admissible input sequence
for all states xr. That is, we do not loose feasibility for the
states xr in C. On the other hand, we still want to be as close
to the optimal solution as possible.

The approach is related to [5], [11], with the key difference
that we translate the problem to the Grassmann manifold,
which is a specific Riemannian manifold. We obtain the
lower-dimensional input space U via an optimization on
the Grassmann manifold. This allows for a rather “natural”
problem formulation since the resulting algorithm exploits
the geometric structure of the problem [12], [13], [14].

Thus, this paper considers a similar problem as [10], but
takes a different approach in shifting the focus on feasibility
during the construction of U. The advantage is that the
reduced-order MPC scheme can then be used without ever
solving the original high-order problem online.

II. PRELIMINARIES

We use differential and Riemannian geometry. Thus we
require a series of mathematical objects which we briefly
outline. For further details see [15], [16].We consider Rie-
mannian manifolds

(
M, g

)
consisting of a differentiable

manifold M and a metric g. The tangent space to M
at a point p ∈ M is denoted by TpM. The tangent
bundle TM is the disjoint union of all tangent spaces,
i.e., TM =

⋃̇
p∈MTpM. The metric g defines at each

point p ∈ M an inner product on the tangent space via
⟨·, ·⟩p : TpM × TpM → R, (ξ, η) 7→ ⟨ξ, η⟩p := gp(ξ, η) ,
where gp denotes the evaluation of g at p. Let ϕ : M → R be
a real-valued function on M. The differential (or derivative)
of ϕ at p is a linear map dϕ(p) : TpM → R. Using the
metric g, we can assign to the differential dϕ(p) an unique
tangent vector gradϕ(p) ∈ TpM called Riemannian gradient
of ϕ at p ∈ M defined by ⟨gradϕ(p), ·⟩p = dϕ(p)[·].
A vector field assigns to each point p ∈ M an element of
the tangent space TpM. The set of all smooth vector fields
on M is denoted by X(M). The Riemannian connection
on M is a map ∇ : X(M) × X(M) → X(M), (η, ξ) 7→
∇η ξ measuring how a vector field ξ changes when moving
in the direction of another field η. Based on the con-
cept of connection, one can define the Riemannian Hes-
sian of ϕ at p ∈ M as Hessϕ(p) : TpM → TpM,
η 7→ Hessϕ(p)[η] :=∇η gradϕ(p). Furthermore, a concept
related to optimization on manifolds is that of retraction,
which is a map R : TM → M. Its restriction to TpM
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is denoted by Rp. If the manifold has the structure of a
vector space, the directional derivative of a function defined
on it can be given more directly. Specifically, we consider
the vector space Rd×p of all d × p matrices. This vector
space is called Euclidean if the metric defined on it admits
an inner product of the form ⟨·, ·⟩ : Rd×p × Rd×p → R,
(A,B) 7→ ⟨A,B⟩ := tr

(
A⊤B

)
. Here, tr(·) denotes the trace

of a matrix. Furthermore, let f : Rd×p → R be a function on
an Euclidean space, we define the Euclidean gradient compo-
nent wise by

(
gradeucl f

)
ij
:= ∂ijf , where ∂ijf : Rd×p → R

denotes the partial derivative of f with respect to the input
component (i, j). The gradient gradeucl f(p) ∈ Rd×p at a
point p ∈ Rd×p is again a d×p matrix. To denote positive real
numbers, we use R>0 :={x ∈ R | x > 0} and analogously
R≥0. The identity in Rd is denoted by Id and we use xj ∈ R
for the jth component of x ∈ Rd.

III. PROBLEM FORMULATION

For simplicity, we focus on linear systems with states x ∈
Rn and inputs u ∈ Rm, subject to state constraints X and
input constraints U. We define the MPC problem over a finite
horizon N ∈ N with a positive definite quadratic stage cost, a
positive semidefinite quadratic terminal cost, and a terminal
constraint set, for further details on MPC see [1].

The condensed MPC optimization problem is given by:

P(x) : minimize
z∈Rd

JN (x, z), subject to cN (x, z) ≤ 0. (1)

Here, z ∈ UN ⊆ Rd represents the input sequence of length
N and d :=Nm. The function cN : Rd × Rd → Rq collects
all constraints, i.e., all state and input constraints over the
horizon N . We call P(x) a multiparametric quadratic
program (mp-QP) with parameter x ∈ X (the initial state)
and decision variable z ∈ UN [17].

Succeeding, we use the following objects: The feasible
set XN , which is given by XN = {x ∈ Rn | ∃z ∈
Rd : cN (x, z) ≤ 0}. The set of admissible inputs of length N
for x0 ∈ XN defined by UN (x0) :={z ∈ Rd | cN (x0, z) ≤
0}. The optimal value function VN : XN → R, which maps
any x0 ∈ XN to the optimal value of (1), i.e., VN (x0) ≤
JN (x0, z) holds for all z ∈ UN (x0). The optimizer mapping
µN : XN → UN , which maps any x0 ∈ XN to the corre-
sponding optimizer of (1), i.e., VN (x0) = JN (x0, µN (x0)).

A classical approach to diminish the computational bur-
den in P(x) is to reduce the number of (scalar) decision
variables from d to p, with p≪ d, see, e.g., [10], [5], [3].

Our main idea is to restrict the search for the opti-
mizer µN (x) of P(x) to a p-dimensional subspace U. The
challenge is to design a subspace which leads to a good
approximation, while providing admissible input sequences
for a range of relevant initial states x0 ∈ XN .

Subspace approximation: For the subspace
approximation we introduce the Grassmann manifold
GR(p, d), which is defined as the set of all p-dimensional
linear subspaces of Rd [15], [18], [19], i.e.,

GR(p, d) :={U ⊂ Rd |U is a subspace, dim(U)=p}. (2)
In the following, we omit the term “linear” for readability.

TABLE I: Different perspectives of the Grassmann manifold.

Subspace
perspective

Projector perspective Orthonormal Basis
(ONB) perspective

U ∈ GR(p, d) P ∈ GR(p, d) [U ] ∈ GR(p, d)
subspace U ofRd U = range(P ) U ∼= P = π(U)

refers to the
subspace as a
subset of Rd

emphasize that any
point in Rd can be
projected onto the

subspace & to define a
function on GR(p, d)

emphasize that any
point in the subspace
has a representative

in Rp via a matrix in
[U ]

z ∈ U zp = Pz∈U, z∈Rd zp = Uv∈U, v∈Rp

defined in (2) defined in (3) defined in (4)

One can describe a subspace via the “projector
perspective” [19]. There, we identify a subspace U
with the unique orthogonal projector P onto U. Thus, with
slight abuse of notation, we identify
GR(p, d)={P ∈Rd×d |P⊤=P, P 2= P, rank(P )=p}. (3)

This way, we associate a subspace U with the range of
the orthogonal projector P . Any projector P ∈ GR(p, d)
can be identified with a set of orthogonal matrices whose
columns span the same subspace as P [19]. To this end,
we introduce the compact Stiefel manifold ST (p, d) :={U ∈
Rd×p | U⊤U = Ip}. The projection map π : ST (p, d) →
GR(p, d), U 7→ π(U) :=UU⊤ establishes a link between
the two spaces [19], i.e., π(U) is a projector.

Let the subspace U be associated with the projec-
tor P = π(U). Then U = span(U). The equivalence
class [U ] :=

{
Ũ ∈ ST (p, d) | Ũ = UR, R ∈ O(p)

}
for U ∈

ST (p, d) collects all elements of ST (p, d) whose columns
span the same subspace, i.e., span(U)=span(Ũ) holds for
all Ũ ∈ [U ].1Here, O(p) :={R ∈ Rp×p | R⊤R = Ip =
RR⊤} denotes the orthogonal group of dimension p.

This equivalence class, gives rise to yet another
identification of a subspace U, namely U ∼= [U ], where
U = span(U). Thus, for this identification, we may write
– with another slight abuse of notation – the Grassmann
manifold as the quotient space [19]

GR(p, d) = ST (p, d)/O(p). (4)
Table I provides an overview of the notations.

Reduced-Order MPC Problem: The previous section
outlined several ways to represent a subspace U ∈ GR(p, d).
For our purposes, the ONB perspective has numerical
advantages, as outlined next. Given the assumption that the
optimizers µN (x) of P(x) mainly evolve in a subspace
U ∼= [U ] ∈ GR(p, d), we introduce the approximation

z ≈ Uv, (5)
which can be handed to the condensed MPC problem P(x)
(1), turning it into a minimization with respect to v, thereby
reducing the dimension of the decision variable from d to p.

First observe that both admissibility and suboptimality of
the approximation solely depend on the subspace U ∼= [U ] ∈
GR(p, d), and not on the chosen Stiefel representative in (5).
We state this observation in Lemma 1.

Lemma 1. Consider U ∈ ST (p, d) and Ũ = UR ∈ [U ].
Assume that x ∈ XN , z = Uv ∈ UN (x) and let ṽ = R⊤v.
Then: (i) Ũ ṽ ∈ UN (x), and (ii) JN (x, Ũ ṽ) = JN (x, Uv).

1Since Ũ⊤Ũ=Ip for all Ũ ∈ [U ], such a basis of U is orthonormal [13]
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Proof. Note that z̃ := Ũ ṽ = ŨR⊤v = Uv = z. It follows
that z̃ ∈ UN (x) and JN (x, z̃) = JN (x, z).

What remains open is how exactly the subspace U ∼= P =
π(U) should be designed so that the suboptimality introduced
by the approximation in (5) is purposeful. In order to discuss
the approximation quality, we consider a given data set

C = {(xr, zr)}Lr=1 ⊂ XN × UN , (6)
where zr = µN (xr). Clearly, a good representation of all
optimal input sequences zr in U ∼= [U ] is desirable. On the
other hand, being close to all zr is futile if the respective
reduced-order admissible sets UN (xr) ∩ U are empty, i.e.,
if no admissible input sequence for xr is contained in U.
Accordingly, admissibility for C becomes our first priority.

Our idea is to ensure that the projection of zr onto U is
contained in UN (xr). To this end, we introduce the mapping

gr : GR(p, d) → Rq, P 7→ gr(P ) := cN (xr, P zr), (7)

such that gr(P ) ≤ 0 ⇔ Pzr ∈ UN (xr) holds. Furthermore,
Ap,d := {P ∈ GR(p, d) | ∀r ∈ IL : gr(P ) ≤ 0} ⊂ GR(p, d)
describes the set of projectors that render the projection of
all zr onto U ∼= P admissible, where IL :={1, . . . , L} for
1 ≤ L ∈ N. We can now state the following design problem:

Problem 1 (Subspace design). Consider the data set C in
(6). Design a subspace U ∼= P ∈ GR(p, d) such that

(i) The subspace U is admissible for C: P ∈ Ap,d.
(ii) The subspace U minimizes JN (xr, P zr)−VN (xr) for

all r ∈ IL. This we will call good performance.
Remark 1. Our main contribution is the inclusion of the
subspace admissibility (i) directly into the subspace design.
Since Pzr ∈ UN (xr) for all r ∈ Ir, i.e., (1) has a solution
for xr in U, stability and recursive feasibility of the reduced
MPC scheme are established by the arguments in [10],
without ever needing to explicitly solve the original problem
(1).

In order to solve Problem 1, we choose an optimization
based approach, to take care of condition (ii). To this end,
the following section discusses suitable objective functions.

Objective functions on the Grassmann manifold: Con-
sider a subspace U ∼= [U ], identified with the projector
P = π(U) ∈ GR(p, d), and the data set C in (6). In this
section, we introduce two objective functions, each tailored
to one of the conditions in Problem 1.

First, we consider the condition (i). As described in the
next section, the optimization on the Grassmann manifold
does not allow to explicitly impose constraints of the form
gr(P ) ≤ 0 on U ∼= P ∈ GR(p, d). Therefore, we include
the constraints in a penalty function ψ : GR(p, d) → R≥0

which takes values close to zero if gr(P ) ≤ 0 holds for
all r ∈ IL, and values much larger than one if gr(P ) > 0
holds for at least one r. A candidate is

ψ(P ) :=
1

Lq

L∑
r=1

q∑
i=1

exp
(
λirg

i
r(P )

)
, (8)

where the λir ∈ R>0 are weighting factors and
gir : GR(p, d) → R is the ith component function of gr.

The hope is that the minimization of ψ leads to a
local minimizer P0 ∈ Ap,d. Given this admissible sub-
space U0

∼= P0, we further aim at improving the per-
formance of the subspace, c.f. (ii) in Problem 1. To this
end, we set εr(P ) :=(JN (xr, P zr)− VN (xr)) · (VN (xr))

−1

for r ∈ IL. Then, we introduce ε : GR(p, d) →
R≥0, P 7→ ε(P ) := 1

L

∑L
r=1 εr(P ), as a performance mea-

sure on GR(p, d), i.e., the mean of the relative errors in the
cost function of (1) that are introduced by the projection onto
U ∼= P is minimized.

We want to ensure that P ∈ Ap,d holds while
minimizing ε. Thus, we introduce β : Ap,d → R, P 7→
β(P ) :=− 1

Lq

∑L
r=1

∑q
i=1 log

(
−gir(P )

)
as a barrier

function. Finally, to minimize the performance measure
while still guaranteeing admissibility, we set

ϕµ := ε+ µβ : Ap,d → R (9)

as the performance function, with a tunable parameter µ > 0.
Note that, since the domain of ϕµ is Ap,d, we need an
initial guess P0 ∈ Ap,d to start the minimization, c.f. the
discussion for the local minimizer of ψ. We present the
detailed algorithm to tackle Problem 1 in Section IV.

Minimizing an objective function ϕ : GR(p, d) → R – in
our case either ψ or ϕµ – requires special care. Conse-
quently, we discuss next how Problem 1 can be casted as an
optimization problem on the Grassmann manifold.

IV. OPTIMIZATION ON THE GRASSMANN MANIFOLD

We follow the ideas outlined in [12], which discusses
optimization algorithms on Riemannian manifolds. For con-
ciseness, we introduce and comment on the iterative trust-
region algorithm from [12] that we use.

Trust-region algorithm on a Riemannian manifold: Let
M be a Riemannian manifold and ϕ : M → R an objective
function. The considered algorithm produces a sequence of
iterates {pk ∈ M} that converges to a local minimizer of
ϕ. The idea is to consider for the current iterate pk ∈ M a
model mpk

of ϕ to locally approximate ϕ around pk. The
model should be (i) a “good” approximation of ϕ and (ii)
simpler to use in an optimization algorithm than ϕ [12].

First observe that – given a retraction R : TM → M
and an iterate pk ∈ M – we can always locally express the
minimization problem for ϕ on M as one on Tpk

M by
considering the pullback ϕ̂pk

:=ϕ◦Rpk
: Tpk

M → R. Thus,
instead of locally approximating ϕ around pk, we may also
consider a model m̂pk

: Tpk
M → R to locally approximate

ϕ̂pk
. Let us make that precise:

Definition 1 (Quadratic models on Riemannian manifolds).
Given ϕ : M → R and p ∈ M, a quadratic model is a map

m̂p : TpM → R, η 7→ m̂p(η), (10)

with m̂p(η) :=ϕ(p)+ ⟨gradϕ(p), η⟩p+ 1
2 ⟨Hessϕ(p)[η], η⟩p.

Remark 2. The map m̂p approximates the pullback map ϕ̂p
of ϕ in a neighborhood of the zero element of TpM. That
is, we propose m̂p(η) as an approximation for ϕ (Rp(η)).
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Algorithm 1 Trust-Region Algorithm on a Riemannian Mfd.

Input: Initial iterate p0 ∈ M, threshold ρ′ ∈ [0, 1/4).
1: Set k = 0
2: repeat
3: Calculate ηk ∈ Tpk

M by solving (11)
using the tCG strategy in [12, Algorithm 11]

4: Evaluate ρk using (12)
5: ∆k+1 = update radius(ηk, ρk) [12, Section 7.2.2]
6: if ρk > ρ′ then ▷ model was accurate enough
7: pk+1 = Rpk

(ηk)
8: else
9: pk+1 = pk

10: end if
11: k = k + 1
12: until convergence;

Definition 1 allows the introduction of

minimize
η∈Tpk

M
m̂pk

(η), subject to ⟨η, η⟩pk
≤ ∆2

k (11)

as the trust-region subproblem. Here, ∆k denotes the trust-
region radius of the current iteration.

Subproblem (11) is to be solved at every iteration k ∈
{0, 1, 2, . . . }. Note that the trust-region problem is solved
in the linear space Tpk

M, which can be turned into an
Euclidean space by virtue of the Riemannian metric ⟨·, ·⟩pk

on Tpk
M. Given the trust-region subproblem (11), which

uses the quadratic model (10), the general iterative procedure
to minimize ϕ is intuitive:

(i) Provide an initial guess p0 ∈ M.
(ii) At iteration k ∈ {0, 1, 2, . . . }, compute an update

vector ηk ∈ Tpk
M by (approximately) solving (11).

(iii) A candidate for the next iterate is pk+1 = Rpk
(ηk).

Remark 3. Note that, by virtue of the retraction, the algo-
rithm inherently ensures pk ∈ M for all k ∈ {0, 1, 2, . . . }.

As stated in step (ii), subproblem (11) has to be
solved in each iteration. For this purpose, we apply an
adapted truncated conjugate-gradient (tCG) strategy, cf. [12,
Algorithm 11]. Another important step of the trust-region
algorithm is to update the radius ∆k. To implement this
update, we use the quality factor

ρk :=
ϕ(pk)− ϕ (Rpk

(ηk))

m̂pk
(0pk

)− m̂pk
(ηk)

, (12)

where 0pk
is the zero element of Tpk

M. This factor assesses
how well the model approximates the function over the step
ηk [12]. Intuitively, ρk relates the actual cost improvement
to the predicted cost improvement, i.e., ρk = 1 implies a
perfect fit between objective function and model over the
step. Therefore, the step is accepted if ρk is larger than
a user-defined threshold ρ′, and rejected otherwise. Algo-
rithm 1 summarizes the trust-region optimization minimizing
an objective ϕ on a Riemannian manifold M.

It can be shown that Algorithm 1 converges to a stationary
point of ϕ – which is very likely a minimizer – under
mild assumptions [12]. In the next section, we discuss what

the optimization algorithm looks like specifically for the
Grassmann manifold M = GR(p, d).

Trust-region algorithm on the Grassmann Manifold:
This section introduces the necessary objects on the Grass-
mann manifold that are required for the implementation of
Algorithm 1, c.f. Table II. For this, we rely on the description
of [19]. To support our discussion presented in this section,
please refer to Fig. 1. It illustrates the two manifolds and
their tangent spaces, and connects the concepts in form
of a commutative diagram. The key idea is to express the
objective ϕ : GR(p, d) → R and its Riemannian gradient
and Hessian, as well as the retraction in terms of Stiefel
representatives. In other words, we calculate the iterations
P0, P1, . . . not by using the tangent spaces to the Grassmann
manifold, but by using the ones to the Stiefel manifold.

We start with a subspace U ∼= [U ] identified with the pro-
jector P = π(U) ∈ GR(p, d). The respective tangent spaces
are given by TPGR(p, d) = {ξ ∈ Rd×d | ξ⊤ = ξ, ξ =
Pξ + ξP}, TUST (p, d) = {D ∈ Rd×p | U⊤D = −D⊤U}.
The tangent space TUST (p, d) can be decomposed (with
respect to the projection map π and the Riemannian metric
⟨·, ·⟩U on ST (p, d))2 into a horizontal and a vertical com-
ponent, i.e., TUST (p, d) = VerUST (p, d)⊕HorUST (p, d),
where HorUST (p, d) = {D ∈ Rd×p | U⊤D = 0}. Any
tangent vector TPGR(p, d) can be uniquely identified with
an element of the horizontal space HorUST (p, d). This
allows to work on the level of Stiefel representatives when
considering tangent vectors in TPGR(p, d).

We introduce the concept of horizontal lifts formally:

Definition 2 (Horizontal lift [19]). Let P = π(U) ∈
GR(p, d) and ζ ∈ TPGR(p, d). We call the unique element
ζhorU = ζU ∈ HorUST (p, d) the horizontal lift of ζ to U .

Remark 4. Any W ∈ Rd×p can be projected onto an element
of the horizontal space HorUST (p, d) by virtue of

Π⊥
U:Rd×p→HorUST (p, d), W 7→

(
Id − UU⊤)W. (13)

We are now fully prepared to present all required ob-
jects, c.f. Table II. On Riemannian manifolds, there is a
specific candidate for a retraction RP , namely the expo-
nential map. On the Grassmann manifold, we can state
the exponential map in terms of the horizontal lifts. It
is given by ExpU : HorUST (p, d) → ST (p, d), ξhorU 7→
UV cos(Σ)V ⊤ + Q sin(Σ)V ⊤, where ξhorU = QΣV ⊤ is
a compact SVD decomposition and cos(·), sin(·) is eval-
uated element-wise on the main diagonal. Thus, for η ∈
TPGR(p, d), we use the exponential map as the retraction
on GR(p, d), i.e., RP (η) = π

(
ExpU

(
ηhorU

))
.

Besides, the Riemannian gradient of ϕ at P = π(U),
horizontally lifted to U , is given by the projection (13)
of the Euclidean gradient of the lifted objective function
ϕ̄ = ϕ ◦ π onto the horizontal space to the Stiefel manifold.
We obtain

(
gradϕ(P )

)hor
U

= Π⊥
U

(
gradeucl ϕ̄(U)

)
for the

horizontal lift of gradϕ(P ) to U . Furthermore, we introduce
h : Rd×p → Rd×p, W 7→ (Id −WW⊤) gradeucl ϕ̄(W ) as

2We skip the details for brevity, see [19, Section 2]
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R

ηhorU

Π⊥
U

η

[U ]

U

[V ]

V

ExpU

P

Q

π
π

RP

ST (p, d)

GR(p, d)

TPGR(p, d)

TUST (p, d)

HorUST (p, d)

ϕ

ϕ̄

horizontal lift

Fig. 1: Commutative diagram for the bundle of Grassmann and Stiefel manifold and their tangent spaces.

TABLE II: Overview of the objects on GR(p, d) used in Algorithm 1.

Name Object required by Algorithm 1 Calculation via
Retraction RP : TPGR(p, d) → GR(p, d) RP (η) :=π

(
ExpU

(
ηhorU

))
Riemannian gradient gradϕ : GR(p, d) → TPGR(p, d) (gradϕ(P ))horU :=Π⊥

U

(
gradeucl ϕ̄(U)

)
Riemannian Hessian Hessϕ(P ) : TPGR(p, d) → TPGR(p, d) (Hessϕ(P )[η])horU :=Hhor

U [ηhorU ]

Riemannian metric ⟨·, ·⟩P : TPGR(p, d)× TPGR(p, d) → R ⟨ξ, η⟩P := tr
((
ξhorU

)⊤
ηhorU

)
an extension to Rd×p of the horizontally lifted gradient.
This enables the introduction of
Hhor

U : HorUST (p, d) → HorUST (p, d),

ηhorU 7→ Hhor
U [ηhorU ] :=Π⊥

U

(
d

d t

∣∣∣∣
t=0

h
(
U + t ηhorU

))
,

where U + t ηhorU is to be understood as an operation on
the vector space Rd×p. This map is used to calculate the
horizontal lift (Hessϕ(P )[η])horU = Hhor

U [ηhorU ] of the tangent
vector Hessϕ(P )[η] to U , for η ∈ TPGR(p, d).

The Riemannian metric can also be expressed in terms of
the horizontal lifts

⟨ξ, η⟩P = tr
((
ξhorU

)⊤
ηhorU

)
. (14)

Since all required objects are expressed in terms of the hor-
izontal lifts, we must also state the quadratic model (10) on
this level. Thus, given an objective function ϕ : GR(p, d) →
R and P = π(U) ∈ GR(p, d), we state the quadratic
model m̂U : HorUST (p, d) → R on HorUST (p, d) as
m̂U

(
ηhorU

)
:= ϕ̄(U) + ⟨ξhorU , ηhorU ⟩U + 1

2 ⟨H
hor
U [ηhorU ], ηhorU ⟩U ,

with ϕ̄ = ϕ ◦ π, ξ = gradϕ(P ) ∈ TPGR(p, d) and where
⟨·, ·⟩U : HorUST (p, d) × HorUST (p, d) → R, (ξ, η) 7→
tr
(
ξ⊤η

)
derives from the Riemannian metric (14). Note

that with this model, we hand an U0 ∈ ST (p, d) as an
initial guess to Algorithm 1, and obtain an U⋆ ∈ ST (p, d)
as the optimizer, which represents the subspace U⋆ ∼=
[U⋆] ∈ GR(p, d). Next, we present a specific algorithm to
tackle Problem 1.

Algorithm to identify an admissible optimal subspace:
In order to calculate an admissible and optimal subspace
U⋆, we first minimize the penalty function ψ to establish an
initial subspace U0

∼= [U0] with π(U0) ∈ Ap,d.3 Afterwards,
we focus on ϕµ, aiming to improve the performance by
minimizing ϕµ. As usual in optimization with logarithmic
barrier functions, we solve this minimization problem
repeatedly with decreasing value µ (i.e., µ → 0). The
procedure is described in Algorithm 2, while the following
Corollary summarizes the achieved result.

3If that fails, a potential remedy is to adapt the weights λi
r (c.f. (8)) of

the constraints that were violated and call Algorithm 2 again.

Corollary 1. Assume that U⋆ ∼= [U⋆] ∈ GR(p, d) is
returned by Algorithm 2, i.e., it is able to find U0 ∈ Ap,d in
step 2. Then, U⋆ satisfies the conditions in Problem 1.

Proof. The statement follows from ψ and ϕµ definitions.

Remark 5. The states xr contained in C affect the conver-
gence of Algorithm 2. Additionally, the outcome of both
Algorithm 1 and Algorithm 2 depend on the initial values
p0 and Uinit, respectively. These choices are subject of future
work.

Algorithm 2 Admissible optimal subspace (AOS)

1: Set admisisble = false
2: Call Algorithm 1 for ψ with initial guess Uinit

and obtain U0
∼= [U0]

3: if π(U0) ∈ Ap,d then
4: Set admissible = true; k = 1; ε⋆ = ∞
5: repeat
6: Call Algorithm 1 for ϕµk

with initial guess Uk−1

and obtain Uk
∼= [Uk]

7: if ε (π(Uk)) < ε⋆ then ▷ at least true for k = 1
8: ε⋆ = ε (π(Uk)); U⋆ = Uk

9: end if
10: µk+1 = decrease(µk); k = k + 1
11: until convergence; ▷ No significant changes in ε⋆

over the last iterations
12: end if
13: if admissible then return U⋆ ∼= [U⋆]
14: elsereturn ERROR: Establishing admissibility failed!
15: end if

V. EXAMPLE

We consider the simplified model (ẋ1, ẋ2) =
(x2, sin(x1) + u) of an inverted pendulum, where x1

is the angular position, x2 the angular velocity and u the
applied torque. This model is linearized around the upright
position xs = (0, 0) and discretized with a sampling time
Ts = 0.1 s to obtain the linear, discrete-time model. The
states are constrained by X = {x ∈ R2 | |x1| ≤ 1, |x2| ≤ 2}
and the control input by U = {u ∈ R | |u| ≤ 1}.
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TABLE III: Results of Algorithm 2.

N ε(P ⋆) (ε(P0)− ε(P ⋆)) /ε(P0)
20 1.8% 86.75%
25 2.64% 87.49%
30 3.22% 83.03%
35 3.91% 77.63%
40 5.02% 73.01%

The MPC controller is designed with a stage cost
ℓ(x, u) = x⊤ diag(10, 1)x + 0.1u2. The terminal cost and
terminal set are based on an unconstrained LQR controller.
YALMIP and the MPT3 toolbox are used to set up (1).

The control task is to stabilize the pendulum in the upright
position after it has been disturbed from it by an external
force. We model that by considering initial values from the
set X0 :={x ∈ R2 | 0.3 ≤ x1,2 ≤ 0.4, }, which is close to the
boundary of X20. This underlines the necessity to guarantee
admissibility during the subspace design, since we do not
know the initial state exactly, but only its distribution. We
draw L = 100 uniformly distributed samples xr from X0,
and build the data set C for different prediction horizons
N by adding the corresponding optimal input sequences
µN (xr). The original dimension is d = N and we always
reduce to p = 2, i.e., we reduce by a factor of 10 for N = 20
and by a factor of 20 for N = 40. We call Algorithm 2
to obtain the optimized subspace P ⋆ ∼= U⋆. As the initial
guess, we select Upca stemming from a principal component
analysis, i.e., the subspace spanned by the p top left singular
vectors of the matrix containing µN (xr) as columns. P0

denotes the initially admissible subspace returned by the
penalty optimization, c.f. line 2 in Algorithm 2.

We report the results of Algorithm 2 in Table III. It can be
seen in the second column that the projection of the optimal
sequences onto U⋆ leads to small relative errors in the cost on
average. Also, as visible in the last column, the performance
optimization in Algorithm 2 in lines 3 – 11 is able to greatly
improve on P0. Additionally, we investigate how well
U⋆ and Upca generalize in X0, after being constructed by
only considering L = 100 states. To this end, we sample
states in a uniform grid from X0 and study the outcomes
for the considered prediction horizons in Fig. 2. We report
the admissibility ratio ad as the percentage of states over the
grid for which (1) can be solved in the respective subspace.
We characterize the level of suboptimality sl as the mean
of the relative error in the optimal value that we make when
solving (1) in the subspace. While Upca slightly outperforms
U⋆ in terms of suboptimality, U⋆ has the desired advantage
that it provides admissible input sequences for all states in
X0, while (1) can only be solved in Upca for 77% of the
states in X0 for N = 40.

VI. CONCLUSION

We introduce an approach on the Grassmann manifold
GR(p, d) to design a p-dimensional linear subspace U of
Rd. This subspace ensures that the projections of optimal
control sequences in a data set C onto U are admissible.
Additionally, the relative error in the cost function caused by
the projection is minimized for the considered data set. While
the presented results are only preliminary, we do believe that
they are promising. Next steps are the application of the
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Fig. 2: Results of the reduced MPC problem over X0.

approach to a higher-dimension to study its scalability and
computational complexity, the addition of formal guarantees
and a refinement of the data collection process. Future
work should discuss how the presented approach compares
to similar ideas as in [10], [5], [11].
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[11] G. Goebel and F. Allgöwer, “State dependent parametrizations for
nonlinear MPC,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 1005–
1010, 2014. 19th IFAC World Congress.

[12] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms
on Matrix Manifolds. Princeton, NJ: Princeton University Press, 2008.

[13] A. Edelman, T. A. Arias, and S. T. Smith, “The geometry of algorithms
with orthogonality constraints,” SIAM J. Matrix Anal.& Appl., vol. 20,
no. 2, pp. 303–353, 1998.

[14] N. Boumal, Optimization and estimation on manifolds. PhD thesis,
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