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Abstract— This paper presents a control framework for
transporting a UAV slung-payload, which can asymptotically
stabilize not only the UAV but also the tether swing angles.
By separating the system into two subsystems, the cascade
control methodology is used to design the framework, which
includes two sufficient conditions and suits for a large class of
existing controllers. The control framework is strictly proved
with the boundness of all states such that it can guarantee
the asymptotic stability of the closed-loop overall system over
the entire configuration space. Then, this framework is applied
to a UAV trajectory tracking control problem with stability
analysis. Samples of controllers are presented in the type
of saturation or dynamic feedback. Finally, numerical and
experimental validations are carried out on a UAV slung-
payload transportation.

I. INTRODUCTION

In recent decades, payload transportation using tethered
unmanned aerial vehicle (UAV) has attracted wide research
attention due to its autonomous and flexible mobility [1].
Different from the payload grasped by UAV directly, payload
transportation with the aid of tether, namely UAV slung-
payload system (USPS), has several benefits such as light-
weight, landing flexibility, and simple mechanism. To put
USPS into practice, considerable works have been presented
in [2]–[8], which can be split into maneuver/hover and tra-
jectory/path tracking. The maneuver/hover is to transport the
payload point-to-point with less tether swing motions, while
the trajectory/path tracking usually follows some preplanned
trajectories, even performs aerobatic flights.

Considering the principal purpose of efficient and safe
aerial transportation, a large amount of research interest
is focused on the former one [5]–[10]. However, it is far
from simple to maneuver the USPS to target points quickly
while suppressing swing angles simultaneously because of
its complexly coupled dynamics. Compared to the dynamics
of a single UAV, USPS becomes highly underactuated after
tethering a payload to UAV [7], where the underactuated
degrees increase from two to four, i.e., eight degrees of free-
dom with only four inputs. Thus, many promising works have
been devoted to the stabilization control of the underactuated
USPS [5]–[17]. For instance, in [5], a control approach for
both single UAV and multiple UAVs was proposed through
the linearization. In [11], the swing suppression of the USPS
was studied through input shaping technique. To reject the
constant disturbances, in [15], authors developed a robust
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IDA-PBC scheme for the USPS with a two-dimensional
dynamics model. Then, to further consider the full dynamics
of USPS in three-dimensional space, they proposed a model-
based predictive control strategy [16], which is able to
constrain the maximum swing angle. Besides, inspired by the
inner-outer-loop design for UAVs [17], nonlinear controllers
were designed with a hierarchical structure [7]–[9], [12],
and the overall system stability was analyzed by proving the
linear growth restriction of the interconnected terms between
subsystems, which ensures the boundness of only actuated
states rather than all states. Also, the stability of overall
system can be analyzed based on the time-scale separation
principle [18], which requires high control gains to ensure
the fast convergence of inner-loop dynamics and to enlarge
the local region of attraction. However, this might amplify
measurement noises and degenerate system performance. In
addition, the finite time sliding mode control for USPS based
on the cascaded control design was studied in [19] with
a three-loop structure. Note that most of above mentioned
works linearized the system dynamics at the equilibrium or
used the simplified dynamics models rather than the full
dynamics of USPS [19] for stability analysis, which implies
the local asymptotic stability (LAS).

Despite the satisfactory results of previous controllers with
cascade system design, the boundness of the actuated states
only demonstrates the stability of USPS in small operational
space since the state of the outer-loop subsystem might
escape to infinity because of the “peaking phenomenon”
[20]. Thus, how to achieve the asymptotic stability (AS)
over the entire configuration space with guaranteeing the
boundness of all states still remains open. Compared to the
previous studies, the main contributions of this study include
the following: the full dynamics of overall USPS in three-
dimensional space is considered; and the stability of closed-
loop system is studied without linearization; furthermore, to
ensure the AS on the entire configuration space, a simple
and effective control framework is presented in the Lya-
punov sense according to the cascade control design. This
framework simplifies the controller design and guarantees
the boundness of all state solutions of both subsystems
by validating the satisfaction of two sufficient conditions.
Consequently, many off-the-shelf controllers are directly
applicable to the overall system with AS according to the
framework. Finally, we extend the framework to the UAV
trajectory tracking with the dynamic feedback controllers.
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II. PRELIMINARY AND PROBLEM FORMULATION

A. Mathematical Preliminaries

Let’s first consider σ(s) a smooth and strictly increas-
ing saturation function of class-C2 with bounded deriva-
tives, and satisfying the following properties: sσ(s) >
0, ∀s 6= 0; ‖σ‖ ≤ d0, d0 ∈ R+ and σ(0) =
0. If s = col(s1, s2, · · · , sn) ∈ Rn, σ(s) =
col(σ(s1), σ(s2), · · · , σ(sn)), where the notation col(·) de-
notes a column vector. sigα(s) = sign(s)|s|α. If ∀s ∈ Rn,
then sigα(s) = col(sigα(s1), sigα(s2), · · · , sigα(sn)).

Then, we present a lemma about cascade systems stability.
Readers are referred to [21] for supplementary details.

Lemma 1: [21] Cascade system (1) is globally asymp-
totically stable (GAS) at the origin (x1, x2) = 0 under the
conditions of: 1) Unperturbed subsystem Σ1 : ẋ1 = f1(x1)
is GAS at x1 = 0; 2) Subsystem Σ2 is GAS at the origin
x2 = 0; 3) The solution t 7→ (x1, x2) is bounded all the
time. {

Σ1 : ẋ1 = f1(x1) + g(x1, x2)
Σ2 : ẋ2 = f2(x2)

(1)

where g(x1, x2)= 0 if x2 = 0.

B. Dynamics Model and Problem Formulation

Considering a slung-payload connected to a UAV, the
dynamic equations of USPS are given as follows [7],

ξ̇1 = ξ2
M(ξ1)ξ̇2 + C(ξ1, ξ2)ξ2 +G(ξ1) = u

(2)

Θ̇ = Π(Θ)ω
Jω̇ = −ω × (Jω)+τ

, Π(Θ) =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ


(3)

where ξ1 = col(q, γ1, γ2), and q = col(qx, qy, qz) is the
position vector of UAV in the inertial coordinate frame FI .
γ1, γ2 are the swing angles of tether. u = col(FRez, 0, 0)
is the input vector for (2), ez = col(0, 0, 1) is the unit
vector. R ∈ SO(3) denotes the UAV rotation matrix. Θ :=
col(φ, θ, ψ) are UAV’s attitude angles. F is the supplied force
along the upward direction of UAV, and τ denotes the applied
torque of UAV. ω is the angular velocity of UAV, and J is
the inertial matrix of UAV. The variables in (2), and (3) are
defined as si := sin i, ci := cos i, i = {γ1, γ2, φ, θ, ψ},

M = [mij ]n×n, C = [cij ]m×n,mij = mji,

m11 =m22 =m33 = mq +mp,m14 = mplc1c2,m25 = mplc2,

m12 =m13 =m23 =m24 =m45 =0,m15 = −mpls1s2,

m34 = mpls1c2,m35 = mplc1s2,m44 = mpl
2c22,m55 = mpl

2,

[cij ]5×3 = 0, c14 = −mpl(γ̇1s1c2 + γ̇2c1s2), c24 = c55 = 0,

c15 = −mpl(γ̇1c1s2 + γ̇2s1c2), c25 = −mplγ̇2s2,

c34 = mpl(γ̇1c1c2 − γ̇2s1s2), c35 = mpl(γ̇2c1c2 − γ̇1s1s2),

c44 = −mpl
2γ̇2c2s2, c45 = −mpl

2γ̇1cys2, c54 = mpl
2γ̇1c2s2,

G = [0, 0, 0,mpgls1c2,mpglc1s2]T.

in which mq and mp denote the mass of UAV and payload,
respectively. l is the tether length.

Assumption 1 [7, 9]: Payload swing angles are assumed to
be (γ1, γ2) ∈ (−π/2, π/2), which implies the UAV will not
become entangled by the tethered payload.

Problem 1: Considering the dynamics of USPS in (2) and
(3) , the main goal is to design the input controller for the
wrench (u, τ) to achieve USPS transporting from the start
point to the target point while zeroing the swing angles, i.e.,

t→∞, ξ1 → ξ1d = col(qd, 0, 0). (4)

III. CONTROL FRAMEWORK FOR UAV SLUNG-PAYLOAD

A. Main Results

To achieve the control objective of the overall system of
USPS, i.e., stabilization of all positions and attitudes, we
view the overall system as two interconnected subsystems,
as shown in Fig. 1(a). The first subsystem is the translational
subsystem, which includes three positions of the UAV and
two swing angles of the tethered payload. It is like an under-
actuated three-dimensional crane-pendulum system with five
degrees of freedom but three virtual inputs, Fc. The second
one is a rotational subsystem that is the attitude motion of
the UAV, which is fully actuated with three torques.

Fig. 1. Cascade Block of USPS (a) and Control Diagram (b).

As shown in Fig. 1(b), the controller is designed in
two steps. First, to stabilize the translational subsystem, an
ideal command force controller Fc = col(Fcx, Fcy, Fcz)
is designed by accommodating the force input F to the
required orientation Rc. Second, the attitude of UAV is
controlled through an inner-loop attitude controller τ to
track the command attitudes Rc. Once the attitude errors
converge to zero, the ideal command force will be generated.
Consequently, a feasible attitude extraction map between Fc
and F as in [22] is presented as follows,

Fc := FRcez, Rcez =

 cφcsθccψc + sφcsψc
cφcsθcsψc − sφccψc

cφccθc

 (5)

where Θc = col(φc, θc, ψc) represent the desired attitude
angles. Taking the fact of ‖Rcez‖ = 1 , one can easily derive
that, from (5), the magnitude of force input of UAV,

F = ‖Fc‖ (6)

Further, by making some mathematical operations and
taking the inverse of triangular functions, one can have Θc
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as follows,

φc = asin[(Fcxsψc − Fcycψc)/F ]
θc = atan[(Fcxcψc + Fcysψc)/Fcz]
t 7→ ψc ⊂ C2

(7)

Here ψc expresses the yaw angle, namely the heading
direction of UAVs. Form (7), one can solve φc, θc with any
preassigned heading angle ψc. In this paper, we will consider
ψc= 0 in the subsequent sections. It should be noted that, in
general, ψc can be assigned freely according to a higher-level
guidance demand. Then, by applying an attitude controller,
one can adjust the heading angle to ψc.

Let’s recall the translational dynamics in (2), and write the
error dynamics into the cascade form as follows,

ξ̇ = f(ξ) + g (ξ, η) (8)

where ξ := col(ξ̃1, ξ2) defines the state error, and ξ̃1 =
ξ1 − ξ1d = col(q − qd, γ1, γ2) denotes the position error.
ξ2 = col(q̇, γ̇1, γ̇2) is the velocity. The system’s flow f :=
col(f1, f2), f1 = ξ2 , f2 = −M−1 (Cξ2 +G− uc). The
perturbed term is g := col(g1, g2) with g1 = 0, g2 =
M−1(u− uc) , uc = col(Fc, 0, 0).

By introducing the following explicit input transformation

τ = (Π−1Θ̇)×(JΠ−1Θ̇)+JΠ̇−1Θ̇+JΠ−1Θ̈c+JΠ−1τ̂ (9)

the error rotational attitude dynamics of UAV is given as

η̇ = ρ(η) = col(ėΘ, τ̂) (10)

where η = col(eΘ, ėΘ) = col(Θ−Θc, Θ̇− Θ̇c) is the error
attitude vector. τ̂ is the new torque in terms of η.

Then, we summarize the main theorem for stabilizing the
cascade USPS (8) and (10).

Theorem 1: Cascade system (8) and (10) is GAS under
the following two conditions:

P1: Design the command force Fc to make the unperturbed
translational subsystem (8) GAS, and there exists a positive
definite and radially unbounded function Vξ satisfying

LfVξ ≤ 0 and
∥∥∥∥∂Vξ∂ξ2

∥∥∥∥ ‖Fc‖ ≤ cVξ,∃c ∈ R+, ‖ξ‖>N ∈ R+

(11)
P2: Design the torque τ̂ to ensure the attitude subsystem

(10) GAS, and there exists a positive definite function Vη for
‖η‖ ∈ B(r) = {‖η‖ < r} ⊂ R, r ∈ R+ , that satisfying

V̇η ≤ −aηV αη (12)

where aη ∈ R+ and 0 < α ≤ 1, α ∈ R+.
Proof: We first show the growth rate of the perturbation term
g(ξ, η) satisfying

‖g‖=
∥∥M−1(u− uc)

∥∥≤∥∥M−1
∥∥ ‖F (R−Rc) ez‖≤k ‖eΘ‖

(13)
where k1, k ∈ R+. ‖(R−Rc) ez‖ ≤ k1 ‖eΘ‖ has been used
in (13) and the derivation is given in Appendix A.

Then, recalling (11), the Lie derivative LgVξ is

LgVξ ≤
∥∥∥∥∂Vξ∂ξ2

∥∥∥∥ ‖g(ξ, η)‖ ≤ kcVξ ‖η‖ , ‖ξ‖ > N (14)

Thus, due to GAS of (10), one has ‖η‖ ≤ KL(‖η(0)‖ , t),
which indicates ‖η‖ is bounded all the time.

Next, we continue the analysis with two situations: a) α =
1, ‖η‖ is exponential stable from (12). Then, recalling (14),
we can obtain ‖ξ‖ is bounded, see [20] for details. b) 0 <
α < 1, the origin of subsystem is locally finite time stable,
and there exists a finite time tf such that ‖η(t)‖t>tf = 0 .
Considering Vξ > 0, and from (11) and (14), we have

d

dt
(lnVξ) ≤ kc ‖η‖ (15)

Integrating both sides of (15) , with the boundness of ‖x2‖
and ‖x2(t)‖t>tf = 0 , we have

lnVξ ≤ lnVξ(0)+kc

∫ tf

0

‖η‖dt ≤ lnVξ(0)+kctf sup(‖η‖)
(16)

This indicates the boundness of Vξ, and further implies the
boundness of ‖ξ‖. Thus, by applying Lemma 1, one can
conclude that overall system is GAS under the proposed
control framework.

Remark 1: Theorem 1 provides a framework to synthesize
subsystem controllers, for which one can select different
off-the-shelf controllers to translational and rotational sub-
systems. Then, by verifying conditions of P1 and P2, one
can readily identify the AS of the overall system. It is very
fruitful for controller design, which provides a simple and
effective approach to control the underactuated USPS.

B. Sample Controllers

We first consider a homogeneous proportional-derivative
(PD) controller for attitude system dynamics stabilization

τ̂ = −kτ1e
α
Θ − kτ2ė

2α/(1+α)
Θ (17)

where α ∈ (0, 1], α ∈ R+. (17) ensures the globally
exponential stable for the attitude subsystem for α = 1
and the globally finite stable while 0 < α < 1. And, it
is straightforward to see the requirement of P2 in Theorem
1 is satisfied according to the Proposition 1 of [23].

Next, the translational controller, ideal force Fc, is to
fulfill the requirement for the translational subsystem. We
present the following sample controllers:

1Fc = −kc1q̃ − kc2q̇ +mtgez (18)
2Fc = −kc1σ(q̃)− kc2σ(q̇) +mtgez (19)

3Fc = −kc1σ(q̃ + kc2q̇) +mtgez (20)
4Fc = −kc1σ (kc2q̃ + kc3σ(q̇)) +mtgez (21)

where kc1, kc2, kc3 ∈ R+ are diagonal matrices and mt =
mq+mp. q̃ = q−qd denotes the position error of UAV. (18)
is a PD plus desired gravity compensation controller. (19)-
(21) are (nested) saturation controllers. (19) is same as in
[7] if the saturation function is specified as σ(s) = tanh(s).
Stability analysis of the controllers is provided in Appendix
B.

Remark 2: It is noteworthy that [11], [24] mainly focus
on the swing suppression, where the attitude control of the
quadrotor is neglected or supposed to be achieved. Thus, the
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stability of overall system remains to be discussed. Similarly,
in [7], [9], AS of the translational subsystem is discussed but
lacks the evidence of all states boundness.

IV. EXTENSION TO UAV

In this section, we extend the proposed framework to the
trajectory tracking UAV problem defined as the following.

Problem 2: For a given position trajectory qd(t) in class-
C4 with bounded derivatives, the aim is to design a controller
for the wrench (F, τ) such that

t→∞, q(t)→ qd(t). (22)

By zeroing the payload mass, USPS is reduced to a single
UAV. Thus, the translational motion of UAV becomes

q̈ = FRez/mq − gez (23)

Denoting χ := col(χ1,χ2) = col(q− qd,q̇− q̇d) ∈ R6 and
one can write (23) into the error dynamics as

χ̇ = fχ + gχ (24)

where fχ = col(ξ2, Fc/mq − gez − q̈d), and gχ =
col(0, F (R−Rc)ez/mq . If R = Rc, then gχ = 0, and (24)
defines the unperturbed translational subsystem.

Theorem 2: Cascaded system (24) and (10) for UAV is
GAS under the prerequisites of P2 in Theorem 1 and P3.

P3: Force controller Fc ensures the unperturbed subsys-
tem (24) GAS, and there exists a positive definite radially
unbounded function Vχ and c ∈ R+ satisfying that

LfχVχ ≤ 0,

∥∥∥∥∂Vχ∂χ2

∥∥∥∥ ‖Fc‖ ≤ cVχ, ∃ ‖χ‖ > N ∈ R+ (25)

Proof. Similarly, as in Theorem 1, one can have

LgχVχ ≤
∥∥∥∥∂Vχ∂χ2

∥∥∥∥ ‖gχ‖ ≤ kVχ ‖η‖ , k ∈ R+ (26)

where ‖gξ‖ ≤ k1F ‖eΘ‖ has been incorporated in the second
inequality. Thus, recalling P2 of Theorem 1 and its stability
analysis and Lemma 1, one can conclude that GAS of the
overall UAV system under P2 and P3.

Let’s define a force controller Fc as,

Fc := µ(χ) +mqgez +mq q̈d (27)

where µ(χ) is a feedback controller satisfying P3 that can
be selected as,

1µ(χ) = Kχ (28)
2µ(χ) = −kc1σ(χ1)− kc2σ(χ2) (29)
3µ(χ) = −kc1σ(kc2χ1 + kc3χ2) (30)

where K ∈ R3×6 and kc1, kc2, kc3 ∈ R+. Equation (28)
is a linear PD controller given in [22]. Equations (29) and
(30) are two (nested) saturation controllers meeting the P3.
Stability of these controllers is straightforward from Theorem
2 and similar to the proof in Appendix B.

Furthermore, (28) is expanded into a dynamic feedback
manner, such that

4µ(χ̄, χ) = K1χ̄+K2χ, ˙̄χ = A1χ̄+A2χ (31)

where χ̄ ∈ Rp,K1 ∈ R3×p, A1 ∈ Rp×p, A2 ∈ Rp×6.
Defining z = col(χ̄, χ) ∈ Rp+6 , and combing (31) with

(24), we can augment the system (24) as,

ż = fz + gz =

[
A1 A2

K1 K2

]
z+

[
0

(FRez − Fc)/mq

]
(32)

The following corollary is presented for the stability of (32).
Corollary 1: Cascade system (32) and (10) for UAV is

GAS under prerequisites of P2 and P4.
P4: Considering ‖Fc‖ ≤ c1 ‖z‖ + c2,∃ c1, c2, c3 ∈ R+

ensures the unperturbed subsystem (32) GAS, and there
exists a positive definite and radially unbounded function
Vz satisfying that

LfzVz ≤ 0,

∥∥∥∥∂Vz∂z
∥∥∥∥ ‖z‖ ≤ c3Vz,∃ ‖z‖ > N ∈ R+ (33)

Proof. To prove the stability, we calculate the Lie derivative,

LgzVz ≤
∥∥∥∥∂Vz∂z

∥∥∥∥ ‖gz‖ ≤ k1

∥∥∥∥∂Vz∂z
∥∥∥∥ (c1 ‖z‖+ c2) ‖eΘ‖

≤ c4Vz ‖η‖ , ∃ ‖z‖ > max(N, c2/c1) ∈ R+

(34)
where ‖gz‖ ≤ k1F ‖eΘ‖ and c4 = 2kc1c3. Thus, similar to
the stability analysis of Theorem 1, one can conclude that
GAS of the overall UAV system under P2 and P4.

V. NUMERICAL AND EXPERIMENTAL RESULTS

Numerical simulation and experimental test are performed
to demonstrate the effectiveness of the proposed control
framework for both UAV slung-payload and UAV systems.
The system parameters for simulations and experiments are
chosen as: mq=1.121 kg, mp=0.2 kg, J=diag(0.01,0.0082,
0.0148) kg· m2 and the tether length l=1 m.

A. Numerical Results

(a) (b)

Fig. 2. Responses of USPS Positions and Swing Angles: (a): q(0)=[-0.5,
0, 1.5], γ(0)=[5, -5]◦; (b): q(0)=[-0.4, 0.1, 1.6], γ(0)=[3, -3]◦.

We first verify the USPS with PD controller (18) and the
saturation PD controller (20), in which control gains are
selected as kc1 = diag([2, 2, 2]) and kc2 = diag([4, 4, 4]).
Two cases with different initial conditions of system are
simulated. In case (a), the initial position of UAV is set
as q(0) = [−0.5 , 0, 1.5]T m and target position is
qd = [0.5 , 1, 2.5]T m. Initial angles of tether swing are
[γ1(0), γ2(0)] = [5,−5]◦, and initial attitude angles of UAV
are Θ1(0) = [0, 0, 0]◦. In case (b), the initial position of
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UAV is set as q(0) = [−0.4 , 0.1, 1.6]T m. Initial angles
of tether swing are [γ1(0), γ2(0)] = [3,−3]◦. Homogeneous
attitude controller (17) is with gains kτ1 = diag([2, 2, 2]),
kτ2 = diag([4, 4, 4]), and α = 0.8. Simulation results
are presented in Fig. 2, where the positions of UAV reach
the desired ones successfully without overshoot and after
a settling time ≈ 16s for both controllers under different
initial conditions, while the swing angles of the payload are
suppressed to zero. Note that (20) performs slightly slower
transient performance than (18) due to the restriction of
maximum magnitude of the input, which could be further
improved by optimizing the control gains.

Fig. 3. UAV’s Trajectories in Three-Dimensional Space: (a): Without
Disturbance (d=0); (b): With Disturbance (d=0.1).

Next, two simulation cases with/without constant
disturbance are carried out for UAV position
tracking. A reference trajectory is given as qd(t) =
[0.5 cos(0.05πt), 0.5 cos(0.05πt), 1 + 0.1t]T m. Initial
position of UAV is q(0) = [0, 0, 1]T m. In the first case,
PD controller (28) with K = −diag([2, 2, 2, 4, 4, 4]) and
saturation controller (29) are compared. Control gains of
(29) and attitude controller are same as before. Initial
attitudes of UAV are Θ(0) = [0, 10, 0]◦. Trajectories of UAV
are plotted in Fig. 3 in 3D space. As shown in Fig. 3(a),
UAV quickly tracks the reference spiraling curve for both.
Although starting with initial position biases, all position
trajectories catch up the reference in a short time. Second
case is a robust test, in which we consider a constant
disturbance d=0.1 m/s2 within the capacity of UAV’s input
acting on the position subsystem. Initial conditions are set
as same as before. A dynamic feedback controller (31)
(PID), µ = K1χ̄ + Kχ, ˙̄χ = χ1, is used to compare with
(28) with K1 = −diag([0.2, 0.2, 0.2]). Fig. 3(b) shows
that (31) presents better robust performance against the
disturbance, which tracks the reference perfectly. However,
for (28), there always exists a small steady error during the
entire tracking process. Thus, in an external environment
with disturbances, robust controllers should be considered
for precise positioning.

B. Experimental Results

In the following, we setup an experimental validation on
our platform of quadrotor (QDrone) referred to [4]. The

dimensions of the QDrone are 40 × 40 × 15 cm, and the
rest of physical parameters are same as in the simulation.
In this experimental test, the goal is to fly the Qdrone with
a slung-payload to the target point qd = [1 , 0.5, 1.6]T m.
Same as in the simulation, controllers (18) and (20) are used.
The experimental results are drawn in the Fig. 4, where the
position errors are stabilized to zero with a settling time
ts=8.5 s and the tolerant mean average errors (MAE) of
‖q‖ are 0.064 for (18) and 0.091 for (20) after ts. This
is consistent with the simulation that (18) performs slightly
better transient performance than the saturation controller
(20), and validates the effectiveness of the controller. The
MAE of tether swing angels ‖γ‖ are 4.34◦ for (18) and 4.38◦

for (20), and the maximum angles max‖γ‖ are 9.71◦ and
12.8◦, respectively. Unlikely the simulation, there exist small
steady errors less than 2.7◦ on the swing angles due to the
practical turbulence and actuator vibrations. (Experimental
results can be found at: https://youtu.be/8LQngOfhGb0.)

Fig. 4. Experimental Results: Position Errors and Swing Angles.

VI. CONCLUSIONS

This paper proposed a control framework to stabilize
the underactuated UAV slung-payload system on the entire
configuration space. By the cascade control design, the con-
trol framework was designed with two sufficient conditions
that strictly guarantee the asymptotic stability of the overall
closed-loop system, and simplifies the controller design and
stability analysis. This control framework can be applied
to many existing controllers of each subsystem for having
the asymptotic stability and all state boundness. Then, the
framework was extended to UAV trajectory tracking control,
and dynamic feedback type of controller was presented.
Simulation and experimental tests were carried out to show
the effectiveness of several sample controllers. However,
in the current control framework, the external time-varying
disturbances, model uncertainties (payload mass and tether
length), and the system time-delay have not been addressed,
which could be considered in the future works to improve
the system robustness and performance.
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APPENDIX

A. Derivation of Inequality

‖(R−Rc) ez‖=

∥∥∥∥∥∥
 cφsθcψ+sφsψ
cφsθsψ−sφcψ

cφcθ

−
 cφcsθccψc+sφcsψc
cφcsθcsψc−sφccψc

cφccθc

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
 |cψ−cψc|+|cφ−cφc|+|sθ−sθc|+|sψ−sψc|+|sφ−sφc||sψ−sψc|+|cφ−cφc|+|sθ−sθc|+|cψ−cψc|+|sφ−sφc|

|cθ−cθc |+|cφ−cφc |

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
 2 |eφ|+|eθ|+2 |eψ|

2 |eφ|+|eθ|+2 |eψ|
|eφ|+|eθ|

∥∥∥∥∥∥ ≤ k1 ‖eΘ‖ ,∃k1 ∈ R+

B. Proof of Controllers

Proofs for controllers (18)-(21) are similar. For instance,
we carry out the analysis for (18). Proof for (18): To analyze
the stability, we take the following Lyapunov function,
proposed in [7], to controller (18),

1Vξ =
1

2
ξ2
TMξ2 +mpgl(1− cγ1cγ2) +

1

2
q̃T kc1q̃

By taking the Lie derivative of (35), we have Lf 1V̇ξ =
−q̇T kc2q̇ ≤ 0. This implies 1V̇ξ = 0 as t → ∞. Then,
q̇ will finally converges to the invariant set {q̇ = 0}. Thus,
according to the detailed analysis in [7], one has the AS of
unperturbed translational subsystem at the ξ = 0.

We further verify the second inequality in (11),∥∥∥∂1Vξ
∂ξ2

∥∥∥‖Fc‖=‖Mξ2‖‖Fc‖≤m̄ ‖ξ2‖ (c1 ‖q̃‖+c2 ‖ξ2‖+mtg)

≤ 2m̄c2‖ξ2‖2 + m̄c1(‖ξ2‖2 + ‖q̃‖2), ‖ξ2‖ ≥ mtg/c2
≤ c1Vξ, ‖ξ‖ > N ∈ R+

where c = 2 max{m̄(2c2 + c1), m̄c1}/min{m, c3}, c1 and
c3 are the maximum and minimum eigenvalues of ‖kc1‖,
respectively. c2 are the maximum of ‖kc2‖. m̄ and m
are maximum and minimum eigenvalues of M . Thus, P1
is satisfied, and the states of the closed-loop system are
bounded.
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