
A Unified Approach to Communication Delay and Communication

Frequency in Distributed State Estimation of Linear Systems

Jan Mast1 Zonglin Liu1 Zhenhua Wang2 and Olaf Stursberg1

Abstract— This paper introduces a novel method to address
communication delay and communication frequency in dis-
tributed state estimation using a unified structure. Starting from
a general type of delay, which can be time-varying, unknown,
and different for each channel, two estimation strategies are
proposed which use either a unified upper-bound of the delay
in all channels, or a sender specific upper-bound in order to
improve the performance. The strategies guarantee convergence
of the estimation error, and they can be applied to study how
communication frequency (or asynchronous communication)
affects the convergence rate of the estimation. Thus, the
task of determining a necessary communication frequency for
obtaining specified performance of distributed estimation is
considered, and this task is approached as a special case of
the one tailored to delay. Effectiveness of the techniques is
confirmed by numerical examples for both types of tasks.

I. INTRODUCTION

Fast developments of cyber-physical systems (CPS) raise

new challenges for controller synthesis, such as accounting

for the complexity arising from the interaction of many sub-

systems, or the satisfaction of input and state constraints. For

the latter challenge, model predictive control (MPC) has been

identified as a suitable strategy, but it often requires that the

overall state is known for all subsystems (or are least a subset

of neighboring subsystems). If not all states can be measured

due to system size, the missing states may be estimated

by concepts such as Luenberger observers. However, the

estimation error converges only if the networked system is

detectable, which turns out to be very restrictive for CPS with

many subsystems. To alleviate this requirement, the notion

of distributed state estimation, in which each subsystem is

only required to measure a part of the overall output, has

attracted large interest in recent years.

The pioneering work in [1]–[3] has shown that, even

if none of the local subsystems is detectable, the local

estimation error can still be stabilized to zero by let-

ting the observers communicate their local estimates. This

scheme, however, requires real-time communication between

observers. In practice, different types of communication

problems may occur, such as intermittent communication

restrictions [4], [5], limited communication bandwidth [6],

or communication delay [7], [8]. Since communication de-

lays inevitably occur in every channel, providing robustness

against such delays has been addressed in several papers

on the subject. Existing research on communication delay
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mainly distinguishes between different types of delay: In

[7], the delay is assumed to be time-varying but known

by the receiver. For this case, the authors propose a robust

distributed estimation strategy by solving semi-definite pro-

gramming (SDP) problems for discrete-time linear systems.

The work in [9] switched the focus to the continuous-time

case, and divided the time domain into different intervals

according to constant and known delay values. Also for the

continuous-time case, the work in [10] studied the problem of

determining the largest constant delay in distributed state es-

timation for which the estimation is guaranteed to be stable.

This result was extended in [8] in order to cope with time-

varying and unknown communication and measurement

delay. However, the communication delay there is assumed

to be identical for all senders. The work in [11] considered

a similar setting as in [8], but the main focus was shifted to

graph properties for the case of extremely large delays. In

the recent work [12], the authors also focused on unknown

communication delay which is assumed to be identical for

all channels.

In contrast to previous work, this paper starts from a

more general delay setting, namely the case of unknown,

time-varying delays which are heterogeneous over different

channels with different bounds. To handle such delays, two

novel methods are proposed in the first part, one based on a

unifying upper delay bound over all channels, the other one

working with sender-specific delay bounds. It is shown that

both strategies can ensure the convergence of the estimation

error in the presence of delay (by solving SDP problems),

while the second strategy is less conservative (but more

complex) and leads to faster convergence.

In the second part of the paper, a different and important

aspect of distributed state estimation is addressed, namely

the one of determining an appropriate frequency of commu-

nication [6], [13], [14]. Note that communication delay and

communication frequency in distributed state estimation are

usually treated separately in literature – in the present paper,

the latter is regarded as a special case of the former, allowing

to handle both problems with a common approach. It is

shown that the question of how communication frequency

affects the convergence rate can be cast into a problem of

estimation under delay with using a common delay bound. In

contrast, the question of how the frequency of asynchronous

communication affects the convergence rate can be cast into

a delay problem with sender-specific delay bounds. The joint

solution path for these cases enables addressing the tasks of

estimation with delay and of determining the communication

frequency simultaneously and in a reliable manner.
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In the next section, the considered class of systems and de-

lays are defined first, before the proposed solution strategy as

well as variants to improve its performance are introduced in

Sec. 3. The use for the solution of communication frequency

problems is described in Sec. 4, and the effectiveness of the

technique is evaluated in a series of tests in Sec. 5. The work

is concluded in Sec. 6 with an outlook on future directions.

II. PROBLEM DESCRIPTION

This paper considers continuous-time linear systems:

ẋ(t) = Ax(t) +Bu(t) (1)

with time t ∈ R
≥0, the system state x(t) ∈ R

n, and

the input u(t) ∈ R
m. The system is equipped with a set

N = {1, . . . , N} of distributed observers, where each local

observer i ∈ N can measure a part of the system output by:

yi(t) = Cix(t), yi(t) ∈ R
pi . (2)

For this setting, the following are assumed:

Assumption 1: The matrices A and B, as well as the

input u(t) in any time t are known to all observers, and the

matrix pair (C,A) for C = [CT
1 , . . . , C

T
N ]T is detectable.

Assumption 2: The local observers can communicate to

each other via a strongly connected and directed graph G.

Note that this paper deals with distributed estimation

(rather than distributed control), and thus assumes that the

input u(t) is selected by a central controller and known by

all observers. (Even for a system with single input, a set

of distributed estimators may still be necessary to jointly

estimate the state in case of distributed sensors.)

The adjacency matrix Ag ∈ R
N×N of the graph G is

determined by letting aij (the entry in the i-th row and

j-th column of Ag) equal to one if the observer j can

send information to i, and zero otherwise. Based on Ag ,

the Laplacian matrix of the graph is determined by Lg =
Dg−Ag ∈ R

N×N , where Dg ∈ R
N×N is a diagonal matrix

with dii =
∑N

j=1 aij on the diagonal.

Given the two assumptions, it is known from [1], [2], that

gain matrices Li ∈ R
n×pi and Mi ∈ R

n×n exist for which

the estimation law:

˙̂xi(t) = Ax̂i(t) +Bu(t) + Li(yi(t)− Cix̂i(t))

−Mi

∑

j∈N
aij(x̂j(t)− x̂i(t)) (3)

allows to update the local estimate x̂i(t), i ∈ N , and the

estimation error ei(t) = x(t) − x̂i(t) converges to zero for

t → ∞ for all observers. By using (3), the local estimate

x̂j(t) sent from the observer j must be received by i at the

same time t. In practice, however, a delay τji(t) ≥ 0 of the

communication is unavoidable, leading to:

˙̂xi(t) = Ax̂i(t) +Bu(t) + Li(yi(t)− Cix̂i(t))

−Mi

∑

j∈N
aij(x̂j(t− τji(t))− x̂i(t)). (4)

The delay τji(t) is assumed to be time-varying, unknown,

heterogeneous for different channels, and bounded by:

0 ≤ τji(t) ≤ τji,max. (5)

Note that the upper-bounds τji,max can often be determined

conservatively based on experiments. In the presence of

communication delay, the gain matrices Li and Mi syn-

thesized for the delay-free case by (3) may fail to ensure

the convergence of ei(t). Thus, a critical question is how to

ensure convergence in the presence of delays. In addition,

if the input u(t) is determined according to the estimated

state, the estimation error ei(t) should not only be stabilized

to zero, but should also show a suitably high convergence

rate to avoid negative impact on the control performance.

A. Common Upper Bound of Delays for all Channels

To handle the different delays τji(t) occurring for the

channels, a possible first step is to determine a common

upper bound τ̄ over all channels:

τ̄ := max
∀i,j∈N , aij 6=0

τji,max. (6)

Starting from the initial time t0 = 0, the continuous

time domain is divided into intervals based on τ̄ , leading

to sampling times (t0, t1, . . . , tk = k · τ̄ , . . .), k ∈ N ∪ {0}.

The local observers i ∈ N are required to send their local

estimate x̂i(t) to the others in each time tk, see Fig. 1. Using

this scheme, the local estimate x̂j(tk−1) sent from j at tk−1

is ensured to be received by i before tk. Accordingly, a new

estimation law based on (4) is proposed for t ∈ [tk, tk+1):

˙̂xi(t) = Ax̂i(t) +Bu(t) + Li(yi(t)− Cix̂i(t))

−Mi

∑

j∈N
aij(x̂j(tk−1)− x̂i(tk−1)). (7)

Compared to (4), the local estimate x̂j(t − τji(t)) of j is

replaced by x̂j(tk−1) in (7), as the latter must have been

received by i before tk. The local estimate x̂i(t) being

subtracted from x̂j(t − τji(t)) in (4) is also replaced by

x̂i(tk−1) in (7), in order to work with time-consistent data.

By using (7) for (1) and (2), the dynamics of the estimation

error ei(t) for t ∈ [tk, tk+1) is given by:

ėi(t)=(A−LiCi)ei(t)−Mi

∑

j∈N

aij(ej(tk−1)−ei(tk−1)). (8)

By collecting the local ei(t) of all observers into one global

vector e(t) := [eT1 (t), e
T
2 (t), . . . , e

T
N (t)]T ∈ R

N ·n×1, the

dynamics of e(t) for t ∈ [tk, tk+1) are governed by:

ė(t) = Ãe(t) + M̃ L̃e(tk−1) (9)

s1

s2

τ21(tk−1)

τ12(tk−1)

τ21(tk)

τ12(tk) t

t

tk−1 tk tk+1

x̂2(tk−1)

x̂1(tk−1)

x̂2(tk)

x̂1(tk)

Fig. 1. For two observers s1 and s2, the local estimate x̂i(tk) is
communicated to each other in every sampling time tk , while the sampling
interval τ̄ is selected according to (6).
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according to (8), where:

Ã = diag(A− L1C1, . . . , A− LNCN ) (10)

M̃ = diag(M1, . . . ,MN ), L̃ = Lg ⊗ In. (11)

Here, In represents an n× n identity matrix and ⊗ denotes

the Kronecker product of two matrices. Based on (9), the

following theorem is proposed, which provides a rule for

synthesizing the gain matrices Li and Mi in (7), such that

the local estimation error ei(t), i ∈ N converges to zero

with a certain rate despite of the communication delays.

Theorem 1: Given τ̄ from (6) and a constant η ≥ 0, let

(symmetric) positive-definite matrices Pi ∈ R
n×n, i ∈ N ,

matrices R0, R1 ∈ R
(nN)×(nN), as well as matrices Wi ∈

R
n×pi , Yi ∈ R

n×n, i ∈ N exist, which satisfy the following

linear matrix inequalities (LMIs):

[

PÃ+ÃTP+Y L̃+L̃TY T+(4τ̄ e2ητ̄+η)P Y L̃

L̃TY T − 1
2τ̄ P

]

� 0 (12)

[

P ÃTP

PÃ R0

]

� 0 (13)

[

P L̃TY T

Y L̃ R1

]

� 0 (14)

P − (R0 +R1) � 0 (15)

with P = diag(P1, . . . , PN ), Y = PM̃ = diag(Y1, . . . ,

YN ), and PÃ = diag(P1A −W1C1, . . . , PNA −WNCN ).
When using the gain matrices Li and Mi determined by:

Li := P−1
i Wi, Mi := P−1

i Yi (16)

in the local estimation laws (7) for all i ∈ N , the global

estimation error e(t) in (9) satisfies:

||e(t)|| ≤ c · e−
η
2
(t−t0)||e(t0)|| (17)

for a constant c > 0 and t ≥ t0. �

Proof. First of all, by using the Newton-Leibniz formula,

the error dynamics (9) is reformulated into:

ė(t) = (Ã+ M̃L̃)e(t)− M̃L̃(e(t)− e(tk−1)) (18)

= (Ã+ M̃L̃)e(t)− M̃ L̃

∫ t

tk−1

(Ãe(s) + M̃L̃e(tk−1))ds.

For Pi ≻ 0, i ∈ N , a Lyapunov function candidate:

V (e(t)) := e(t)TPe(t) (19)

with P = diag(P1, . . . , PN ) of e(t) is determined. It is

known that the convergence rate of ||e(t)|| in (17) holds if:

V̇ (e(t)) ≤ −ηV (e(t)) (20)

applies for any t ≥ t0. According to (18), the derivative

V̇ (e(t)) in the time interval t ∈ [tk, tk+1) is given by:

V̇ (e(t)) = eT (t)(P (Ã + M̃L̃) + (Ã+ M̃ L̃)TP )e(t) (21)

− 2eT (t)PM̃ L̃(

∫ t

tk−1

Ãe(s)ds+ (t− tk−1)M̃L̃e(tk−1)).

Based on [15] and the Schur complement of (13), the term

−2eT (t)PM̃ L̃
∫ t

tk−1

Ãe(s)ds in (21) is known to satisfy:

− 2eT (t)PM̃ L̃

∫ t

tk−1

Ãe(s)ds ≤

∫ t

tk−1

eT (s)ÃTPR−1
0 PÃe(s)ds

+ (t− tk−1)e
T (t)PM̃ L̃P−1R0P

−1L̃T M̃TPe(t)

≤

∫ t

tk−1

eT (s)Pe(s)ds+2τ̄ eT (t)PM̃ L̃P−1R0P
−1L̃T M̃TPe(t)

(22)

for any positive-definite matrix R0 ∈ R
(nN)×(nN) and for

t ∈ [tk, tk+1). For the term
∫ t

tk−1

eT (s)Pe(s)ds in (22), which

equals to
∫ t

tk−1

V (e(s))ds, it must apply, if (20) holds for any

t ≥ t0, that:

V (e(t)) ≤ e−η(t−tk−1)V (e(tk−1)) (23)

for t ∈ [tk, tk+1). A constant β > e2ητ̄ thus must exist, such

that the relation:

β · V (e(t)) ≥ V (e(tk−1)) (24)

holds for this time interval. Given β, an upper-bound of the

term
∫ t

tk−1

eT (s)Pe(s)ds in (22) is provided by:

∫ t

tk−1

eT (s)Pe(s)ds ≤ 2τ̄βeT (t)Pe(t). (25)

The term −2eT (t)PM̃ L̃(t − tk−1)M̃ L̃e(tk−1) in (21) can

be similarly bounded from above according to the Schur

complement of (14) and the constant β in (24) by:

− 2eT (t)PM̃ L̃(t− tk−1)M̃ L̃e(tk−1) ≤

eT (t)(2τ̄ (PM̃ L̃P−1R1P
−1L̃T M̃TP + βP ))e(t) (26)

for any positive-definite matrix R1 ∈ R
(nN)×(nN). Based on

(21), (22), (25) and (26), the inequality (20) now holds if:

P (Ã+ M̃ L̃) + (Ã+ M̃ L̃)TP + (4τ̄β + η)P

+2τ̄P M̃L̃P−1(R0 +R1)P
−1L̃T M̃TP � 0 (27)

applies. In addition, due to the continuity of the constant β

satisfying (24), it is known that if the inequality:

P (Ã+ M̃ L̃) + (Ã+ M̃L̃)TP + (4τ̄ e2ητ̄ + η)P

+2τ̄P M̃L̃P−1(R0 +R1)P
−1L̃T M̃TP � 0 (28)

holds, there must exist a constant β sufficiently close to e2ητ̄ ,

such that (27) also holds (see [16] for more details). Finally,

given the constraints (15) and (16), the inequality (28) can be

cast into (12) by using the Schur complement, what finishes

the proof. �

Theorem 1 can be applied to check if a given convergence

rate η is realizable for the unified delay bound τ̄ . If the

outcome is affirmative, one can incrementally increase η

and test the feasibility of the LMIs, until the largest ηmax

is found. The value of ηmax thus represents the highest

convergence rate that can be achieved by (7).

2671



B. Sender-Specific Upper Delay Bounds

Although Theorem 1 provides a distributed estimation law

that is robust to delay, the use of a unified delay upper-bound

may lead to significant conservativeness, resulting in a small

ηmax value satisfying (12) and (13), thus leading to a small

convergence rate. This can be unfavorable, in particular, if

e.g. the delays in only a few channels are large, while the

delays remain very small in most other channels. In regard

to this problem, a new estimation law is now proposed in

order to increase the convergence rate, while employing the

solution of a similar SDP problem as the one in Theorem 1.

First of all, the largest upper-bound τ̄j for all channels

from the sending observer j to any of its receivers i is

determined:

τ̄j := max
i∈N , aij 6=0

τji,max. (29)

Then, the smallest τ̄j over all j ∈ N is determined by:

τ∗ := minj∈N τ̄j (30)

with the smallest multiple of τ∗ as σj ∈ Z satisfying:

τ̄j ≤ σj · τ
∗ (31)

for each observer j ∈ N . Now, the local observers are

required to send their local estimate x̂j(t) after any step

τ∗, i.e., at each sampling time (t0, t1, . . . , tk, . . .) with a

sampling interval of τ∗, see Fig. 2. By using this scheme, the

local estimates x̂j(tk−σj
) of the observer j at time tk−σj

,

must have been received by i at tk according to (31). A new

estimation law for each time interval t ∈ [tk, tk+1) is thus

obtained by:

˙̂xi(t) = Ax̂i(t) +Bu(t) + Li(yi(t)− Cix̂i(t))

−
∑

j∈N
aijMij(x̂j(tk−σj

)− x̂i(tk−σj
)). (32)

Compared to (7), two main differences can be noticed in

(32), namely: 1.) For a different sender j, the local estimate

x̂i(tk−σj
) subtracted from x̂j(tk−σj

) in (32) is also different,

and 2.) a common gain matrix Mi in (7) is used by the

observer i, while different matrices Mij are adopted in (32),

i.e., the local estimates from different senders (with different

delays) are treated separately. The dynamics of the local

estimation error ei(t) is thus given by:

ėi(t) = (A− LiCi)ei(t)

−
∑

j∈N
aijMij(ej(tk−σj

)− ei(tk−σj
)). (33)

Now, by removing all edges from the graph G except those

emerging from the observer j, a local Laplacian matrix Lg,j

can be determined, and the set of such matrices satisfies:
∑

j∈N
Lg,j = Lg. (34)

Given the matrix Ã in (10) and by defining:

M̃j = diag(M1j, . . . ,MNj), L̃j = Lg,j ⊗ In (35)

for all j ∈ N , the global error e(t) follows to:

ė(t) = Ãe(t) +
∑

j∈N
M̃jL̃je(tk−σj

) (36)

for the time interval t ∈ [tk, tk+1). Based on (36), the

following result can be obtained similarly to Theorem 1.

Theorem 2: Given τ∗ according to (30) and a constant

η ≥ 0, assume that (symmetric) positive-definite matrices

Pi ∈ R
n×n, i ∈ N and Ri,j ∈ R

(nN)×(nN), i ∈ N , j ∈
{0, 1, . . . , N}, as well as matrices Wi ∈ R

n×pi , i ∈ N and

Yij ∈ R
n×n, i, j ∈ N exist, which satisfy the LMIs:













Γ Y[1]L̃1 . . . Y[N ]L̃N

L̃T
1 Y

T
[1] − P

(σ1+1)τ∗
0 0

... 0
. . . 0

L̃T
NY T

[N ] 0 0 − P
(σN+1)τ∗













� 0 (37)

[

P ÃTP

PÃ Ri,0

]

� 0, ∀i ∈ N (38)

[

P L̃T
j Y

T
[j]

Y[j]L̃j Ri,j

]

� 0, ∀i ∈ N , ∀j ∈ N (39)

P −
N
∑

j=0

Ri,j � 0, ∀i ∈ N (40)

where:

Γ := PÃ+
∑

j∈N

Y[j]L̃j + ÃTP +
∑

j∈N

Y T
[j]L̃

T
j

+((
∑

i∈N

(σi + 1)τ∗(eη(σi+1)τ∗

+
∑

j∈N

eη(σj+1)τ∗

))+η)P (41)

with P = diag(P1, . . . , PN ), PÃ = diag(P1A −
W1C1, . . . , PNA − WNCN ) and Y[j] = PM̃j =
diag(Y1j , . . . , YNj) for all j ∈ N . With gain matrices Li

and Mij according to:

Li := P−1
i Wi, Mij := P−1

i Yij (42)

in the local estimation laws (32), the global estimation error

e(t) in (36) satisfies:

||e(t)|| ≤ c · e−
η
2
(t−t0)||e(t0)|| (43)

for a constant c > 0 and t ≥ t0. �

The proof of Theorem 2 follows the same path as that of

Theorem 1 and is thus omitted. Note that the main reason

why the largest η from Theorem 2 can be higher than that

from Theorem 1 is due to the circumstance, that for Theorem

2, more gain matrices Mij are synthesized and thus more

degrees of freedom are present. This improvement, however,

also leads to a higher computational complexity, since a

s1

s2
t

t

tk−1 tk tk+1 tk+2 tk+3

x̂2(tk−1)

x̂1(tk−1)

x̂2(tk)
x̂1(tk)

τ∗τ∗τ∗τ∗τ∗

Fig. 2. For two observers s1 and s2 with τ̄1 ≤ 2τ∗ and τ̄2 ≤ τ∗., the
local estimates are exchanged every τ∗ time units.
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number of N2+N−2 matrices Ri,j and a number of N2−N

matrices Yij must be synthesized in addition.

III. COMMUNICATION FREQUENCY ANALYSIS

Even if assuming that delays were not present, one should

recognize that the continuous-time estimation rule (3) is

an idealized setting, which cannot be applied in this form

exactly, as it would require that information is exchanged

infinitely often on a bounded time interval. Thus, the use

of discretized time for communication, as underlying in the

previous section, is mandatory – this raises the question of

an appropriate communication frequency and its impact on

the convergence rate.

Assume for this section that no delay is present in all

channels and that the communication among observers is

carried out after any time step δt(> 0), i.e. at sampling times

(t0, t1, . . . , tk, . . .), k ≥ 0, see Fig. 3. In this case, the local

estimate x̂j(tk) sent from the observer j is received by i at

the same time, and is held constant by i until tk+1. This

leads to the following estimation law for each observer for

t ∈ [tk, tk+1):

˙̂xi(t) =Ax̂i(t) +Bu(t) + Li(yi(t)− Cix̂i(t))

−Mi

∑

j∈N
aij(x̂j(tk)− x̂i(tk)). (44)

It should be noticed, that this law is a special case of (7), i.e.,

the local estimate x̂j(tk−1) of observer j is used on [tk, tk+1)
in (7), while the more recent estimate x̂j(tk) of j is used in

(44) for the same time interval. To this end, Theorem 1 is

extended to study the influence of communication frequency

on the convergence rate:

Corollary 1: Given the communication interval δt and a

constant η ≥ 0, let the value τ̄ in the LMIs (12) to (15)

be replaced by δt
2 . If the resulting LMIs have a feasible

solution, then the global estimation e(t) in (9) satisfies the

convergence rate (17) when using the estimation rule (44).

�

This fact results from the similarity of the structures of

(7) and (44): Note that τ represents the sampling time in

(7), while δt is the sampling time in (44). The corollary is

obtained if 2τ (which refers to the largest value of t− tk−1

for t ∈ [tk, tk+1) and sampling time τ ) is replaced in (22)

and (25) by δt (referring to the largest value of t − tk−1

for t ∈ [tk−1, tk) with sampling time δt). Thus, the highest

convergence rate ηmax for the communication frequency

(referring to δt) can also be determined.

Asynchronous communication results if the observers do

not use the same communication frequency, see Fig. 4. This

may occur if one or more observers need to communicate

with lower rate due to a malfunction, or if event-triggered

schemes are applied [17]. To study the influence of asyn-

chronous communication on the convergence rate (with the

objective to conclude on measures to enhance the reliability

of estimation), the method established by Theorem 2 can

be further exploited: Let δi, i ∈ N , denote the different

communication intervals (thus different frequencies) of the

observers. Then, the smallest interval of all observers:

δ∗ := mini∈N δi (45)

is determined, as well as the smallest integers σi ∈ Z

satisfying: δi ≤ σi · δ
∗ for each observer i ∈ N .

Discretizing the continuous-time domain by use of δ∗

leads to sampling times (t0, t1, . . . , tk, . . .), where all ob-

servers execute their first communication at t0 = 0. An

estimation law similar to (32) for the interval t ∈ [tk, tk+1)
is formulated:

˙̂xi(t) = Ax̂i(t) +Bu(t) + Li(yi(t)− Cix̂i(t))

−
∑

j∈N
aijMij(x̂j(t⌊ k

σj
⌋·σj

)− x̂i(t⌊ k
σj

⌋·σj
)). (46)

In here, ⌊ k
σj
⌋ denotes rounding k

σj
to the next smaller integer.

Given (46), the dynamics of ei(t) and e(t) can be similarly

determined as in (33) and (36), thus leading to LMIs which

are very similar to those in Theorem 2. By this procedure, the

highest convergence rate ηmax can be determined by solving

the corresponding SDP problem.

In this section, the proposed method is evaluated for a

communication delay and frequency problem referring to

n = 4 observers. The system dynamics in (1) and (2) are

parameterized by:

A =









0.1 −0.2 0 0
0 0.3 0 0

−0.1 0 0.5 −1
0.1 0.1 0.05 −0.1









, B =









1
1
2
2









C1 =
[

5 2 0 0
]

, C2 =
[

0 1 0 0
]

C3 =
[

0 0 0 1
]

, C4 =
[

1 0 −5 3
]

Note that the matrix pair (Ci, A) is not detectable for two

out of four observers. The initial estimate of each observer

is randomly selected. For an instance of the delay problem,

s1

s2
t

t

δtδt

tk−1 tk tk+1

x̂2(tk−1)

x̂1(tk−1)

x̂2(tk)

x̂1(tk)

x̂2(tk+1)

x̂1(tk+1)

Fig. 3. To analyse the influence of the communication frequency, the local
estimation is assumed to be received without delay in each sampling time.

s1

s2
t

t

tk−1 tk tk+1 tk+2

x̂2(tk−1)

x̂1(tk−1)

x̂2(tk) x̂2(tk+1)

x̂1(tk+1)

x̂2(tk+2)

δ∗δ∗δ∗
2δ∗2δ∗

Fig. 4. The local estimate of the observer s2 is sent to s1 after time δ∗,
and after time 2δ∗ from s1 to s2.
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the upper delay bounds for the senders (29) are selected to:

τ̄1 = 0.1, τ̄2 = τ̄3 = 0.01, τ̄4 = 0.02. The common upper

bound for all channels in (6) is thus τ̄ = τ̄1 = 0.1. By

using the law (7) with τ̄ , the highest convergence rate of e(t)
obtained from Theorem 1 is ηmax = 0.414, see the evolution

of ei(t) in Fig. 5. The local estimation error converges to

zero after approximately 15 seconds. By using the law (32)

with τ∗ = 0.01 from Theorem 2, a significant improvement

of the highest convergence rate is observed with ηmax =
0.927, see Fig. 6. In this case, the local estimates converge

to zero within approximately 8 seconds. For the same system,

the influence of the communication frequency on the highest

convergence rate is evaluated in Fig. 7.
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Fig. 5. Evolution of each dimension of the local estimation error ei,[l](t),
i ∈ N by using the estimation law (7).
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Fig. 6. Evolution of ei,[l](t), i ∈ N by using the estimation law (32).
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0
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1
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Fig. 7. Relation between the communication frequency determined by δt
and the highest convergence rate ηmax .

IV. CONCLUSIONS

This paper has addressed two important classes of com-

munication problems for distributed state estimation, namely

the robust estimation under communication delay and the

choice of the communication frequency. Given a general

type of communication delay, the first part of this paper has

introduced two efficient methods to synthesize distributed

estimation laws with different performances. In the second

part, it is shown that the communication frequency problem

is a special case of the delay problem, and can thus be

studied using very similar principles. Current work aims at

extending the proposed structure to nonlinear systems and to

fault detection in distributed state estimation [18].
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