
A trust-region method for data-driven iterative learning control
of nonlinear systems

Jia Wang, Leander Hemelhof, Ivan Markovsky, and Panagiotis Patrinos

Abstract—This paper employs a derivative-free trust-region
method to solve the norm-optimal iterative learning control
problem for nonlinear systems with unknown dynamics. The
iteration process is composed by two kinds of trials: main and
additional trials. The tracking error is reduced in each main
trial, and the additional trials explore the nonlinear dynamics
around the main trial input. Then the trust-region subproblem
is constructed based on the additional trial data, and solved
to generate the next main trial input. The convergence of the
tracking error is proved under mild assumptions. Our method is
illustrated in simulations.

Index Terms—Data-driven control, iterative learning control,
nonlinear system control, derivative-free optimization

I. INTRODUCTION

Norm-optimal iterative learning control (ILC) is a prevalent
control method for repetitive tasks [1], [2], and has been
successfully applied in many industrial sectors, for example
free electron lasers [3], rehabilitation robotics [4] and batch
reactors [5]. Based on optimization theory, norm-optimal ILC
can learn from the previous trials, and update the input to steer
the output to be as close as possible to the reference. More
comprehensive review of norm-optimal ILC is in [6].

Access to an accurate model is crucial for norm-optimal ILC.
As it can be difficult to obtain inexpensive but accurate rep-
resentations of repetitive processes, data-driven norm-optimal
ILC methods have been proposed. In [7], in order to improve
the nominal model, the model parameters are estimated at
the beginning of each trial based on previous data. Then the
norm-optimal ILC method is used on the updated nominal
model. In [5], the nonlinear dynamics between two trials is
linearized by solving a least squares problem, which is used
in the norm-optimal ILC design. However, above mentioned
methods still require some prior knowledge of the actual system,
for example the initial nominal model [7] and the sign of the
partial derivative of unknown dynamics with respect to the
input [5]. With the rapid development of technology, industrial
processes become more and more complex. Consequently,
identifying models or obtaining prior knowledge becomes more

The research leading to these results has received funding from: Fond
for Scientific Research Vlaanderen (FWO) projects G033822N, G081222N,
G0A0920N. European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement No. 953348.

J. Wang, L. Hemelhof and P. Patrinos are with the Department of
Electrical Engineering (ESAT-STADIUS), KU Leuven, 3001 Leuven, Belgium.
I. Markovsky is with the International Centre for Numerical Methods in
Engineering (CIMNE), Gran Capità, 08034 Barcelona, Spain, and Catalan
Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys
23, 08010 Barcelona, Spain. I. Markovsky is an ICREA professor at the CIMNE,
Barcelona. (Email: jia.wang@esat.kuleuven.be; leander.hemelhof@kuleuven.be;
panos.patrinos@esat.kuleuven.be; imarkovsky@cimne.upc.edu).

challenging. Thanks to the development of digital technology,
a vast amount of process data can now be collected and stored.
Therefore, we attempt to design a control law directly from
this data to reduce the dependence of the identified model or
prior knowledge, which is the main motivation of this paper.

The computation and implementation of norm-optimal ILC
has been widely discussed. For example, algorithms such as
steepest descent and Newton-Raphson [8], and more recently
Quasi-Newton [9] and Nesterov acceleration [10] have been
suggested to solve the norm-optimal ILC problem. The above
mentioned methods require an identified or nominal model to
evaluate the objective gradient. If the norm-optimal ILC can be
implemented in a derivative-free manner, the model requirement
can be removed from the controller design. However, little
research has explored derivative-free implementations of norm-
optimal ILC. There has been growing interest in the derivative-
free optimization, which only requires objective values during
the solution process. In [11], SPSA was proposed. The gradient
is estimated based on the data and then the steepest descent
method is used. In [12], GLIS was presented. The minimum
of the objective is approximated by minimizing a sequence of
data-driven surrogate functions. Although the above mentioned
methods can be used to implement the norm-optimal ILC, there
are some limitations. SPSA may converge slowly due to a lack
of Hessian information, and GLIS may be time-consuming
due to complicated surrogate functions. Recently, a derivative-
free Gauss-Newton method was proposed in [13]. The local
nonlinearity is captured by the linear interpolation, based
on which a series of trust-region subproblems is constructed
and solved. Second-order information is captured due to the
estimated Jacobian of the tracking error, which can potentially
result in a better convergence performance. Inspired by [13],
we design a data-driven norm-optimal ILC method based on
derivative-free trust-region methods to reduce the dependence of
the model information. This constitutes our main contribution.

II. PROBLEM STATEMENT

Consider a nonlinear discrete-time system:{
xj(k + 1) = f(xj(k), uj(k))

yj(k) = h(xj(k)),
(1)

where k = 0, . . . , N − 1 is the time index with N a positive
integer (the length of one trial) and j is the trial index, and
xj(k) ∈ Rn, uj(k) ∈ Rm and yj(k) ∈ Rp are the state, input
and output. The mapping f : Rn×Rm → Rn and h : Rn → Rp
are assumed to be continuously differentiable but unknown.

IEEE Control Systems Letters paper presented at
2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Copyright ©2024 IEEE

Assumption 1. The initial value xj(0) is identical for each
trial, i.e., xj(0) = x0, ∀j ≥ 0.

Denoting Uj = (uj(0), . . . , uj(N − 1)) ∈ RmN and Yj =
(yj(1), . . . , yj(N)) ∈ RpN , one obtains the lifted model:

Yj = G(x0,Uj), (2)

by propagating (1) starting from x0, in which G : Rn×RmN →
RpN is an unknown nonlinear mapping. The reference trajectory
is given as R = (r(1), . . . , r(N)) ∈ RpN and the tracking error
is defined by Ej := E(Uj) = R−Yj = R−G(x0,Uj). If the
nonlinear mapping G and the initial condition x0 are known,
the optimal tracking problem can be solved as a nonlinear least
squares problem:

minimize
U

`(U) =
1

2

∥∥R−G(x0,U)
∥∥2 (3)

in which ‖ · ‖ denotes the Euclidean norm. The minimizer of
(3) is denoted as U∗, which is the optimal input trajectory.
However, G is usually unknown in practice, hence, the aim of
this work is to design a data-driven ILC algorithm that updates
Uj+1 by using Uj and its surrounding information:

Uj+1 = C(Uj
↓

main trial
input

,U
(1)
j , . . . ,U

(mN)
j︸ ︷︷ ︸

surrounding information:
additional trial input

, Ej
↓

main trial
error

,E
(1)
j , . . . ,E

(mN)
j︸ ︷︷ ︸

surrounding information:
additional trial error

),

where the nonlinear mapping C(·) is to be designed. Denote
the closed ball as B(z0, r) := {z ∈ RmN |‖z− z0‖ ≤ r}. The
additional trial input U(i)

j belongs to the closed ball B(Uj ,∆j),
which is centered around Uj with radius 0 < ∆j ≤ ∆max.
Applying U

(i)
j to (1), the additional trial tracking error is

obtained as E
(i)
j = E(U

(i)
j). The pairs (U

(i)
j ,E

(i)
j) constitute

the surrounding information of Uj . The generation of U(i)
j will

be discussed in the next section. The control goal is to drive
the main trial tracking error to 0 by using the ILC algorithm.

III. DATA-DRIVEN REPRESENTATION

A. Dynamical linearization
The dynamical relationship between two successive trials is

Ej+1 −Ej = −
(
G(x0,Uj+1)−G(x0,Uj)

)
. (4)

The dynamical relationship (4) can be formulated as

∆Ej = −∂G
∂U

(Ūj)∆Uj

by using the differential mean value theorem, in which ∆Ej =
Ej+1−Ej , ∆Uj = Uj+1−Uj , and Ūj is an unknown vector
belonging to the interval [Uj ,Uj+1]. The Jacobian matrix ∂G

∂U
has a block lower triangular structure due to the causality of
nonlinear system (1). Letting Φj = −∂G∂U (Ūj), we have

Ej+1 = Ej + Φj∆Uj .

Since the matrix Φj is unknown, we use the first-order Taylor
expansion to approximate Ej+1 at the current input Uj :

Ej+1 = E(Uj + ∆Uj) ≈ Ej + J(Uj)∆Uj ,

where J(Uj) = −∂G∂U (Uj). Then, we replace J(Uj) with its
estimate Jj ∈ RpN×mN as follows.

Ej+1 ≈ Ẽj(∆Uj) := Ej + Jj∆Uj . (5)

The construction of Jj from data is discussed in the next
subsection. Denoting L(U0) = {U ∈ RmN |`(U) ≤ `(U0)}
and B(U0) =

⋃
U∈L(U0) B(U,∆max) for a given initial input

U0, the following assumption is introduced.

Assumption 2. The nonlinear dynamics G(x0,U) is continu-
ously differentiable and the Jacobian matrix J(U) is Lipschitz
continuous with constant LJ for all U ∈ B(U0). The tracking
error E(U) and Jacobian matrix J(U) are uniformly bounded,
i.e., ‖E(U)‖ ≤ Emax and ‖J(U)‖ ≤ Jmax in B(U0).

Remark 1. According to Lemma 3.2 in [13], Assumption
2 implies that the objective gradient ∇`(U) is Lipschitz
continuous in B(U0) with constant LE := EmaxLJ + J2

max.

B. Linear interpolation

The surrounding information of Uj is denoted as the input
set Uj := {Uj ,U

(1)
j , . . . ,U

(mN)
j } and the tracking error set

Ej := {Ej ,E(1)
j , . . . ,E

(mN)
j }. Linear interpolation is used to

capture the dynamics behind Uj and Ej . The interpolation
conditions are E(U

(i)
j) = Ẽj(U

(i)
j −Uj), or equivalently:

Jj(U
(i)
j −Uj) = E

(i)
j −Ej , i = 1, . . . ,mN (6)

In this way, Jj can be obtained by solving a linear system:
(U

(1)
j −Uj)

T

...
(U

(mN)
j −Uj)

T

︸ ︷︷ ︸

Wj

JTj =

(E

(1)
j −Ej)

T

...
(E

(mN)
j −Ej)

T

 . (7)

If the square matrix Wj is invertible, Jj is determined uniquely,
which needs the vectors {U(1)

j −Uj , . . . ,U
(mN)
j −Uj} to be

linearly independent and such input set Uj is called “poised”
[13]. In order to build a poised input set, we select U(i)

j as

U
(i)
j = Uj + ξ(i)∆je

(i), i = 1, . . . ,mN (8)

where ξ(i) = 1 or −1 is chosen with equal probability, and
e(i) ∈ RmN is the unit vector which has 1 in the i-th element.
Eq. (8) guarantees that: (i) the additional trial input U

(i)
j

belongs to B(Uj ,∆j) since ‖U(i)
j −Uj‖ = ∆j , (ii) the matrix

Wj is invertible since U
(i)
j −Uj is a unit vector multiplied

by scalar ξ(i)∆j , which makes Wj a diagonal matrix with
non-zero diagonal elements, and (iii) the matrix Jj preserves
the block lower triangular structure since each element in
Uj is perturbed sequentially, which makes the matrix on
the right-hand side of (7) block upper triangular due to the
causality. According to Lemma 3.2 in [14], such invertibility
is equivalent to the existence of the Lagrange polynomials.
Since the Lagrange polynomials of the input set Uj play an
important role in the ILC performance analysis, we introduce
them as follows.

Definition 1. Let U(0)
j = Uj , consider the linear interpolation

of a nonlinear function, the Lagrange polynomials of input

set Uj = {U(0)
j ,U

(1)
j , . . . ,U

(mN)
j } with U

(i)
j ∈ RmN , are the

basis {l0(U), . . . , lmN (U)} defined by

lt(U
(i)
j) =

{
1, if i = t

0, if i 6= t.
, i, t = 0, . . . ,mN

Algorithms 6.1 and 6.2 in [14] provide a recursive way
to compute the Lagrange polynomials. On the other hand, a
poised set Uj has the Λ-poisedness property, see the following
definition, which is useful to bound ‖Ej+1 − Ẽj(∆Uj)‖.
Definition 2. Let Λ > 0. A poised input set Uj is Λ-poised in
B(Uj ,∆j) if the basis of Lagrange polynomials has

Λ ≥ max
t=0,...,mN

max
U∈B(Uj ,∆j)

|lt(U)|,

in the context of linear interpolation.

Since ∆j ≤ ∆max for j ≥ 0, there exists a constant Λ > 0
such that Λ ≥ max

j≥0
max

t=0,...,mN
max

U∈B(Uj ,∆j)
|lt(U)|. Therefore,

the input set Uj is Λ-poised for all trials. After obtaining the
matrix Jj from (7), we have the Gauss-Newton subproblem:

minimize
∆Uj

˜̀
j(∆Uj) =

1

2

∥∥Ej + Jj∆Uj

∥∥2
,

which is equivalent to

minimize
∆Uj

1

2

∥∥Ej∥∥2
+
(
JTj Ej

)T
∆Uj +

1

2
∆UT

j J
T
j Jj∆Uj . (9)

The problem (9) will be used to construct the trust-region
subproblem in the next section. In the following, we use
notations `(Uj) := 1

2‖Ej‖
2, ˜̀

j(∆Uj) := 1
2‖Ẽj(∆Uj)‖2,

gj := JTj Ej and Hj := JTj Jj . Note that gj is the estimated
gradient at Uj , i.e., gj ≈ ∇`(Uj) = J(Uj)

TEj .

Theorem 1. Under Assumption 2, suppose the input set Uj ⊂
B(Uj ,∆j) is Λ-poised, then we have∥∥Ej+1 − Ẽj(∆Uj)

∥∥ ≤ α1∆2
j (10a)∥∥Jj − J(Uj + ∆Uj)

∥∥ ≤ α2∆j , (10b)

for all ‖∆Uj‖ ≤ ∆j , in which α1 = LJ
2 +α2, α2 = LJmNΛ

2σ +
LJ and a constant σ > 0 is independent of Uj and Λ.

Proof. According to Assumption 2, one obtains∥∥Ej+1 −Ej − J(Uj)∆Uj

∥∥ ≤ 1

2
LJ
∥∥∆Uj

∥∥2
, (11a)∥∥∥E(i)

j −Ej − J(Uj)(U
(i)
j −Uj)

∥∥∥ ≤ 1

2
LJ

∥∥∥U(i)
j −Uj

∥∥∥2
≤

1

2
LJ∆2

j ,

(11b)

for i = 1, . . . ,mN . Substituting (6) to (11b) and multiplying
both sides by 1/∆j , one obtains∥∥∥∥(Jj − J(Uj)

) (U
(i)
j −Uj)

∆j

∥∥∥∥ ≤ 1

2
LJ∆j . (12)

Define the scaled data matrix as

Mj :=

(
U

(1)
j −Uj

∆j

U
(2)
j −Uj

∆j
. . .

U
(mN)
j −Uj

∆j

)
∈ RmN×mN ,

which implies that columns of Mj belong to B(0, 1). We have∥∥(Jj − J(Uj)
)
Mj

∥∥2 ≤
∥∥(Jj − J(Uj)

)
Mj

∥∥2

F

=

mN∑
i=1

∥∥∥∥(Jj − J(Uj)
) U

(i)
j −Ui

∆j

∥∥∥∥2

,
(13)

and then∥∥Jj − J(Uj)
∥∥ =

∥∥(Jj − J(Uj)
)
MjM

−1
j

∥∥ (14a)

≤
∥∥(Jj − J(Uj)

)
Mj

∥∥ ∥∥M−1
j

∥∥ (14b)

(13)

≤

√√√√mN∑
i=1

∥∥∥∥(Jj − J(Uj)
) U

(i)
j −Ui

∆j

∥∥∥∥2 ∥∥M−1
j

∥∥
(14c)

(12)

≤ 1

2
LJ
√
mN

∥∥M−1
j

∥∥∆j , (14d)

in which the invertibility of Mj follows from (8). The bound of
‖M−1

j ‖ is discussed as follows. Define a mapping φ : RmN →
RmN+1 as φ(U) := (1,U), which in fact is the natural basis
with polynomial degree 1, see formula (3.1) in [14]. Given an
input trajectory Ũ ∈ B(Uj ,∆j), according to Definition 3.6
in [14], the Λ-poisedness property of the input set Uj implies
the existence of a vector %̃ := (%̃0, . . . , %̃mN) ∈ RmN+1 with
‖%̃‖∞ ≤ Λ such that

∑mN
i=0 φ(U

(i)
j)%̃i = φ(Ũ), i.e.,(

1 1 · · · 1

Uj U
(1)
j · · · U

(mN)
j

)
%̃ =

(
1

Ũ

)
. (15)

On the other hand, Lemmas 3.8 and 3.9 in [14] show that the
scaling and shift of the input set Uj do not change the value of
%̃, hence, using 1/∆j and Uj for scaling and shift, the vector
%̃ in (15) also holds(

1 1 · · · 1
Uj−Uj

∆j

U
(1)
j −Uj

∆j
· · ·

U
(mN)
j −Uj

∆j

)
%̃ =

(
1

Ũ−Uj
∆j

)
,

which implies that there exists a vector % := (%̃1, . . . , %̃mN) ∈
RmN such that Mj% = U with ‖%‖∞ ≤ Λ for a given U =
Ũ−Uj

∆j
∈ B(0, 1), then we have ‖%‖∞ = ‖M−1

j U‖∞ ≤ Λ.
Define a function ψ(v) := max

U∈B(0,1)
|vTU| with v ∈ RmN and

a positive constant σ := min
‖v‖=1

ψ(v). Let ‖v̄‖ = 1, ṽ = βv̄ and

β > 0, we have ψ(ṽ) = ψ(βv̄) = βψ(v̄) = ‖ṽ‖ψ(v̄) ≥ ‖ṽ‖σ
for all ṽ ∈ RmN , which implies that there exists U ∈ B(0, 1)
such that |ṽTU| ≥ σ if ‖ṽ‖ = 1. Let ṽ be the normalized
eigenvector of M−1

j corresponding to the largest singular value,
Lemma 3.13 in [14] shows that ‖M−1

j U‖ ≥ |ṽTU|‖M−1
j ‖ ≥

σ‖M−1
j ‖, where the left item can be bounded by ‖M−1

j U‖ ≤√
mN‖M−1

j U‖∞. In this way, we have ‖M−1
j ‖ ≤

√
mNΛ/σ.

Combing with (14d), the estimate error of Jacobian is∥∥Jj − J(Uj)
∥∥ ≤ LJmNΛ

2σ
∆j , (16)

which leads to∥∥Jj − J(U)
∥∥ ≤ ∥∥Jj − J(Uj)

∥∥+
∥∥J(Uj)− J(U)

∥∥ (17a)

≤
(
LJmNΛ

2σ
+ LJ

)
∆j , (17b)

for all U ∈ B(Uj ,∆j). As for the tracking error, we have

‖Ej+1 − Ẽj(∆Uj)‖
(5)

≤ ‖Ej+1 −Ej − J(Uj)∆Uj‖+ ‖J(Uj)∆Uj − Jj∆Uj‖
(11a)

≤ 1

2
LJ‖∆Uj‖2 + ‖J(Uj)− Jj‖‖∆Uj‖

(17b)

≤ 1

2
LJ∆2

j +
(
LJmNΛ

2σ
+ LJ

)
∆2
j .

The proof is completed.

Let ∆Uj = 0 in (10b), Theorem 1 immediately leads to

‖∇`(Uj)− gj‖ ≤ ‖J(Uj)− Jj‖‖Ej‖ ≤ α2Emax∆j . (18)

Let α3 = α2Emax, the inequality (18) will be used to prove
the convergence of trust-region ILC in the next section.

IV. ILC DESIGN

In this work, the norm-optimal ILC updates the main trial
input trajectory by solving the trust-region subproblem:

minimize
∆Uj

1

2
∆UT

j Hj∆Uj + gTj ∆Uj s.t. ‖∆Uj‖ ≤ ∆j . (19)

Then apply Uj + ∆Uj to (1), if the resulting performance is
acceptable, the candidate input moves from Uj to Uj + ∆Uj ,
otherwise, keep the candidate input as Uj and reduce the radius
∆j . The tracking error reduction is measured by

rj =
`(Uj)− `(Uj + ∆Uj)

˜̀
j(0)− ˜̀

j(∆Uj)
. (20)

The following assumption is required for convergence, which
is usually satisfied by solving subproblem (19) properly [13].

Assumption 3. Let ∆Uj be the descent direction after solving
(19) at the j-th trial, then

˜̀
j(0)− ˜̀

j(∆Uj) ≥
c

2
‖gj‖min

{
∆j ,

‖gj‖
‖Hj‖

}
, c ∈ (0, 1].

The trust-region-based norm-optimal ILC (TRILC) is sum-
marized in Algorithm 1. Step 3 calculates the estimated gradient
gini
j and Hessian Hini

j from surrounding information. If ‖gini
j ‖

is smaller than a threshold εg, the criticality phase in steps
5−9 is invoked, which is explained as follows. If the estimated
gradient is close to 0, then the true gradient ∇`(Uj) could
potentially be small, which implies the main trial input Uj

may be close to a stationary point. Hence, the local exploration
should be restricted to a small area, in order to result in a more
accurate data-driven representation. After obtained gj and Hj ,
the subproblem (19) is solved to satisfy Assumption 3. Step
17 manages the trust-region radius and input for the next main
trial according to rj : If rj ≥ η2, the data-driven representation
describes the local nonlinearity well, so ∆Uj is a successful
input increment and it is safe to enlarge ∆j to γinc∆j . If
η1 ≤ rj < η2, the data-driven representation cannot capture
the local nonlinearity accurately, but the tracking error is still
reduced, so the input increment ∆Uj is acceptable, but ∆j is
reduced to γdec∆j . If rj < η1, the data-driven representation
is invalid, so the exploration for the next main trial is still
centered around Uj , but with a reduced radius γdec∆j .

Lemma 1. If ‖∇`(Uj)‖ 6= 0, steps 5− 9 in Algorithm 1 will
terminate in a finite number of loops.

Proof. Assume steps 5 − 9 is running infinitely, we have
(ωc)

d∆ini
j ≥ µ‖g[d]

j ‖ for all d ≥ 0. From (18), it holds that
‖∇`(Uj)− g

[d]
j ‖ ≤ α3(ωc)

d∆ini
j for all d ≥ 0, then we have

‖∇`(Uj)‖ ≤ ‖∇`(Uj)−g
[d]
j ‖+‖g[d]

j ‖ ≤ α3(ωc)
d∆ini

j +
1

µ
(ωc)

d∆ini
j ,

Algorithm 1 Trust-region-based norm-optimal ILC (TRILC)
Input: Initial input U0, initial trust-region radius ∆ini

0 > 0,
radius upper bound ∆max, radius scalings 0 < γdec < 1 <
γinc, gradient threshold εg, gradient scaling µ > 0, criti-
cality radius reduction ωc ∈ (0, 1), acceptance threshold
0 < η1 ≤ η2 < 1 and accuracy tolerance ε > 0.

Output: ILC input sequence {Uj}.
1: for j = 0, 1, 2, . . . do
2: Construct input set Uj in B(Uj ,∆

ini
j), apply inputs in

Uj to system (1) and construct tracking error set Ej .
3: Solve (7), and obtain gini

j and Hini
j .

4: if ‖gini
j ‖ ≤ εg then . criticality phase

5: for d = 0, 1, 2, . . . do
6: If (ωc)

d∆ini
j ≤ µ‖g[d]

j ‖, then stop and let Uj =

U [d]
j , gj = g

[d]
j , Hj = H

[d]
j and ∆j = (ωc)

d∆ini
j

(note that g[0]
j = gini

j and H
[0]
j = Hini

j).
7: Construct U [d+1]

j via (8) in B(Uj , (ωc)
d+1∆ini

j),
apply inputs in U [d+1]

j to (1) and construct E [d+1]
j .

8: Solve (7), obtain g
[d+1]
j and H

[d+1]
j .

9: end for
10: else
11: gj = gini

j , Hj = Hini
j and ∆j = ∆ini

j .
12: end if
13: Solve trust-region subproblem (19) and obtain ∆Uj .
14: Apply Uj + ∆Uj to (1) and obtain E(Uj + ∆Uj).
15: If `(Uj + ∆Uj) ≤ ε, then stop algorithm.
16: Calculate ratio rj by (20). . evaluation of ∆Uj

17: Update input and trust-region radius as

(Uj+1,∆
ini
j+1) =

(Uj + ∆Uj ,min{γinc∆j ,∆max}), if rj ≥ η2

. successful input increment ∆Uj

(Uj + ∆Uj , γdec∆j), if η1 ≤ rj < η2

. acceptable input increment ∆Uj

(Uj , γdec∆j), if rj < η1

. unacceptable input increment ∆Uj

18: end for

which implies that ‖∇`(Uj)‖ = 0 since ωc ∈ (0, 1) and d→
∞. A contradiction occurs with ‖∇`(Uj)‖ 6= 0. Therefore,
steps 5− 9 will terminate finitely.

Note that algorithms in [13] and [14] are designed for general
optimization problems, in contrast, Algorithm 1 is a tailored
method for data-driven ILC. There are two main differences
between them from the engineering point of view. (i) Geometry-
improving phase is removed from Algorithm 1, i.e., the value
of Λ (see Definition 2) is not suppressed to below a given value.
(ii) Safety phase is removed from Algorithm 1, i.e., the input
Uj + ∆Uj is used even if ‖∆Uj‖ is small. To see (i), steps 2
and 7 construct the input set by (8), without running Algorithm
6.3 in [14]. The rationale behind this modification is to reduce
the computation time in each main trial. If using Algorithm 6.3

to generate an input set that has a small Λ value, at least mN
subproblems have to be solved in steps 2 and 7, which can be
time-consuming for some applications. Hence, we replace this
sophisticatedly tuned Λ with an unknown but bounded one,
which simplifies the ILC algorithm without breaking the global
convergence. As for (ii), although the input Uj + ∆Uj may
not improve the performance sufficiently, the tracking error is
still possibly reduced, which can be meaningful in practice,
therefore, we keep the small increment ∆Uj . However, if
Uj + ∆Uj gives an unacceptable performance, it will be
discarded and the input will be reset to Uj , see step 17.

The main trial convergence of TRILC is presented next.

Theorem 2. Under Assumptions 1, 2 and 3, suppose the
sequence {Uj} is generated by Algorithm 1, then we have

lim
j→∞

‖∇`(Uj)‖ = 0. (21)

Proof. First, we show (21) holds in the case that the index set
R = {j|rj ≥ η2} is finite. Let i be any main trial index after
j̄ = max{j|j ∈ R}, and note that ∆i can only be reduced
if rj < η2, we have lim

i→∞
‖Uj̄ −Ui‖ = 0 and lim

i→∞
∆i = 0.

Consider the inequality:

‖∇`(Uj̄)‖ ≤ ‖∇`(Uj̄)−∇`(Ui)‖+ ‖∇`(Ui)− gi‖+ ‖gi‖
(18)

≤ LE‖Uj̄ −Ui‖+ α3∆i + ‖gi‖,

in which the first and second terms on the right-hand converge
to 0. If the third term ‖gi‖ does not converge to 0, according to
Lemma 10.7 in [14] and Assumption 3, there exists κ̄ > 0 such
that lim

i→∞
∆i ≥ κ̄, which yields a contradiction with lim

i→∞
∆i =

0. Thus, Eq. (21) holds in the case that R = {j|rj ≥ η2} is
finite. According to Theorem 1 and Assumption 2, the estimated
Jacobian matrix Jj can be bounded as

‖Jj‖ ≤ ‖Jj − J(Uj)‖+ ‖J(Uj)‖
(16)

≤ LJmNΛ

2σ
∆max + Jmax,

thus, we know that ‖Hj‖ is uniformly bounded for all main
trial j since Hj = JTj Jj , i.e., ∃LH > 0 such that ‖Hj‖ ≤ LH .
Then, combining the above results with Theorem 10.13 in [14],
Eq. (21) in the case that R = {j|rj ≥ η2} is infinite can be
proved, which leads to the result in Theorem 2.

Algorithm 2 provides a heuristic way to reduce additional
trials. The idea is to reuse the previous surrounding information
to describe the local nonlinear dynamics around Uj . With
slight abuse of notation, the element U(i)

j−1 in the data set Uj is
updated via (8) if U(i)

j−1 /∈ B(Uj ,∆j), see steps 1−5. In such
case, the previous additional trial input U(i)

j−1 is far away from
Uj and may not be able to capture the local nonlinearity. If all
previous additional inputs U

(i)
j−1 do not belong to B(Uj ,∆j),

mN additional trials are required (unsuccessful reduction). If
only partial elements are updated in steps 1−5, the invertibility
of Wj is checked. An invertible Wj implies that the set Uj is
poised, then no more additional trials are required (successful
reduction). Otherwise, step 11 constructs the column index set
Ij for linearly independent elements in Uj , step 12 updates the
input U(i)

j−1 via (8) for those indexes i /∈ Ij . Step 12 requires

Algorithm 2 Additional trial reduction for the j-th main trial

Input: Data sets Uj = {Uj ,U
(1)
j−1 . . . ,U

(mN)
j−1 } and Ej =

{Ej ,E(1)
j−1, . . . ,E

(mN)
j−1 }, and trust-region radius ∆j .

Output: Updated data sets Uj and Ej .
1: for i = 1, . . . ,mN do
2: if ‖U(i)

j−1 −Uj‖ > ∆j then . far away from Uj

3: Replace U
(i)
j−1 with U

(i)
j = Uj + ξ(i)∆je

(i) in Uj ,
apply U

(i)
j to (1), replace E

(i)
j−1 with E

(i)
j in Ej .

4: end if
5: end for
6: If all elements in Uj and Ej are updated, then stop

algorithm, return Uj and Ej . . unsuccessful
7: Calculate square matrix Wj in (7) based on Uj and Ej .
8: if square matrix Wj has full rank then . successful
9: Stop algorithm, return Uj and Ej .

10: else . possibly successful
11: Record linearly independent column indexes to set Ij .
12: For i = 1, . . . ,mN , if i /∈ Ij , then run step 3.
13: Return Uj and Ej .
14: end if

mN − |Ij | additional trials, if additional trials run by steps
1− 5 is less than |Ij |, then the trial reduction is successful.

Remark 2. Some additional trials are required to stimulate the
system, this is the cost to pay if no model information is used.
Potential application scenarios for TRILC are industrial plants
with complex nonlinearity or relatively fast trials, for example,
a high-DOF robotic arm in the manufacturing industry [15],
or a micro-batch reactor in chemical engineering [16].

V. SIMULATION

A. Linear time-invariant system
The LTI system in [5] is considered as follows.

xj(k + 1) =

(
0 1

−0.5 −0.5

)
xj(k) +

(
0

1

)
uj(k)

yj(k) =
(

1, 0
)
xj(k).

The reference is r(k) = 10−6(k − 1)3(4 − 0.03(k − 1)) and
N = 20. The initial states are x1,0 = 1 and x2,0 = 0. The
parameters in Algorithm 1 are selected as follows: ε = 0.01,
∆ini

0 = 2, ∆max = 10, η1 = 0.01, η2 = 0.9, γdec = 0.5,
γinc = 1.5, εg = 0.01, µ = 1 and ωc = 0.9.

10 20 30 40 50 60 70

0

5

10

15

20

25

(a)

10 20 30 40 50 60 70
10

-30

10
-20

10
-10

10
0

(b)
Fig. 1. Comparison between TRILC and DDOILC. (a) Tracking error in
linear scale. (b) Tracking error in logarithmic scale.

In Fig. 1, TRILC and data-driven optimal ILC (DDOILC)
in [5] are compared. The tracking errors of TRILC in main

and additional trials are denoted by black and red dots.
Note that the goal of the additional trials is to explore
the local behavior of the system. Only the main trials are
expected to improve the tracking error, which interprets the
worse transition performance compared to DDOILC. However,
DDOILC reduces the tracking error slowly after the 60-th trial.
In contrast, TRILC reduces the tracking error significantly at
the 64-th trial and then achieves the accuracy tolerance.

B. Continuous stirred tank reactor
In this part, TRILC is tested on nonlinear CSTR model:
x1,j(k + 1) = (1− Tsθs)x1,j(k) + TsD(1− x1,j(k))e

x2,j(k)

1+
x2,j(k)

κ

x2,j(k + 1) = (1− Tsθs)x2,j(k) + TsBD(1− x1,j(k))e

x2,j(k)

1+
x2,j(k)

κ

− Tsχx2,j(k) + Tsχuj(k − τd),

where Ts = 0.1, τd = 1, θs = 1, χ = 0.3, κ = 20, B = 1
and D = 0.072. The state x2,j is the system output, and the
goal is driving x2,j to a set-point by adjusting uj . The above
nonlinear model is obtained by using a sampling time of 0.1s
and Euler approximation, which is a widely used benchmark
for industrial control problems. For details see [17].

The set-point is r = 1.96, initial states are x1,0 = 0.57 and
x2,0 = 0.3, and N = 100. Note that the nonlinear model is
continuously differentiable, and the nonlinearity comes from
exponential terms. Therefore, it is easy to show that Assumption
2 is valid on CSTR model. Let ∆ini

0 = 10 and ∆max = 30.
Other parameters are the same as in the above subsection.

0 50 100 150 200 250 300 350 400 450

10
-2

10
0

10
2

Fig. 2. Reactor temperature tracking performance with different methods.

Seven methods are compared: TRILC (with/without trial
reduction), DDOILC, two points SPSA (SPSA2) [11], one
point SPSA (SPSA1) [18], GLIS [12] and BOBYQA [19], as
shown in Fig. 2. Since the information from only one and two
trials are used by DDOILC and SPSA2, the nonlinearity may
not be described accurately, hence, their convergence can be
slow. SPSA1 only uses one additional trial to estimate gradients,
which is less robust than SPSA2 in CSTR benchmark.

GLIS requires 2mN initial trials to start the optimization,
i.e., trials 1 to 200, in which initial inputs are selected randomly.
After initialization, GLIS shows a better performance compared
to additional trials of TRILC. However, GLIS reduces the
tracking error slowly and cannot outperform the main trials of
TRILC. At the 405-th trial, TRILC (without trial reduction)
stops with the tracking error 0.0038, but GLIS yields 0.356.

BOBYQA uses the quadratic interpolation to capture the
local nonlinearity. The tracking error is reduced significantly
after the 201-st trial. However, BOBYQA reduces the tracking
error slowly from trial 228 to 405. At the 405-th trial,
BOBYQA yields a tracking error 0.016, which is worse than
TRILC.

The original TRILC is also compared to TRILC with trial
reduction. The first batch (trial 1 to 101) of two methods is the
same, which leads to the same input for the 2-nd main trial.
Starting from the 102-nd trial, TRILC (without trial reduction)
runs 100 new additional trials, and then reduces the tracking
error at the 203-rd trial. In contrast, TRILC (with trial reduction)
reuses the data set of the first batch, only 5 additional trials
are required and the tracking error is reduced significantly at
the 108-th trial. TRILC (with trial reduction) saves 100 trials
in total and the effectiveness of Algorithm 2 is shown.

REFERENCES

[1] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control
using optimal feedback and feedforward actions,” International Journal
of Control, vol. 65, no. 2, pp. 277–293, 1996.

[2] ——, “Iterative learning control for discrete-time systems with ex-
ponential rate of convergence,” IEE Proceedings-Control Theory and
Applications, vol. 143, no. 2, p. 217–224, 1996.

[3] S. Kichhoff, C. Schmidt, G. Lichtenberg, and H. Werner, “An iterative
learning algorithm for control of an accelerator based free electron laser,”
in 47th IEEE Conference on Decision and Control, Cancun, Mexico,
2008, pp. 3032–3037.

[4] C. T. Freeman, “Upper limb electrical stimulation using input-output
linearization and iterative learning control,” IEEE Transactions on Control
Systems Technology, vol. 23, no. 4, p. 1546–1554, 2015.

[5] R. Chi, Z. Hou, B. Huang, and S. Jin, “A unified data-driven design
framework of optimality-based generalized iterative learning control,”
Computers & Chemical Engineering, vol. 77, pp. 10–23, 2015.

[6] E. Rogers, D. H. Owens, H. Werner, and et al., “Norm optimal iterative
learning control with application to problems in accelerator based free
electron lasers and rehabilitation robotics,” European Journal of Control,
vol. 5, p. 496–521, 2010.

[7] M. Volckaert, M. Diehl, and J. Swevers, “Generalization of norm optimal
ILC for nonlinear systems with constraints,” Mechanical Systems and
Signal Processing, vol. 39, pp. 280–296, 2013.

[8] M. Togai and O. Yamano, “Analysis and design of an optimal learning
control scheme for industrial robots: A discrete system approach,” in
24th IEEE Conference on Decision and Control, Fort Lauderdale, USA,
1985, pp. 1399–1404.

[9] H. Tao, W. Paszke, E. Rogers, and et al., “Modified Newton method
based iterative learning control design for discrete nonlinear systems
with constraints,” Systems & Control Letters, vol. 118, pp. 35–43, 2018.

[10] J. Wang, L. Hemelhof, I. Markovsky, and P. Patrinos, “Fast data-driven
iterative learning control for linear system with output disturbance,”
arXiv:2312.14326, 2023.

[11] J. Spall, “Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation,” IEEE Transactions on Automatic
Control, vol. 37, no. 3, pp. 332–341, 1992.

[12] A. Bemporad, “Global optimization via inverse distance weighting and
radial basis functions,” Computational Optimization and Applications,
vol. 77, p. 571–595, 2020.

[13] C. Cartis and L. Roberts, “A derivative-free Gauss–Newton method,”
Mathematical Programming Computation, vol. 11, p. 631–674, 2019.

[14] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-
free optimization. Philadelphia: MPS/SIAM, 2009.

[15] F. Rothling, R. Haschke, J. J. Steil, and H. Ritter, “Platform portable
anthropomorphic grasping with the bielefeld 20-DOF shadow and 9-DOF
TUM hand,” in 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, San Diego, CA, USA, 2007, pp. 2951–2956.

[16] M. Kashid, O. Detraz, M. S. Moya, and et al., “Micro-batch reactor for
catching intermediates and monitoring kinetics of rapid and exothermic
homogeneous reactions,” Chemical Engineering Journal, vol. 214, p.
149–156, 2013.

[17] F. Wu, “LMI-based robust model predictive control and its application
to an industrial CSTR problem,” Journal of Process Control, vol. 11,
no. 6, pp. 649–659, 2001.

[18] J. Spall, “A one-measurement form of simultaneous perturbation stochas-
tic approximation,” Automatica, vol. 33, no. 1, pp. 109–112, 1997.

[19] M. J. D. Powell, “The BOBYQA algorithm for bound constrained
optimization without derivatives,” Cambridge NA Report NA2009/06,
University of Cambridge, 2009.

