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Abstract— This letter addresses the problem of remote state
estimation subject to packet dropouts, focusing on the use of
an event-triggered sensor scheduler to conserve communica-
tion resources. However, packet dropouts introduce significant
challenges, as the remote estimator cannot distinguish between
packet loss caused by poor channel conditions and the event
trigger. To overcome this issue, we propose a novel formulation
that incorporates error-detecting codes. We prove that the
Gaussian property of the system state, commonly utilized in the
literature, does not hold in this scenario. Instead, the system
state follows an extended Gaussian mixture model (GMM).
We present an exact minimum mean-squared error (MMSE)
estimator and an approximate estimator, which significantly
reduces algorithm complexity without sacrificing performance.
Our simulation results show that the approximate estimator
achieves nearly the same performance as the exact estimator
while requiring much less computation time. Moreover, the
proposed event trigger outperforms existing schedulers in terms
of estimation accuracy.

I. INTRODUCTION

The rapid development of sensor networks has brought
both new opportunities and challenges to remote state estima-
tion. Although sensor networks offer numerous benefits, sen-
sor devices are often battery-powered, and communication
bandwidth is limited, particularly in large-scale applications.
As a result, there is a critical need to carefully schedule
data transmissions to conserve communication resources. For
instance, in artificial weir systems, sensors are deployed to
monitor the fill levels of water reservoirs. To extend sensors’
lifetime, scheduling the communication between sensors and
remote estimator is crucial [1].

In comparison to offline schedulers, which lack the
ability to adapt to real-time system dynamics, online event-
triggered schedulers have been shown to be more flexible
and efficient [2]. The triggering rules for such schedulers
may involve thresholds based on innovation [3] or error
covariance [4]. Wu et al. [5] proposed a deterministic event-
triggered scheduling mechanism that leverages the extra
information held by measurement transmission to improve
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scheduling efficiency. However, the estimator becomes chal-
lenging to design due to the destruction of the Gaussian
property. To address this issue, Han et al. [6] proposed a
stochastic event trigger that preserves the Gaussian property.

While the above traditional studies assume perfect com-
munication between sensors and remote estimators, wireless
communication suffers from packet dropouts. This makes
it essential to explore scheduling methods for sensor mea-
surements in packet-dropping networks. Unfortunately, it
has been claimed by Kung et al. [7] that there does not
exist any event-triggered scheduler that can preserve the
Gaussian property in the presence of packet dropouts. As
a result, the update rule becomes non-recursive, nonlinear,
and highly complex. To tackle it, Xu et al. [8] derived the
exact MMSE estimator, but the computation time required is
exponential. They also proposed two approximate estimators
to simplify the calculation. Huang et al. [9] explored the
event-triggered scheduling problem in cognitive radio sensor
networks, where the uncertainty from the event trigger and
communication channels are decoupled. In this letter, we
focus on the event-triggered sensor scheduling problem with
error-detecting codes to detect packet dropouts. Due to
the stochastic property of packet-dropping networks, it is
impossible to decouple the event trigger and the packet loss
entirely [9]. Therefore, the estimation process considered in
this letter is much more complicated. On the other hand,
since the error-detecting code is widely used in communica-
tions nowadays, proper use of it in our event-triggered sensor
scheduling problem can significantly simplify the calculation
and improve the estimation performance compared to that by
Xu et al. [8].

The main contributions of this letter are listed as follows:

1) To cope with packet dropouts in the event-triggered
sensor scheduling problem, we propose a novel for-
mulation that incorporates error-detecting codes into
transmitted packets. This approach is unique and, to
the best of our knowledge, has not been explored
previously. Notably, our developed results reduce to
that of Han et al. [6] by assuming that no error will
be detected.

2) We derive both the exact MMSE estimator and an
approximate estimator to reduce the computational
complexity. Our method aims to preserve the Gaussian
property as much as possible, which significantly out-
performs the existing trigger scheme by Wu et al. [5].

The remainder of this letter is organized as follows. We
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Fig. 1. System diagram.

introduce the system model in Section II. We present the
exact MMSE estimator and an approximate one in Section III
and Section IV, respectively. We conduct simulations to
evaluate the effectiveness of the event-triggered scheduler in
Section V and end the letter with a conclusion in Section VI.

Notations: The notation R and Rn denote the set of real
numbers and n dimensional column vectors, respectively.
For a matrix X , XT and det(X) represent its transpose
and determinant, respectively. When a matrix X is positive
semidefinite (resp. definite), we write X ≥ 0 (resp. X > 0).
We use P(·) and E(·) to denote the probability of an event
and the expectation of a random variable (r.v.). The notation
f(·) denotes a general probability density function (PDF)
of an r.v. and N (µ,Σ) denotes the PDF of a Gaussian
distribution with mean µ and covariance Σ. The expression
I denotes the identity matrix with compatible dimensions.

II. PROBLEM FORMULATION

A. System Model

Consider a discrete-time linear time-invariant (LTI) sys-
tem (Fig. 1) that can be described by

xk+1 = Axk + wk, yk = Cxk + vk,

where xk ∈ Rn is the system state, yk ∈ Rm is the sensor
measurement, and wk ∈ Rn and vk ∈ Rm are independent
and identically distributed (i.i.d.) white Gaussian noises with
covariance matrices Q ≥ 0 and R > 0, respectively. The
initial state x0 is Gaussian with mean zero and covariance
Σ0 ≥ 0, and is uncorrelated with wk and vk for all k. We
assume that (A,

√
Q) is stabilizable and (A,C) is detectable.

Remark 1: The i.i.d. assumption of noises is used to
enable recursive updates in the standard Kalman filter, and
the stability/detectability assumption is used to guarantee
the filter’s convergence without event triggers and packet
dropouts [10]. Both are standard assumptions in the liter-
ature.

Motivated by the fact that some measurements benefit
the state estimation more while others may not, we equip
the sensor with an event-triggered scheduler. Let ζk ∈ {0, 1}
denote the decision variable of the scheduler such that ζk = 1
if the measurement is transmitted and ζk = 0 otherwise. We
consider the triggering rule by Han et al. [6], i.e.,

ζk =

{
0, λk ≤ exp(− 1

2y
T
k Y yk),

1, otherwise,
(1)

where λk is a randomly generated variable uniformly dis-
tributed over [0, 1], and Y > 0 is the triggering parameter.
The essence of the designed trigger is that the scheduler will

Xu et al. OursHuang et al.

Fig. 2. Comparison with existing literature Xu et al. [8] and Huang et
al. [9], where the problem formulation considered herein differs in the
information set Ik .

choose not to transmit the measurement with the following
probability:

P(ζk = 0|yk) = exp(−1

2
yTk Y yk). (2)

Remark 2: The triggering parameter Y is selected to
achieve a trade-off between the triggering rate and the esti-
mation accuracy, i.e., the larger Y , the higher the triggering
rate and thus, the better estimation performance.

Remark 3: When A is unstable, ζk = 1 occurs almost
surely after a long time. To avoid trivial problems, we assume
A is stable in this letter. However, closed-loop schedulers [6]1

can serve a viable alternative method for unstable systems.
When ζk = 1, the measurement packet is transmitted to

the remote estimator over unreliable wireless communication
channels. Nevertheless, such a problem is difficult to tackle,
because the estimator cannot distinguish whether the packet
loss is from the trigger or the channel. To enable the
estimator to make such a distinction, we equip it with an error
detector. The to-be-transmitted measurement, if any, is added
with error-detecting codes2 on the sensor side, with which
the remote estimator can detect whether an error appears
during the transmission. Let γk ∈ {0, 1} be the binary
variable such that γk = 1 if no error is detected and the
received measurement yk is used to improve the estimate
of the system state whereas γk = 0 if an error is detected
and the measurement is dropped by the remote estimator. We
assume γk is an i.i.d. r.v.. Moreover, for notation consistency,
we assume γk = 0 when ζk = 0. With the error-detecting
codes, the information set available to the estimator at time
k is Ik = {γiζiyi}k0 ∪ {γiζi}k0 ∪ {ζi}k0 , where I−1 = ∅.
Based on the collected information, the estimator estimates
the system state via

x̂−k , E[xk|Ik−1], e−k , xk − x̂
−
k , P−k , E[e−k e

−T
k ],

x̂k , E[xk|Ik], ek , xk − x̂k, Pk , E[eke
T
k ],

where x̂−k (resp. x̂k) is the priori (resp. posteriori) MMSE
estimate of xk, and e−k (resp. ek) and P−k (resp. Pk) is the
associated estimation error and error covariance, respectively.

It is worth noticing that our problem formulation differs
from the works by Xu et al. [8] and Huang et al. [9] in the
information set Ik on the estimator side (Fig. 2).

1The developed results in this letter can be directly extended to the closed-
loop case by replacing the measurement yk with the innovation zk .

2Examples of error detection codes include parity check, checksum, and
cyclic redundancy check, to name just a few.
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B. Problem of Interest

As mentioned [7], deriving the MMSE estimate with
an event-triggered scheduler subject to packet dropouts is
challenging. In this letter, for the system in Fig. 1 with the
event-triggered scheduler (1), we aim to compute the exact
MMSE estimate x̂k and the associated error covariance Pk.
As the exact estimator is highly complicated and difficult to
implement in practice, we also discuss how to simplify the
calculation by approximations.

III. EXACT MMSE ESTIMATOR

Before providing the exact MMSE estimator under the
sensor scheduler (1), we first define a variable, i.e., Nk ,
2
∑k
τ=1 ζτ⊕γτ and an extended mixture model, where ζk ⊕

γk = 0 if ζk = γk and ζk ⊕ γk = 1 otherwise.
Definition 1: (Finite mixture models with negative com-

ponents [11]) A finite mixture model is said to be with
negative components if negative coefficients of components
are allowed, i.e.,

f(x|θ) =

N∑
i=1

αif(x|θi),
N∑
i=1

αi = 1,

where N is the number of components, αi ∈ R is the coef-
ficient of i-th component and θ is the distribution parameter.

Remark 4: A finite Gaussian mixture with negative com-
ponents is an extension of GMM. It has been shown that the
negative pattern can be regarded as a part of the positive
pattern. Nevertheless, by using negative components, we
speed up the computation.

We now present the exact distribution of xk conditioned
on Ik−1 and Ik, respectively.

Lemma 1: Consider the remote estimation in Fig. 1 with
the event-triggered scheduler (1). The state xk conditioned
on Ik−1 and Ik are an Nk−1-component and Nk-component
Gaussian mixture with negative coefficients, respectively, i.e.,

f(xk|Ik−1) =

Nk−1∑
i=1

α−k,iNxk(µ−k,i,Σ
−
k,i),

f(xk|Ik) =

Nk∑
i=1

αk,iNxk(µk,i,Σk,i),

where α−k,i, µ
−
k,i, Σ−k,i and αk,i, µk,i, Σk,i satisfy the follow-

ing update rule.
Time Update:

α−k+1,i = αk,i, , (3)

µ−k+1,i = Aµk,i, (4)

Σ−k,i = AΣk,iA
T +Q. (5)

Measurement Update:
1) when ζk = γk,

αk,i =
βγkζkk,i∑Nk
i=1 β

γkζk
k,i

, (6)

µk,i = (I −Kk,iC)µ−k,i + γkKk,iyk, (7)

Σk,i = Σ−k,i −Kk,iCΣ−k,i, (8)

2) when ζk = 1 and γk = 0, for 0 < i ≤ Nk−1,

αk,i =
α−k,i

1−
∑Nk−1

i=1 β0
k,i

, (9)

µk,i = µ−k,i, (10)

Σk,i = Σ−k,i, (11)

otherwise, for Nk−1 < i ≤ Nk,

αk,i = −
β0
k,i

1−
∑Nk−1

i=1 β0
k,i

, (12)

µk,i = µ−k,i −Kk,iCµ
−
k,i, (13)

Σk,i = Σ−k,i −Kk,iCΣ−k,i, (14)

where

Kk,i = Σ−k,iC
T [CΣ−k,iC

T +R+ (1− γkζk)Y −1]−1,

β0
k,i =

α−k,i exp(− ck,i2 )√
det[I + Y (CΣ−k,iC

T +R)]
,

β1
k,i = α−k,iNyk(Cµ−k,i, CΣ−k,iC

T +R),

ck,i = (µ−k,i)
TCT (CΣ−k,iC

T +R+ Y −1)−1Cµ−k,i.

The initial condition is

x̂−0 = 0, P−0 = Σ0, α−0 = 1. (15)
Proof: See the Appendix.

Theorem 1: For the remote estimation in Fig. 1 with the
event-triggered scheduler (1), x̂−k , x̂k and P−k , Pk satisfy the
following update rule:

x̂−k =

Nk−1∑
i=1

α−k,iµ
−
k,i, x̂k =

Nk∑
i=1

αk,iµk,i,

P−k =

Nk−1∑
i=1

α−k,i

[
Σ−k,i + (x̂k − µ−k,i)(x̂k − µ

−
k,i)

T
]
,

Pk =

Nk∑
i=1

αk,i
[
Σk,i + (x̂k − µk,i)(x̂k − µk,i)T

]
.

Proof: The update rule follows immediately from
Lemma 1 and the calculation of the Gaussian sum filter [10],
and thus is omitted here.

Let T be the simulation length. Define the triggering rate:

r , lim sup
T→∞

1

T

T−1∑
k=0

E[ζk].

Discussion 1: Similar to [6, Theorem 3], we can obtain
r = 1− det(I + ΠY )−

1
2 , where Σ = AΣAT +Q and Π =

CΣCT+R. Therefore, by minimizing limk→∞ E[Pk] subject
to a triggering rate constraint, or vice versa, we can balance
the trade-off between the triggering rate and the estimation
performance.
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IV. APPROXIMATE MMSE ESTIMATOR

Theorem 1 provides an exact MMSE estimator for the
studied problem. However, the computation is non-recursive,
nonlinear and suffers from the curse of dimensionality. Han-
dling such an estimator involves formidable exponentially
time and space complexity, which motivates our design of
approximate MMSE estimators.

In this section, we first state how the Gaussian property
will corrupt during the estimation process, and then provide a
recursive approximate estimator with minor approximations.

Lemma 2: For the remote estimation problem in Fig. 1
with the event-triggered scheduler (1), if f(xk|Ik−1) is
Gaussian distributed, i.e., f(xk|Ik−1) = Nxk(x̂−k , P

−
k ), then

f(xk|Ik) and f(xk+1|Ik) are still Gaussians when ζk = γk
and become GMMs with two components otherwise.

Proof: The proof is similar to that of Lemma 1 and
thus is omitted here.

Since the Gaussian property only corrupts when ζk =
1 and γk = 0, a considerate approximation is to assume
f(xk|Ik−1) is Gaussian at each time k, i.e.,

f(xk|Ik−1) ≈ Nxk(x̂−k , P
−
k ). (16)

This is a widely used approach in nonlinear filtering and the
same approximation is also adopted by Wu et al. [5], Qian
et al. [12] and Ribeiro et al. [13].

Remark 5: Even though it is impossible for an event-
triggered scheduler to preserve the Gaussian property in
the presence of packet dropouts, Lemma 2 shows that the
Gaussian property is destroyed only in the case where ζk = 1
and γk = 0. It means that the approximation is more accurate
compared with the existing trigger [5] that cannot preserve
Gaussian even in other cases.

Attributed to the approximation (16), we now obtain
a simple linear recursive update of the estimate and error
covariance, which significantly simplifies the calculation.

Theorem 2: Consider the remote estimation in Fig. 1
with the triggering mechanism (1). Under approxima-
tion (16), the estimator takes the following recursive form:
Time Update:

x̂−k+1 = Ax̂k,

P−k+1 = APkA
T +Q,

Measurement Update:
1) for ζk = γk,

x̂k = (I −KkC)x̂−k + γkKkyk,

Pk = P−k −KkCP
−
k ,

2) for ζk = 1 and γk = 0,

x̂k = x̂−k − (1− %k)KkCx̂
−
k ,

Pk = P−k − (1− %k)KkCP
−
k

+ %k(1− %k)KkCx̂
−
k (x̂−k )TCTKT

k ,

where

Kk = P−k C
T [CP−k C

T +R+ (1− γkζk)Y −1]−1,

%k =

1−
exp(− ck2 )√

det[I + Y (CP−k C
T +R)]


−1

,

ck = (x̂−k )TCT (CP−k C
T +R+ Y −1)−1Cx̂−k .

Proof: By Lemma 1 and moment matching [14], the
proof is straightforward thus omitted here.

Unlike Theorem 1 that requires exponentially increasing
complexity, the approximate estimator provided in Theo-
rem 2 has a simpler recursive form and can be easily
implemented in practice.

V. SIMULATION

In this section, we demonstrate the effectiveness of the
event trigger and the approximation algorithm via simula-
tions. We use the following setup throughout this section:

1) The sequence {γk}k0 is assumed to follow an i.i.d.
Bernoulli distribution with P(γk = 1) = γ ∈ (0, 1).

2) The empirical mean error is defined as

E , 1

T

T−1∑
k=0

(xk − x̂k)T (xk − x̂k).

A. Approximation Assessment

Fig. 3 presents a performance comparison between the
exact MMSE estimator and the approximate one on the
following system:

A =

[
0.8 1
0 0.95

]
, C =

[
0.5 0.3
0 1.4

]
, Q = R = Σ0 = I.

Notably, the approximate estimator achieves nearly the same
empirical error as the exact one while requiring significantly
less computation time. This finding suggests that the ap-
proximation approach in Section IV is small and effective
in practical applications.

0.4 0.6 0.8
0

5

10

15

20

Approximate Estimator

20 22 24 26 28
0

50

100

150

200

250

300

Exact Estimator

0.505 0.51 0.515

10.7

10.8

10.9

Fig. 3. The empirical mean error and the execution time of the exact
estimator and the approximate estimator.

B. Policy Assessment

Since other existing event triggers [4], [5] cannot be
directly applied to packet-dropping networks, in this part,
we compare the designed event-triggered scheduler with the
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one by Xu et al. [8]. Fig. 4 demonstrates the comparison on
an artificial weir system [1]:

A =

 0.9 0 0
0.43 0.8 0
0.15 0.35 0.7

 , C =

[
1 0 0
0 0 1

]
,

Q = R = Σ0 = 5I.

It should be noted that our proposed scheduler outperforms
the scheduler by Xu et al. [8]. Particularly, the improvement
is significant for lower values of γ. This can be attributed to
our scheduler’s better estimates when ζk = 0 and γk = 0.

0.65 0.7 0.75 0.8 0.85 0.9 0.95
140

145

150

155

160

Fig. 4. The empirical mean error E versus the triggering rate r, where the
different triggering rates are obtained by adjusting the value of Y .

VI. CONCLUSION

In this letter, we considered an event-based sensor sched-
uler for remote state estimation problems with error-detecting
codes. We derived the exact MMSE estimator with expo-
nential complexity and provided an approximate estimator
to reduce the computational burden. Simulations showed
that the approximate estimator can achieve nearly the same
empirical error while requiring much lower computation
time. Additionally, the designed event trigger significantly
outperforms existing schedulers in terms of estimation ac-
curacy. Future work includes event-triggered schedulers in
other channel models, i.e., packet-delaying or fading models.

APPENDIX

Proof of Lemma 1: We prove the lemma by induction.
Since I−1 = ∅, x0 is Gaussian thus GMM and (15) holds.
For measurement update, we assume that f(xk|Ik−1) is
GMM with Nk−1 components. Since all noises are i.i.d. and
yk = Cxk + vk, f(xk, yk|Ik−1) is GMM as well, i.e.,

f(xk, yk|Ik−1) =

Nk−1∑
i=1

α−k,iNxk,yk(ηk,i,Φk,i),

where ηk,i and Φk,i is the mean the covariance of the
Gaussian component that is partitioned as

ηk,i =

[
ηxk,i
ηyk,i

]
=

[
µ−k,i
Cµ−k,i

]
,

Φk,i =

[
Φxxk,i Φxyk,i

(Φxyk,i)
T Φyyk,i

]
=

[
Σ−k,i Σ−k,iC

T

CΣ−k,i CΣ−k,iC
T +R

]
.

We consider the following three cases:

1) When ζk = 0, the joint conditional PDF of xk and yk is

f(xk, yk|Ik) = f(xk, yk|ζk = 0, Ik−1)

=
P(ζk = 0|xk, yk, Ik−1)f(xk, yk|Ik−1)

P(ζk = 0|Ik−1)

=
P(ζk = 0|yk)f(xk, yk|Ik−1)

P(ζk = 0|Ik−1)

=
exp(− 1

2y
T
k Y yk)

∑Nk−1

i=1 α−k,iNxk,yk(ηk,i,Φk,i)

P(ζk = 0|Ik−1)
,

(17)

where the first equality is obtained from Bayes’ theorem, the
second equality follows the fact that ζk merely depends on
yk, and the third equality follows directly from (2) and the
assumption.

Let

θk,i = yTk Y yk +

([
xk
yk

]
− ηk,i

)T
Φ−1k,i

([
xk
yk

]
− ηk,i

)
.

(18)
By manipulating (18) and applying [6, Lemma 1], we obtain

θk,i =

([
xk
yk

]
− η̄k,i

)T
Φ̄−1k,i

([
xk
yk

]
− η̄k,i

)
+ ck,i, (19)

where

η̄k,i =

[
η̄xk,i
η̄yk,i

]
, Φ̄k,i =

[
Φ̄xxk,i Φ̄xyk,i

(Φ̄xyk,i)
T Φ̄yyk,i

]
,

ck,i = (µ−k,i)
TCT (CΣ−k,iC

T +R+ Y −1)−1Cµ−k,i,

with

η̄xk,i = µ−k,i − Σ−k,iC
T (CΣ−k,iC

T +R+ Y −1)−1Cµ−k,i,

η̄yk,i = [I + (CΣ−k,iC
T +R)Y ]−1Cµxk,i,

Φ̄xxk,i = Σ−k,i − Σ−k,iC
T (CΣ−k,iC

T +R+ Y −1)−1CΣ−k,i,

Φ̄xyk,i = Σ−k,iC
T [I + Y (CΣ−k,iC

T +R)]−1,

Φ̄yyk,i = [(CΣ−k,iC
T +R)−1 + Y ]−1.

Hence

f(xk, yk|Ik) =
1

P(ζk = 0|Ik−1)

×
Nk−1∑
i=1

α−k,i exp(− ck,i2 )√
det(I + Y Σyyk,i)

Nxk,yk(η̄k,i, Φ̄k,i)

=
1

P(ζk = 0|Ik−1)

Nk−1∑
i=1

β0
k,iNxk,yk(η̄k,i, Φ̄k,i).

Since f(xk, yk|Ik) is a PDF,∫
Rn

∫
Rm

f(xk, yk|Ik)dxkdyk = 1.

Hence,

P(ζk = 0|Ik−1) =

Nk−1∑
i=1

β0
k,i. (20)
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On the other hand, since ζk = γk = 0, Nk = Nk−1. As a
consequence, f(xk, yk|Ik) is a GMM with Nk components:

f(xk, yk|Ik) =

Nk∑
k=1

β0
k,i∑Nk

i=1 β
0
k,i

Nxk,yk(η̄k,i, Φ̄k,i).

Thus, (6)-(8) hold when ζk = 0 and γk = 0.

2) When ζk = 1 and γk = 1, the estimator successfully
receives yk with no error. Therefore,

f(xk|Ik) = f(xk|yk, ζk = 1, γk = 1, Ik−1)

=
P(ζk = 1, γk = 1|xk, yk, Ik−1)f(xk|yk, Ik−1)

P(ζk = 1, γk = 1|yk, Ik−1)

=
P(γk = 1)P(ζk = 1|yk)f(xk|yk, Ik−1)

P(γk = 1)P(ζk = 1|yk)

= f(xk|yk, Ik−1)

=
f(xk, yk|Ik−1)

P(yk|Ik−1)

=

∑Nk−1

i=1 α−k,iNxk,yk(ηk,i,Φk,i)∑Nk−1

i=1 α−k,iNyk(ηyk,i,Φ
yy
k,i)

.

Note that
Nxk,yk(ηk,i,Φk,i)

Nyk(ηyk,i,Φ
yy
k,i)

= Nxk(µ̃k,i, Σ̃k,i),

where µ̃xk,i and Σ̃xxk,i is computed via conditional Gaussian
distribution, i.e.,

µ̃k,i = ηxk,i + Φxyk,i(Φ
yy
k,i)
−1(yk − ηyk,i)

= µ−k,i + Σ−k,iC
T (CΣ−k,iC

T +R)−1(yk − Cµ−k,i),
Σ̃k,i = Φxxk,i − Φxyk,i(Φ

yy
k,i)
−1(Φxyk,i)

T

= Σ−k,i − Σ−k,iC
T (CΣ−k,iC

T +R)−1CΣ−k,i.

Thus,

f(xk|Ik) =

∑Nk−1

i=1 α−k,iNyk(ηyk,i,Φ
yy
k,i)Nxk(µ̂k,i, Σ̂k,i)∑Nk−1

i=1 α−k,iNyk(ηyk,i,Φ
yy
k,i)

=

Nk−1∑
i=1

β1
k,i∑Nk−1

i=1 β1
k,i

Nxk(µ̃k,i, Σ̃k,i).

Since ζk = γk = 1, Nk = Nk−1. As a result, f(xk|Ik)
is a GMM with Nk components, each component of which
has mean µ̃k,i and covariance Σ̃k,i. Thus, (6)-(8) hold.

3) When ζk = 1 and γk = 0, the measurement yk is
transmitted by the sensor yet not received successfully by
the remote estimator. Thus, by substituting (20) into the
following equation, the joint conditional PDF of xk and yk
is given by

f(xk, yk|Ik) =
1− exp(− 1

2y
T
k Y yk)

1−
∑Nk−1

i=1 β0
k,i

(21)

×
Nk−1∑
i=1

α−k,iNxk,yk(ηk,i,Φk,i),

where the derivation is obtained by replacing P(ζk = 0|yk)
and P(ζk = 0|Ik−1) in (17) with P(ζk = 1|yk) and P(ζk =
1|Ik−1), respectively. Analogously, by reorganizing (21) and
applying [6, Lemma 1], the PDF can be rewritten as

f(xk, yk|Ik) =
1

1−
∑Nk−1

i=1 β0
k,i

×
Nk−1∑
i=1

(
α−k,iNxk,yk(ηk,i,Φk,i)− β0

k,iNxk,yk(η̄k,i, Φ̄k,i)
)
.

Since ζk = 1 and γk = 0, Nk = 2Nk−1 and (9)-(14) hold.
Finally, for time update, the distribution of xk+1 condi-

tioned on Ik is

f(xk+1|Ik) = f(Axk + wk|Ik)

=

Nk∑
i=1

αk,iNxk+1
(Aµk,i, AΣk,iA

T +Q).

Therefore, (3)-(5) hold and the proof is now complete. �
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